Volcanic Hazard Mapping for Development Planning

Total Page:16

File Type:pdf, Size:1020Kb

Volcanic Hazard Mapping for Development Planning TECHNICAL REPORT WC/00/20 Overseas Geology Series DFID Project No. R5563 Volcanic hazard mapping for development planning P N Dunkley and S R Young BGS International® British Geological Survey Keyworth Nottingham NG12 5GG United Kingdom TECHNICAL REPORT WC/00/20 Overseas Geology Series DFID Project No. R5563 Volcanic hazard mapping for development planning P N Dunkley and S R Young With contributions by R A Nicholson A report prepared for the Department for International Development (DFID) under the Knowledge and Research Programme as part of the UK provision of technical assistance to developing countries. The views expressed are not necessarily those of DFID. DFID classification : Subsector: Geoscience Theme: G2 - Improve geological, geochemical and geotechnical hazard avoidance strategies in development planning Project title: Volcanic hazard mapping for development planning Project reference: R5563 Bibliographic reference: Dunkley, P N and Young, S R. 2000 Volcanic hazard mapping for development planning. BGS Technical Report WC/00/20 Keywords: volcanic hazards, risk mitigation, hazard mapping Front cover illustration: Perspective view of a digital terrain model of volcán Villarrica draped with volcanic hazard zones © NERC 2000 Keyworth, Nottingham, British Geological Survey, 2000 BGS Technical Report WC/00/20 Volcanic Hazard Mapping for Development Planning _________________________________________________________________________________________________________________ EXECUTIVE SUMMARY It is estimated that more than 500 million people are at risk from the hazards posed by volcanoes. The potential therefore exists for major loss of life and damage to property in a number of regions, especially where large urban areas occur in proximity to dangerous volcanoes. As population pressures intensify, hazardous areas are likely to become increasingly developed, so raising the level of risk. In the case of major eruptions, losses to property, infrastructure and economic activity can run into hundreds of millions or even billions of dollars and high casualty rates may be inflicted, although even relatively minor activity can have adverse impacts through the disruption of economic activity, lack of investor confidence and harm to health. Eruptions may therefore seriously disrupt development plans by causing burdensome economic setbacks that divert precious resources into relief and reconstruction, which would otherwise be destined for development. This can be severe in developing nations with small, poorly diversified economies. Because disasters are inextricably linked to human and economic development, the most efficient way to prevent them or reduce their impact is to take natural hazards into routine consideration when formulating development plans. An integrated approach to hazard management and development planning will also result in more realistic cost-benefit analyses of potential development projects, by taking into account the estimated costs and benefits of hazard reduction measures. Although numerous volcanoes pose a high level of risk in many developing countries, relatively few have been the subject of hazard assessments. The main objective of the project has therefore been the development and evaluation of rapid and cost-effective methods for volcanic hazard mapping in developing countries. Volcanic hazard mapping methods are described and the role that these have to play within the broader framework of risk reduction is discussed. With respect to this framework, the recurring problem of the failure of uptake and utilization of volcanic hazard information is examined within the context of the communications interface between civil authorities and volcanologists, and recommendations are made for improving the efficiency of the process through a number of measures. Two volcanic hazard assessment case studies were undertaken by the project on the Chilean volcanoes of Nevados de Chillán and Villarrica. A detailed assessment of Nevados de Chillán was carried out over several years by a team of specialists using a conventional approach, whilst a much more rapid and less expensive methodology was applied by a single geologist at Villarrica. These two studies, together with a pre-existing detailed assessment of Villarrica, allow the merits of rapid volcanic hazard assessment methods and conventional methods to be compared. Both case studies used reconnaissance survey techniques based upon the interpretation of aerial photographs and satellite images, and developed simple geographical information systems and digital cartographic methods for the production and presentation of hazard maps in forms which should be more easily visualised and understood by civil authorities and decision makers involved in the downstream processes of volcanic risk reduction. I BGS Technical Report WC/00/20 Volcanic Hazard Mapping for Development Planning _________________________________________________________________________________________________________________ The project has shown that it is possible to produce simple but effective hazard maps using techniques that are considerably more rapid and less expensive than conventional methods. The level of detail of hazard mapping is only slightly compromised using these methods compared with conventional assessments, and is certainly sufficiently accurate and informative to be fit for the purpose of development planning and disaster preparedness. The benefits of using hazard maps of this kind to reduce volcanic risk within the framework of development planning and civil protection are potentially very large, when compared with the disastrous impacts that volcanic activity can have on the vulnerable infrastructure of developing countries. A third case study was undertaken on volcán Irazú, situated close to the Costa Rican capital of San José. Various aspects of the 1963-65 eruption of Irazú were investigated, including the economic impact of the eruption and the vulnerability of the human population, buildings and infrastructure to the effects of volcanic ash and mudflows. Proposals were made by the sub- project for reducing the risks during future eruptions at Irazú through better community preparedness. The Montserrat eruption has provided a test bed for a number of aspects of volcano hazard and risk assessment addressed by the project. Experience gained through the project has been applied to the Montserrat crisis, leading to successful hazard and risk assessment and the provision of pertinent and timely advice to civil authorities. Whilst the project has demonstrated that the methods exist for producing effective and cost- beneficial hazard and risk assessments by rapid methods, the problem remains of convincing civil authorities that such assessments are necessary in the first place, bearing in mind the reluctance to implement risk-reduction policies under dormant volcanic conditions which normally prevail at most volcanoes. II BGS Technical Report WC/00/20 Volcanic Hazard Mapping for Development Planning _________________________________________________________________________________________________________________ LIST OF CONTENTS 1. INTRODUCTION ............................................................................................................. 1 1.1 Objectives of the project .......................................................................................................................... 1 1.2 Structure of the report .............................................................................................................................. 2 2. NATURAL HAZARD ASSESSMENT IN DEVELOPMENT PLANNING ................ 4 2.1 Natural hazards and disasters in developing countries ............................................................................ 4 2.2 Disaster reduction measures: prevention, preparedness and emergency response .................................. 5 2.3 Hazard, vulnerability and risk assessment ............................................................................................... 6 2.3.1 Hazard assessment .......................................................................................................................... 6 2.3.2 Vulnerability analysis ...................................................................................................................... 7 2.3.3 Risk assessment ............................................................................................................................... 8 2.4 Planners and the interface between hazard mapping and risk assessment ............................................... 9 2.5 Digital cartography and geographical information systems .................................................................. 10 2.5.1 Digital mapping techniques used in the case studies of this project .............................................. 11 3. GENERAL CONSIDERATIONS OF VOLCANIC HAZARDS AND HAZARD ASSESSMENTS .............................................................................................................. 13 3.1 Size and frequency of volcanic eruptions .............................................................................................. 13 3.2 The impact of volcanic disasters ............................................................................................................ 16 3.2.1 Casualties ...................................................................................................................................... 16 3.2.2 Economic impact ..........................................................................................................................
Recommended publications
  • Rapid Magma Ascent and Generation of Th Excesses in the Lower Crust At
    Earth and Planetary Science Letters 255 (2007) 229–242 www.elsevier.com/locate/epsl Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue–Cordón Caulle, Southern Volcanic Zone, Chile ⁎ Brian R. Jicha a, , Brad S. Singer a, Brian L. Beard a, Clark M. Johnson a, Hugo Moreno-Roa b,c, José Antonio Naranjo b a Department of Geology and Geophysics, University of Wisconsin—Madison, 1215 West Dayton Street, Madison WI 53706, USA b Servicio Nacional de Geología y Minería (SERNAGEOMIN), Avenida Santa María, 0104 Santiago, Chile c Observatorio Volcanologico de los Andes del Sur (OVDAS), Cerro Ñielol-Sector Antenas, Temuco, Chile Received 28 July 2006; received in revised form 7 December 2006; accepted 8 December 2006 Available online 30 January 2007 Editor: R.W. Carlson Abstract Basaltic to rhyolitic lavas and tephras erupted over the last 70 kyr at the Puyehue–Cordón Caulle volcanic complex in the Andean Southern Volcanic Zone (SVZ) were analyzed for major and trace element, Sr isotope, and U–Th isotope compositions to constrain the timescales of magmatic processes and identify the subducted and crustal components involved in magma genesis. Internal U–Th mineral isochrons from five lavas and three tephra fall deposits are indistinguishable from their eruption ages, indicating a short period (b1000 yr) of crystal residence in the magma prior to eruption. The (230Th/232Th) ratios define a narrow range (0.80–0.83) compared to that of all SVZ lavas (0.72–0.97), suggesting that Puyehue basalt was derived from a relatively uniform mantle source. Dacites and rhyolites have the largest U excesses and likely evolved via fractional crystallization of a plagioclase-dominated mineral assemblage.
    [Show full text]
  • Multiple Sources for Tephra from AD 1259 Volcanic Signal in Antarctic Ice
    Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino To cite this version: Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino. Mul- tiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores. Quaternary Science Reviews, Elsevier, 2019, 210, pp.164-174. 10.1016/j.quascirev.2019.03.005. hal-02350371 HAL Id: hal-02350371 https://hal.archives-ouvertes.fr/hal-02350371 Submitted on 25 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Details Manuscript number JQSR_2019_21 Title MULTIPLE SOURCES FOR TEPHRA FROM AD 1259 VOLCANIC SIGNAL IN ANTARCTIC ICE CORES Abstract Strong volcanic signals simultaneously recorded in polar ice sheets are commonly assigned to major low-latitude eruptions that dispersed large quantities of aerosols in the global atmosphere with the potential of inducing climate perturbations. Parent eruptions responsible for specific events are typically deduced from matching to a known volcanic eruption having coincidental date. However, more robust source linkage can be achieved only through geochemical characterisation of the airborne volcanic glass products (tephra) sometimes preserved in the polar strata.
    [Show full text]
  • Developing a Health Training Program to Prepare for Volcanic Eruptions in Colombia and Ecuador
    ECHO/ISDR good practices for resilient communities Developing a Health Training Program to Prepare for Volcanic Eruptions in Colombia and Ecuador A DIPECHO Project, executed by The Pan American Health Organization/World Health Organization Summary Country/ies of implementation of the Action Ecuador and Colombia. In Ecuador, the provinces of Pichincha, Chimborazo, Tungurahua, Sucumbios, and Napo. In Colombia, the departments of Nariño, Caldas, Risaralda and Quindío. Principal objective To reduce risk by better preparing the vulnerable populations in the areas most affected by volcanic eruptions in Ecuador and Colombia. In this case, preparedness means the reinforcement of the coping capacity of the health sector at the national, sub-national and municipal level in both selected countries. These improvements are critical to the establishment of a better preparedness program, and to the exchange of technical experiences between Ecuador and Colombia. Specific objective Strengthening the technical capacity of the health sector in both selected countries to respond to volcanic eruptions, through the development and dissemination of training materials on health preparedness, a “train the trainers” program for health professionals at the national, sub-national and municipal levels, and training of members of existing disaster response teams (EOCs). 1.1.1. 1.1.2. Problem statement Together, Ecuador and Colombia have the highest number of active volcanoes in Latin America. History in those countries is plagued with examples of volcanic eruptions that have caused dramatic human and economic losses with a significant impact on the development of the affected populations, such as the Nevado del Ruiz eruption in 1985 in Colombia, and the eruptions of the Guagua Pichincha, Tungurahua and Reventador volcanoes in recent years in Ecuador.
    [Show full text]
  • 1. GENERAL INFORMATION 1.1. About Ecuador
    2nd Meeting of the ITU Centres of Excellence (CoE) Steering Committee for the Americas Region From 11 to 12 December 2019 Quito, Ecuador 1. GENERAL INFORMATION 1.1. About Ecuador: Ecuador is the second smallest country in South America. Nevertheless, it has a diversity of landscapes to explore. The Pacific Coast stretches along the western edge of Ecuador, while the Highlands or the "Sierra" is centralized in the country, stretching all the way from the North to the South. The East is mainly composed of Amazonian rainforest; and, the "Island Region" contains the Galapagos Islands, volcanic islands located in the Pacific Ocean about 960 kilometres from the Ecuadorian coast. The unique wildlife located in the archipelago inspired the British naturalist Charles Darwin in the development of the theory of evolution. Due to the proximity of the country with the Equator and its geographic diversity, Ecuador is an ideal destination for lovers of nature, orchids and exotic birds and jungle plants, strange insects, wastelands hit by the wind, tropical forests and intrepid animals. Due to the proximity of the country with the Equator and its geographic diversity, Ecuador is an ideal destination for nature lovers, with orchids and exotic birds, jungle plants and strange insects, moorlands hit by the wind, tropical forests and intrepid animals. In addition to the natural richness, Ecuador has a recognized cultural heritage deriving mainly from the traditions and history of their diverse peoples and nationalities, an integral part of this Andean country. As a result of its small size (256.370 square kilometres), all its regions can be easily visited in a short period of time.
    [Show full text]
  • Final Copy 2021 03 23 Ituarte
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. Exploring differential erosion patterns using volcanic edifices as a proxy in South America Lia S. Ituarte A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Master by Research in the Faculty of Science, School of Earth Sciences, October 2020.
    [Show full text]
  • La Catástrofe Del Nevado Del Ruiz, ¿Una Enseñanza Para El Ecuador? El Caso Del Cotopaxi
    La catástrofe del Nevado del Ruiz, ¿Una enseñanza para el Ecuador? El caso del Cotopaxi. Robert d’Ercole To cite this version: Robert d’Ercole. La catástrofe del Nevado del Ruiz, ¿Una enseñanza para el Ecuador? El caso del Cotopaxi.. Estudios de Geograf’ia, Corporación Editora Nacional, 1989, Riesgos Naturales en Quito, 2, pp.5-32. hal-01184809 HAL Id: hal-01184809 https://hal.archives-ouvertes.fr/hal-01184809 Submitted on 25 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LA CATASTROFE DEL NEVADO DEL RUIZ l UNA ENSENANZA- PARA EL ECUADOR ? EL CASO DEL COTOPAXI Robert D'Ercole* El 13 de noviembre de 1985, el volcân colombiano, el Nevado deI Ruiz, erupciono provocando la muerte de unas 25.000 personas. Esta es la mayor catâstrofe causada por un volcan desde la que produjo 29.000 victimas, en 1902 en la isla Martinica, luego de la erupci6n de la Montafla Pelée. La magnitud de las consecuencias y el hecho de que el Ruiz haya dado signos de reactivaci6n mucho tiempo antes, plantean el problema deI fenomeno natural pero también de los factores humanos que originaron la tragedia.
    [Show full text]
  • COV4 Meeting Schedule Monday, 23 January, 2006
    COV4 Meeting Schedule Monday, 23 January, 2006 Sala 1 (large)† 8H15 Welcoming Statements 8H30 Invited Speaker M. Hall: LIVING WITH VOLCANOES 9H00 - 9H30 Invited Speaker A. Lavell: SOCIETY AND RISK: RISK MANAGEMENT AND VOLCANIC HAZARDS 9H30 - 10H00 Plenary Symposium IV-B: Monitoring Volcanoes J. EWERT: ASSESSING VOLCANIC THREAT AND PRIORITIZING VOLCANO MONITORING IN THE UNITED STATES 10H00 - Plenary Symposium II: Ash Falls and Aerosols 10H30 W. Rose: ASH-FALL AND AEROSOLS, AN OVERVIEW 10H30 - 11H00 Coffee Break Sala 1 (large) Sala 2 (medium) IV-B: Monitoring Volcanoes II: Ash Falls and Aerosols Chairs: J. Ewert, A. García, H. Kumagai & J. Chairs: J.-L. Le Pennec, C. Connor, T. Johnson Casadevall, D. Johnston & D. Schneider 11H00 - S. Carn: MONITORING GLOBAL VOLCANIC A. Neri: ASSESSING ASH FALL HAZARD 11H20 DEGASSING WITH OMI FROM WEAK EXPLOSIVE PLUMES 11H20 - C. Oppenheimer: NEW DEVELOPMENTS IN C. Bonadonna: PROBABILISTIC MODELLING 11H40 VOLCANIC GAS SURVEILLANCE OF TEPHRA DISPERSON 11H40 - B. Galle: DEVELOPMENT OF OPTICAL B. Houghton: PROXIMAL TEPHRA HAZARDS: 12H00 REMOTE SENSING INSTRUMENTS FOR RECENT ERUPTION STUDIES APPLIED TO VOLCANOLOGICAL APPLICATIONS VOLCANIC RISK IN THE AUCKLAND VOLCANIC FIELD, NEW ZEALAND 12H00-12H20 F. Donnadieu: ERUPTION DYNAMICS OF P. Baxter: GRAIN SIZE ANALYSIS OF ARENAL VOLCANO, COSTA RICA: INSIGHTS VOLCANIC ASH FOR THE ASSESSMENT OF FROM DOPPLER RADAR AND SEISMIC HEALTH HAZARD MEASUREMENTS 12H20 - 14H00 Lunch in the Centro Cultural Metropolitano- Plaza Grande IV-B: Monitoring-Cont. II: Ash- Cont. 14H00- A. Gerst: REAL-TIME 4D MONITORING OF D. Andronico: ASH EMISSIONS AT THE 14H20 ERUPTIVE PROCESSES WITH DOPPLER SUMMIT OF ETNA DURING THE 2004-05 RADARS- A NEW TOOL FOR HAZARDS FLANK ERUPTION MITIGATION AND VOLCANO SCIENCE 14H20-14H40 M.
    [Show full text]
  • Dome Collapse Driven Block-And-Ash Flows on Shiveluch, and Pyroclastic Flows on Mount St
    DOME COLLAPSE DRIVEN BLOCK-AND-ASH FLOWS ON SHIVELUCH, AND PYROCLASTIC FLOWS ON MOUNT ST. HELENS: DEPOSIT MORPHOLOGY AND DISTRIBUTION ANALYSIS USING MULTIPARAMETER REMOTE SENSING- AND FIELD-BASED METHODS by Janine Barbara Krippner Bachelor of Science, University of Waikato, 2007 Master of Science, University of Waikato, 2009 Submitted to the Graduate Faculty of The Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2017 UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Janine Barbara Krippner It was defended on July 7, 2017 and approved by John S. Pallister, Chief Volcano Disaster Assistance Program, USGS Cascades Volcano Observatory (External Examiner) Daniel Bain, Assistant Professor, University of Pittsburgh William Harbert, Professor, University of Pittsburgh Nadine McQuarrie, Associate Professor, University of Pittsburgh Dissertation Advisor: Michael S. Ramsey, Professor, University of Pittsburgh ii Copyright © by Janine Krippner 2017 iii DOME COLLAPSE DRIVEN BLOCK-AND-ASH FLOWS ON SHIVELUCH, AND PYROCLASTIC FLOWS ON MOUNT ST. HELENS: DEPOSIT MORPHOLOGY AND DISTRIBUTION ANALYSIS USING MULTIPARAMETER REMOTE SENSING- AND FIELD-BASED METHODS Janine B. Krippner, PhD University of Pittsburgh, 2017 Pyroclastic density currents are volcanic granular flows that include dome collapse-derived block-and-ash flows, and column collapse-derived pyroclastic flows. Volcanic dome-building cycles can last for years and can produce numerous collapse events that deposit block-and-ash flows up to 19 km from the dome. These impact surrounding communities and too-often result in fatalities, and populations have to be evacuated. Shiveluch in Kamchatka, Russia, is one of the world’s most active dome-building volcanoes and has produced some of the largest historical block-and-ash flows, globally.
    [Show full text]
  • Cayambeantisana Skills Expedition
    The Spirit of Alpinism www.AlpineInstitute.com [email protected] Administrative Office: 360-671-1505 Equipment Shop: 360-671-1570 Cayambe­Antisana Skills Expedition Program Itinerary Copyright 2015, American Alpine Institute Day 1: Arrive ­Quito (9500 ft / 2895 m) – Start of Part 1 This is the first scheduled day of the program. Arrive in Quito and meet your guide and other members of the expedition at Hotel Reina Isabel. The first day is designated for travel to Ecuador and becoming situated in country. For those who arrive early, we will provide you with a variety of sight seeing options including a tour of the historic colonial sector of Quito and El Panecillo overlooking the city. We will spend the night at Hotel Reina Isabel. Day 2: Acclimatize ­ Otavalo Market After meeting the rest of your group for breakfast, we will drive north, crossing the line of the Equator on our way to the Otavalo market. We begin our acclimatization by exploring the market which is filled with indigenous crafts and food. For lunch, we will take a leisurely walk to Lago de San Pablo and dine on the lake shore across from the dormant Imbabura Volcano (15,255ft). We will return to Hotel Reina Isabel for the evening. Day 3: Acclimatize ­ Cerro Pasochoa (13,776 ft / 4199 m) Today we will go on our first acclimatization hike on Cerro Pasochoa. The Pasochoa Wildlife Refuge has been protected since 1982, and exists as it did in pre­Colombian times. In the forest below Cerro Pasochoa we will hike among stands of pumamaqui, polyapis, podocarpus, and sandlewood trees as we watch for some of the more than one hundred species of native birds.
    [Show full text]
  • Possible Causes for the Seismic Activity Observed in Cotopaxi Volcano, Ecuador
    GEOPHYSICALRESEARCH LETTERS, VOL. 25, NO.13, PAGES2305-2308, JULY 1, 1998 Possible causes for the seismic activity observed in Cotopaxi volcano, Ecuador MarioRuiz 1, Bertrand Guillierl, 2, Jean-LucChatelain l, 2, 3, HugoYepes l Minard Hall •, and PatricioRamon 4 Abstract. Continuous monitoring of Cotopaxi volcano probability of having an explosive eruption similar or greater from January 1989 to September 1997 shows that it is subject than that of 1877 in 50, 100 and 200 years is respectivelyof to a steady shallow Long Period (LP) activity. LP events are 0.35, 0.57 and 0.82. concentrated in a column with a diameter of about 3 km and a Given this very active eruptive history and associated height of about 12 km, between an elevation of 4 km and 8 km volcanic hazards (pyroclastic flows, lahars, tephra falls, lava depth. They do not occur in swarms, nor have there been flows) that could affect populatedareas, the Instituto Geofisico periods of complete calm. High frequency volcano-tectonic (IG) of Quito start6d continuous monitoring of the seismic (VT) events are mostly located on the northeasternside of the activity of Cotopaxi in 1989. The goal of this paper is to LP column, with the maximum activity of both types of events describe the characteristicsof the Cotopaxi seismic activity, coinciding in depth. LP activity cannot be related to unrest of usingthe recordingsof the IG array from January1989 up to the volcano. The most likely explanation for the continuous September 1997. occurrence of LP events beneath Cotopaxi is that they are produced by the interaction of glacier thaw water and hot material at shallow depths.
    [Show full text]
  • Implications for Hazard Assessment at Mount Meager, BC
    Discrimination of hot versus cold avalanche deposits: Implications for hazard assessment at Mount Meager, B.C. M. L. Stewart, J. K. Russell, C. J. Hickson To cite this version: M. L. Stewart, J. K. Russell, C. J. Hickson. Discrimination of hot versus cold avalanche deposits: Implications for hazard assessment at Mount Meager, B.C.. Natural Hazards and Earth System Sciences, Copernicus Publ. / European Geosciences Union, 2003, 3 (6), pp.713-724. hal-00299093 HAL Id: hal-00299093 https://hal.archives-ouvertes.fr/hal-00299093 Submitted on 1 Jan 2003 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Natural Hazards and Earth System Sciences (2003) 3: 713–724 © European Geosciences Union 2003 Natural Hazards and Earth System Sciences Discrimination of hot versus cold avalanche deposits: Implications for hazard assessment at Mount Meager, B.C. M. L. Stewart1, J. K. Russell1, and C. J. Hickson2 1Igneous Petrology Laboratory, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada 2Pacific Division, Geological Survey of Canada, Vancouver B.C., Canada Received: 5 February 2003 – Revised: 26 May 2003 – Accepted: 29 May 2003 Abstract. The surficial deposits surrounding the Mount represent an obvious hazard and, in many instances, the na- Meager volcanic complex include numerous avalanche de- ture or magnitude of these volcanic hazards can be substan- posits.
    [Show full text]
  • Area Changes of Glaciers on Active Volcanoes in Latin America Between 1986 and 2015 Observed from Multi-Temporal Satellite Imagery
    Journal of Glaciology (2019), 65(252) 542–556 doi: 10.1017/jog.2019.30 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery JOHANNES REINTHALER,1,2 FRANK PAUL,1 HUGO DELGADO GRANADOS,3 ANDRÉS RIVERA,2,4 CHRISTIAN HUGGEL1 1Department of Geography, University of Zurich, Zurich, Switzerland 2Centro de Estudios Científicos, Valdivia, Chile 3Instituto de Geofisica, Universidad Nacional Autónoma de México, Mexico City, Mexico 4Departamento de Geografía, Universidad de Chile, Chile Correspondence: Johannes Reinthaler <[email protected]> ABSTRACT. Glaciers on active volcanoes are subject to changes in both climate fluctuations and vol- canic activity. Whereas many studies analysed changes on individual volcanoes, this study presents for the first time a comparison of glacier changes on active volcanoes on a continental scale. Glacier areas were mapped for 59 volcanoes across Latin America around 1986, 1999 and 2015 using a semi- automated band ratio method combined with manual editing using satellite images from Landsat 4/5/ 7/8 and Sentinel-2. Area changes were compared with the Smithsonian volcano database to analyse pos- sible glacier–volcano interactions. Over the full period, the mapped area changed from 1399.3 ± 80 km2 − to 1016.1 ± 34 km2 (−383.2 km2)or−27.4% (−0.92% a 1) in relative terms.
    [Show full text]