Fruit Flies Anastrepha Spp

Total Page:16

File Type:pdf, Size:1020Kb

Fruit Flies Anastrepha Spp 1 Table of Contents IIInnntttrrroooddduuuccctttiiiooonnn 444 CITRUS PESTS .............................................................................................................. 6 AAArrrttthhhrrrooopppoooddd PPPeeessstttsss 666 AAAnnntttsss...................................................................................................................................................................................................................................................................................................................................................666 Solenopsis invicta 6 AAAppphhhiiidddsss.......................................................................................................................................................................................................................................................................................................................................111333 Toxoptera citricida 13 BBBeeeeeetttllleeesss /// WWWeeeeeevvviiilllsss.................................................................................................................................................................................................................................................................................................111999 Diaprepes abbreviatus 19 Rhynchophorus palmarum 26 Trogoderma granarium 30 FFFrrruuuiiittt FFFllliiieeesss...........................................................................................................................................................................................................................................................................................................................333444 Anastrepha spp. 34 Bactrocera spp. 39 Ceratitis spp. 44 LLLeeeaaafffhhhoooppppppeeerrrsss.................................................................................................................................................................................................................................................................................................................444888 Homalodisca coagulata 48 MMMeeeaaalllyyy BBBuuugggsss.....................................................................................................................................................................................................................................................................................................................555111 Cataenococcus hispidus 51 Planococcus lilacinus 53 Planococcus minor 57 MMMiiittteeesss.............................................................................................................................................................................................................................................................................................................................................666000 Eutetranychus orientalis 60 MMMooottthhhsss.........................................................................................................................................................................................................................................................................................................................................666333 Epiphyas postvittana 63 Eudocima fullonia 68 Helicoverpa armigera 74 Phyllocnistis citrella 79 Spodoptera littoralis 82 Thaumatotibia leucotreta 86 PPPsssyyylllllliiidddsss...................................................................................................................................................................................................................................................................................................................................999111 Diaphorina citri 91 Trioza erytreae 97 SSScccaaallleee IIInnnssseeeccctttsss...........................................................................................................................................................................................................................................................................................................111000000 Ceroplastes destructor 100 Ceroplastes japonicus 104 Paratachardina lobata lobata 107 Pulvinaria polygonata 112 Unaspis yanonensis 114 TTThhhrrriiipppsss.....................................................................................................................................................................................................................................................................................................................................111111777 Scirtothrips citri 117 Scirtothrips dorsalis 121 WWWhhhiiittteeefffllliiieeesss.......................................................................................................................................................................................................................................................................................................................111222444 Aleurocanthus spiniferus 124 Aleurocanthus woglumi 128 DDDiiissseeeaaassseeesss 111333222 BBBaaacccttteeerrriiiaaalll///MMMooolllllliiicccuuuttteee DDDiiissseeeaaassseeesss...................................................................................................................................................................................................................................................111333222 2 Table of Contents Candidatus Liberibacter africanus, L. asiaticus 132 Spiroplasma citri 137 Xanthomonas axonopodis pv. citri 141 Xylella fastidiosa 144 FFFuuunnngggaaalll DDDiiissseeeaaassseeesss...............................................................................................................................................................................................................................................................................................111555000 Elsinoe australis 150 Guignardia citricarpa 153 Phoma tracheiphila 158 VVViiirrraaalll DDDiiissseeeaaassseeesss.......................................................................................................................................................................................................................................................................................................111666333 Citrus leprosis virus 163 Citrus psorosis virus 167 Citrus tristeza closterovirus 171 NNNeeemmmaaatttooodddeeesss 111777333 MMMeeellloooiiidddooogggyyynnneee ssspppppp..............................................................................................................................................................................................................................................................................................111777333 Meloidogyne citri 173 M. donghaiensis 173 M. fujianensis 173 M. indica 173 M. jianyangensis 173 M. kongi 173 M. mingnanica 173 PPPaaarrraaasssiiitttiiiccc PPPlllaaannntttsss///WWWeeeeeedddsss 111888111 CCCiiissssssuuusss vvveeerrrtttiiiccciiilllllaaatttaaa.................................................................................................................................................................................................................................................................................................111888111 CCCuuussscccuuutttaaa rrreeefffllleeexxxaaa.......................................................................................................................................................................................................................................................................................................111888444 MMMooolllllluuussskkksss 111888888 AAAccchhhaaatttiiinnnaaa fffuuullliiicccaaa.........................................................................................................................................................................................................................................................................................................111888888 TTThhheeebbbaaa pppiiisssaaannnaaa.............................................................................................................................................................................................................................................................................................................111999111 GGGlllooossssssaaarrryyy 111999444 AAAPPPPPPEEENNNDDDIIIXXX ---RRReeefffeeerrreeennnccceeesss 222111333 3 Introduction Introduction Citrus fruits are the most valuable fruit crop in international trade. There are two clearly differentiated markets in the citrus sector: fresh citrus fruits market and processed citrus products market, mainly orange juice. A major development in the last two decades of the twentieth century was the growth in trade of small citrus fruits, (tangerines, clementines, mandarines and satsumas) and a growth in the consumption of citrus fruit juices. Total annual world citrus production was estimated to be over 105 million tons from 2000 to 2004. Oranges constitute the bulk of citrus fruit production, accounting for more than half of global citrus production in 2004. The rise in citrus production is mainly due to the increase in cultivation areas and the change in consumer preferences towards health, convenience food consumption, and rising incomes. Citrus fruits are produced worldwide. According to FAO data, in 2004, 140
Recommended publications
  • Observações Sobre a Ocorrência De Mosca-Negra- Dos-Citros, Aleurocanthus Woglumi Ashby, 1915 (Hemiptera: Sternorrhyncha: Aleyrodidae) No Estado Do Amazonas
    Observações sobre a ocorrência de Mosca-Negra- dos-Citros, Aleurocanthus woglumi Ashby, 1915 (Hemiptera: Sternorrhyncha: Aleyrodidae) no estado do Amazonas Beatriz RONCHI-TELES1, Marcia Reis PENA2, Neliton Marques SILVA3 RESUMO A mosca-negra-dos-citros (Aleurocanthus woglumi Ashby) é uma importante praga dos citros de origem asiática. Foi detectada no Brasil pela primeira vez em Belém-PA em 2001. Este trabalho tem como objetivo registrar a ocorrência de mosca-negra-dos- citros no estado do Amazonas, sua distribuição geográfica e estudos de biologia em condições de laboratório. A mosca-negra encontra-se atualmente disseminada em mais da metade dos municípios paraenses. No Amazonas foi detectada em junho de 2004 em Manaus e atualmente encontra-se disseminada em toda a área urbana deste município, ocorrendo também em Itacoatiara, Rio Preto da Eva e Iranduba. Em observações feitas em condições de laboratório em Manaus-AM, foi verificado que o ciclo de ovo-adulto foi de 71,76±2,07 dias, caracterizando como uma espécie multivoltina. PALAVRAS-CHAVE: Amazônia, Praga dos citros, Distribuição, Aleirodídeo. Observation on the occurrence of the citrus blackfly Aleurocanthus woglumi Ashby, 1915 (Hemiptera: Sternorrhyncha: Aleyrodidae) in the Amazonas state ABSTRACT The citrus blackflyAleurocanthus woglumi Ashby, pest of citrus in Asian is considered important pest. It was detected for the first time in Belém, PA in 2001. The objective of this work was to report occurrence of the citrus blackfly in Amazon state. Nowadays is found in the majority of the oriental amazon counties. In Manaus, Amazonas was detected in June 2004, actually disseminated in the urban area and in Itacoatiara, Rio Preto da Eva and Iranduba counties.
    [Show full text]
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • Ladybirds, Ladybird Beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-170 Ladybirds, Ladybird beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1 J. H. Frank R. F. Mizell, III2 Introduction Ladybird is a name that has been used in England for more than 600 years for the European beetle Coccinella septempunctata. As knowledge about insects increased, the name became extended to all its relatives, members of the beetle family Coccinellidae. Of course these insects are not birds, but butterflies are not flies, nor are dragonflies, stoneflies, mayflies, and fireflies, which all are true common names in folklore, not invented names. The lady for whom they were named was "the Virgin Mary," and common names in other European languages have the same association (the German name Marienkafer translates Figure 1. Adult Coccinella septempunctata Linnaeus, the to "Marybeetle" or ladybeetle). Prose and poetry sevenspotted lady beetle. Credits: James Castner, University of Florida mention ladybird, perhaps the most familiar in English being the children's rhyme: Now, the word ladybird applies to a whole Ladybird, ladybird, fly away home, family of beetles, Coccinellidae or ladybirds, not just Your house is on fire, your children all gone... Coccinella septempunctata. We can but hope that newspaper writers will desist from generalizing them In the USA, the name ladybird was popularly all as "the ladybird" and thus deluding the public into americanized to ladybug, although these insects are believing that there is only one species. There are beetles (Coleoptera), not bugs (Hemiptera). many species of ladybirds, just as there are of birds, and the word "variety" (frequently use by newspaper 1.
    [Show full text]
  • Zootaxa,Phylogeny and Higher Classification of the Scale Insects
    Zootaxa 1668: 413–425 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea)* P.J. GULLAN1 AND L.G. COOK2 1Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, U.S.A. E-mail: [email protected] 2School of Integrative Biology, The University of Queensland, Brisbane, Queensland 4072, Australia. Email: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . .413 Introduction . .413 A review of archaeococcoid classification and relationships . 416 A review of neococcoid classification and relationships . .420 Future directions . .421 Acknowledgements . .422 References . .422 Abstract The superfamily Coccoidea contains nearly 8000 species of plant-feeding hemipterans comprising up to 32 families divided traditionally into two informal groups, the archaeococcoids and the neococcoids. The neococcoids form a mono- phyletic group supported by both morphological and genetic data. In contrast, the monophyly of the archaeococcoids is uncertain and the higher level ranks within it have been controversial, particularly since the late Professor Jan Koteja introduced his multi-family classification for scale insects in 1974. Recent phylogenetic studies using molecular and morphological data support the recognition of up to 15 extant families of archaeococcoids, including 11 families for the former Margarodidae sensu lato, vindicating Koteja’s views. Archaeococcoids are represented better in the fossil record than neococcoids, and have an adequate record through the Tertiary and Cretaceous but almost no putative coccoid fos- sils are known from earlier.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioi
    UNIVERSITY OF CALIFORNIA RIVERSIDE Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioideae: New Data From the Balsamocitrinae A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Plant Biology by Toni J Siebert Wooldridge December 2016 Thesis committee: Dr. Norman C. Ellstrand, Chairperson Dr. Timothy J. Close Dr. Robert R. Krueger The Thesis of Toni J Siebert Wooldridge is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS I am indebted to many people who have been an integral part of my research and supportive throughout my graduate studies: A huge thank you to Dr. Norman Ellstrand as my major professor and graduate advisor, and to my supervisor, Dr. Tracy Kahn, who helped influence my decision to go back to graduate school while allowing me to continue my full-time employment with the UC Riverside Citrus Variety Collection. Norm and Tracy, my UCR parents, provided such amazing enthusiasm, guidance and friendship while I was working, going to school and caring for my growing family. Their support was critical and I could not have done this without them. My committee members, Dr. Timothy Close and Dr. Robert Krueger for their valuable advice, feedback and suggestions. Robert Krueger for mentoring me over the past twelve years. He was the first person I met at UCR and his willingness to help expand my knowledge base on Citrus varieties has been a generous gift. He is also an amazing friend. Tim Williams for teaching me everything I know about breeding Citrus and without whom I'd have never discovered my love for the art.
    [Show full text]
  • The Effect of Old World Climbing Fern (Lygodium Microphyllum (Cav.) R
    THE EFFECT OF OLD WORLD CLIMBING FERN (LYGODIUM MICROPHYLLUM (CAV.) R. BROWN) ON SOUTH FLORIDA CYPRESS (TAXODIUM DISTICHUM (L.) RICH.) SWAMP PLANT AND INSECT COMMUNITY STRUCTURE By DANIEL WAYNE CLARK A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2002 Copyright 2002 by Daniel Wayne Clark This thesis is respectfully dedicated to my grandparents, Richard and Elizabeth McKenna and Charles and Agnes Clark for their years of selfless love and unwavering support. ACKNOWLEDGMENTS I would like to express my sincere appreciation to Dr. Randall Stocker, who chaired my graduate supervisory committee, directed my research program, and provided me with personal guidance and friendship throughout my graduate program. He was truly a mentor and continues to impress me with his ability to adapt publicly to any audience and end up being the focal individual for relevant information, professionalism and leadership. These people skills combined with his academic expertise continue to make him sought after at local, national and international levels professionally. Dr. Alison Fox served as an Agronomy Department representative to my supervisory committee. She provided much needed technical support, critical review and focus during the scholastic, research and writing phases of my project. I also thank her for her personal friendship and professional guidance. She selflessly made time for unscheduled meetings and was always available for consultation. Her energetic and personable nature facilitated numerous stimulating discussions and empowered me to increase my own scientific and critical thought. Dr. Katie Sieving, an external representative of my committee from the Wildlife Ecology and Conservation Department, imparted to me the sheer fun of being academic.
    [Show full text]
  • Iranian Aphelinidae (Hymenoptera: Chalcidoidea) © 2013 Akinik Publications Received: 28-06-2013 Shaaban Abd-Rabou*, Hassan Ghahari, Svetlana N
    Journal of Entomology and Zoology Studies 2013;1 (4): 116-140 ISSN 2320-7078 Iranian Aphelinidae (Hymenoptera: Chalcidoidea) JEZS 2013;1 (4): 116-140 © 2013 AkiNik Publications Received: 28-06-2013 Shaaban Abd-Rabou*, Hassan Ghahari, Svetlana N. Myartseva & Enrique Ruíz- Cancino Accepted: 23-07-2013 ABSTRACT Aphelinidae is one of the most important families in biological control of insect pests at a worldwide level. The following catalogue of the Iranian fauna of Aphelinidae includes a list of all genera and species recorded for the country, their distribution in and outside Iran, and known hosts in Iran. In total 138 species from 11 genera (Ablerus, Aphelinus, Aphytis, Coccobius, Coccophagoides, Coccophagus, Encarsia, Eretmocerus, Marietta, Myiocnema, Pteroptrix) are listed as the fauna of Iran. Aphelinus semiflavus Howard, 1908 and Coccophagoides similis (Masi, 1908) are new records for Iran. Key words: Hymenoptera, Chalcidoidea, Aphelinidae, Catalogue. Shaaban Abd-Rabou Plant Protection Research 1. Introduction Institute, Agricultural Research Aphelinid wasps (Hymenoptera: Chalcidoidea: Aphelinidae) are important in nature, Center, Dokki-Giza, Egypt. especially in the population regulation of hemipterans on many different plants.These [E-mail: [email protected]] parasitoid wasps are also relevant in the biological control of whiteflies, soft scales and aphids [44] Hassan Ghahari . Studies on this family have been done mainly in relation with pests of fruit crops as citrus Department of Plant Protection, and others. John S. Noyes has published an Interactive On-line Catalogue [78] which includes Shahre Rey Branch, Islamic Azad up-to-date published information on the taxonomy, distribution and hosts records for the University, Tehran, Iran. Chalcidoidea known throughout the world, including more than 1300 described species in 34 [E-mail: [email protected]] genera at world level.
    [Show full text]
  • Jordan Beans RA RMO Dir
    Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation.
    [Show full text]
  • Arthropod Pests of Citrus Roots
    lds. r at ex­ ual to ap ­ ila­ red t is een vi­ Clayton W. McCoy fa­ University of Florida ks Citrus Res ea rch and Educati on Center, Lake Alfred )0­ Ily I'::y les Ill­ up 10 Arthropod Pests of Citrus Roots 'ul r-J!l 'Ie '](1 cc The major arthropods that are injurious to plant roots are Geographical Distribution members of the classes Insecta and Acari (mites). Two-thi rds of these pests are members of the order Coleoptera (beetles), Citrus root weevi ls are predominantly trop ical ; however, a which as larvae cause serious economic loss in a wide range few temperate species are important pests in the United States, of plan t hosts. Generally, the larvae hatch from eggs laid by Chile. Argentina. Australia. and New Zealand (Table 14.1). adults on plan ts or in the soil and complete part of their life The northern blue-green citrus root weevil, Pachnaeus opalus; cycle chewing on plant roots, and in many cases as adults the Fuller rose beetle, Asynonychus godmani: and related spe ­ they feed on the foli age of the same or other host plan ts. A cies in the genus Pantomorus are found in temperate areas. Ap ­ number of arthropods inhabit the rhizosphere of citrus trees. proximately 150 species have been recorded in the Caribbean some as unique syrnbionts, but few arc injurious to the roots. region, including Florida. Central America, and South America, Only citrus root weevils. termi tes. and ants. in descending or­ feeding as larvae on the roots of all species of the genus Citrus.
    [Show full text]
  • A New Pupillarial Scale Insect (Hemiptera: Coccoidea: Eriococcidae) from Angophora in Coastal New South Wales, Australia
    Zootaxa 4117 (1): 085–100 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4117.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:5C240849-6842-44B0-AD9F-DFB25038B675 A new pupillarial scale insect (Hemiptera: Coccoidea: Eriococcidae) from Angophora in coastal New South Wales, Australia PENNY J. GULLAN1,3 & DOUGLAS J. WILLIAMS2 1Division of Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Acton, Canberra, A.C.T. 2601, Australia 2The Natural History Museum, Department of Life Sciences (Entomology), London SW7 5BD, UK 3Corresponding author. E-mail: [email protected] Abstract A new scale insect, Aolacoccus angophorae gen. nov. and sp. nov. (Eriococcidae), is described from the bark of Ango- phora (Myrtaceae) growing in the Sydney area of New South Wales, Australia. These insects do not produce honeydew, are not ant-tended and probably feed on cortical parenchyma. The adult female is pupillarial as it is retained within the cuticle of the penultimate (second) instar. The crawlers (mobile first-instar nymphs) emerge via a flap or operculum at the posterior end of the abdomen of the second-instar exuviae. The adult and second-instar females, second-instar male and first-instar nymph, as well as salient features of the apterous adult male, are described and illustrated. The adult female of this new taxon has some morphological similarities to females of the non-pupillarial palm scale Phoenicococcus marlatti Cockerell (Phoenicococcidae), the pupillarial palm scales (Halimococcidae) and some pupillarial genera of armoured scales (Diaspididae), but is related to other Australian Myrtaceae-feeding eriococcids.
    [Show full text]
  • U.S. EPA, Pesticide Product Label, MICROMITE 4L, 02/05/2002
    Lf/JO - '176 i)../s/~o~ UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE 01' PREVENTION. PESTICIDES ANO TOXIC SUBSTANCES Judith O. Ball Registration Specialist FEe 5 20D2 Research .t DcveIopment 74 Amity 1load Bethany, CT 06524-3402 Subject: EPA Reg. No. 400-476, Micromite 4L Label Amendment Letter dated Jamwy 17, 2002 Dear Ms. Ball: The 1abe1ina referred to above, submitted in connection with registration undec the Fedenl 1nJecticide, FIII'&icide and Rodenticide Act (FIFRA), u amended, is acceptable provided tIIIt you make the following change to the iIbd: • Bold or highlight lDert Inpients A stamped copy is enclosed for your records. Please submit one (I) copy of your fina1 printed 1abeIing before you releue the product for shipment. If you have any questions or comments about this lett«, pleue contact me at 703-308-8291. Sincerely yours, Rita Kumar, Senior Regulatory Specialist Insecticide Rodenticide Branch Registration Division (7S0Se 1-A]3EL Restricted Use Pesticide. Due to toxicity to aquatic invertebrate animals. For retail sale to and use only by Certified Applicators, or persons under their direct supervision, and only for those uses covered by the Certified Applicator's certification. CCEPTElJ with COMMENl."'S Micromite® 4~'A Letter Dated Insect Growth Regulator FEB 5 2002 Net UDder the Fede,,' Insect~nts: Suspension Concentrate fwABiclde, and Rodenticide. Act, as amended, for th~ pesl.l.dde For Use on Citrus 'Teg!::;tcred, w,d,"'j t:'!), " lh~i~ N{.1 ...LfJro-I-/ iL Active IngredIent: (% by weight) Diflubenzuron N·II (4·Chlorophenyl)amino jcarbonylj- 2, 6·difluorobenzamide· ............... 40.4% Inert Ingredients: ...................................................................................
    [Show full text]
  • Aleurocanthus Woglumi Ashby)
    2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 GAMMA IRRADIATION AS A QUARANTINE TREATMENT AGAINST EGGS OF CITRUS BLACK FLY ( Aleurocanthus woglumi Ashby) Anna Lucia C. H. Villavicencio 1; Michel M. Araújo 1; Gustavo B. Fanaro 1; Helbert H. S. F. Costa 1; Priscila P. V. Silva 1; Valter Arthur 2 and José Tadeu Faria 3 1 Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP) Av. Prof. Lineu Prestes, 2242 05508-000 São Paulo, SP, Brazil [email protected] 2 CENA – Centro de Energia Nuclear na Agricultura, USP Laboratorio de Radibiologia e Ambiente Piracicaba, SP, Brazil [email protected] 3 MAPA – Ministério da Agricultura Pecuária e Abastecimento São Paulo, SP, Brazil [email protected] ABSTRACT The citrus black fruit fly (Aleurocanthus woglumi Ashby) is an important pest of citrus originated in Southeast Asia and its first record in the new world was in Jamaica in 1913. In Brazil, it was detected in 2001 in the state of Pará and more recently it was detected in São Paulo in 2008. This pest that attacks over 300 species of plants, but its main host are citrus. It is an A2 quarantine pest, because it is not spread throughout the country. The objective of this study was to test doses of 0 (control), 25, 50, 75, 100, 125, 150, 175 and 200Gy of gamma irradiation for disinfection of eggs of the citrus black fruit fly in leaves of citrus plants.
    [Show full text]