energies Review Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review Sethu Sundar Pethaiah 1,*, Kishor Kumar Sadasivuni 2,* , Arunkumar Jayakumar 3 , Deepalekshmi Ponnamma 2 , Chandra Sekhar Tiwary 4 and Gangadharan Sasikumar 5 1 Gashubin Engineering Pte Ltd., 8 New Industrial Road, Singapore 536200, Singapore 2 Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha 2713, Qatar;
[email protected] 3 SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, India;
[email protected] 4 Materials Science and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat 38235, India;
[email protected] 5 Sustainable Solutionz, Chennai 600017, India;
[email protected] * Correspondence:
[email protected] (S.S.P.);
[email protected] (K.K.S.); Tel.: +65-68443430 (S.S.P.); Fax: +65-62889803 (S.S.P.) Received: 3 September 2020; Accepted: 3 November 2020; Published: 11 November 2020 Abstract: Hydrogen (H2) has attained significant benefits as an energy carrier due to its gross calorific value (GCV) and inherently clean operation. Thus, hydrogen as a fuel can lead to global sustainability. Conventional H2 production is predominantly through fossil fuels, and electrolysis is now identified to be most promising for H2 generation. This review describes the recent state of the art and challenges on ultra-pure H2 production through methanol electrolysis that incorporate polymer electrolyte membrane (PEM). It also discusses about the methanol electrochemical reforming catalysts as well as the impact of this process via PEM. The efficiency of H2 production depends on the different components of the PEM fuel cells, which are bipolar plates, current collector, and membrane electrode assembly.