applied sciences Article The Potential of Gas Switching Partial Oxidation Using Advanced Oxygen Carriers for Efficient H2 Production with Inherent CO2 Capture Carlos Arnaiz del Pozo 1,*, Schalk Cloete 2, Ángel Jiménez Álvaro 1 , Felix Donat 3 and Shahriar Amini 4 1 Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingenieros Industriales (ETSII) c/ José Gutiérrez Abascal nº2, Universidad Politécnica de Madrid, 28006 Madrid, Spain;
[email protected] 2 Flow Technology Research Group, SINTEF Industry, 7465 Trondheim, Norway;
[email protected] 3 Department of Mechanical and Process Engineering, Institute of Energy and Process Engineering, Eidgenössische Technische Hochschule ETH Zurich, 8092 Zürich, Switzerland;
[email protected] 4 Department of Mechanical Engineering, South Engineering Research Center, University of Alabama, Tuscaloosa, AL 35487, USA;
[email protected] * Correspondence:
[email protected] Abstract: The hydrogen economy has received resurging interest in recent years, as more countries commit to net-zero CO2 emissions around the mid-century. “Blue” hydrogen from natural gas with CO2 capture and storage (CCS) is one promising sustainable hydrogen supply option. Although conventional CO2 capture imposes a large energy penalty, advanced process concepts using the chemical looping principle can produce blue hydrogen at efficiencies even exceeding the conventional steam methane reforming (SMR) process without CCS. One such configuration is gas switching reforming (GSR), which uses a Ni-based oxygen carrier material to catalyze the SMR reaction and Citation: Arnaiz del Pozo, C.; Cloete, efficiently supply the required process heat by combusting an off-gas fuel with integrated CO2 capture. S.; Jiménez Álvaro, Á.; Donat, F.; The present study investigates the potential of advanced La-Fe-based oxygen carrier materials to Amini, S.