Published on Web 10/06/2007 Characterization of the Maduropeptin Biosynthetic Gene Cluster from Actinomadura madurae ATCC 39144 Supporting a Unifying Paradigm for Enediyne Biosynthesis Steven G. Van Lanen,† Tae-jin Oh,† Wen Liu,† Evelyn Wendt-Pienkowski,† and Ben Shen*,†,‡,§ Contribution from the DiVision of Pharmaceutical Sciences, UniVersity of Wisconsin National CooperatiVe Drug DiscoVery Group, and Department of Chemistry, UniVersity of Wisconsin-Madison, Madison, Wisconsin 53705 Received May 21, 2007; E-mail:
[email protected] Abstract: The biosynthetic gene cluster for the enediyne antitumor antibiotic maduropeptin (MDP) from Actinomadura madurae ATCC 39144 was cloned and sequenced. Cloning of the mdp gene cluster was confirmed by heterologous complementation of enediyne polyketide synthase (PKS) mutants from the C-1027 producer Streptomyces globisporus and the neocarzinostatin producer Streptomyces carzinostaticus using the MDP enediyne PKS and associated genes. Furthermore, MDP was produced, and its apoprotein was isolated and N-terminal sequenced; the encoding gene, mdpA, was found to reside within the cluster. The biosynthesis of MDP is highlighted by two iterative type I PKSs s the enediyne PKS and a 6-methylsalicylic acid PKS; generation of (S)-3-(2-chloro-3-hydroxy-4-methoxyphenyl)-3-hydroxypropionic acid derived from L-R-tyrosine; a unique type of enediyne apoprotein; and a convergent biosynthetic approach to the final MDP chromophore. The results demonstrate a platform for engineering new enediynes by combinatorial