Protein-Small Molecule Interactions in Neocarzinostatin, the Prototypical Enediyne Chromoprotein Antibiotic

Total Page:16

File Type:pdf, Size:1020Kb

Protein-Small Molecule Interactions in Neocarzinostatin, the Prototypical Enediyne Chromoprotein Antibiotic 704 DOI: 10.1002/cbic.200600534 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemBioChem 2007, 8, 704 – 717 DOI: 10.1002/cbic.200600534 Protein–Small Molecule Interactions in Neocarzinostatin, the Prototypical Enediyne Chromoprotein Antibiotic James R. Baker,*[a] DerekN. Woolfson, [b] FrederickW. Muskett, [c] Rhys G. Stoneman,[a] Michael D. Urbaniak,[d] and Stephen Caddick*[a] The enediyne chromoproteins are a class of potent antitumour spread interest in this area. Notable developments include the antibiotics comprising a 1:1 complex of a protein and a nonco- discovery of non-natural ligands for the apoproteins and the ob- valently bound chromophore. The protein is required to protect servation that multiple binding modes are available for these li- and transport the highly labile chromophore, which acts as the gands in the binding site. Mutation studies on the apoproteins cytotoxic component by reacting with DNA leading to strand have revealed much about their stability and variability, and the cleavage. A derivative of the best-studied member of this class, application of an in vitro evolution method has conferred new neocarzinostatin (NCS), is currently in use as a chemotherapeutic binding specificity for unrelated ligands. These investigations in Japan. The application of the chromoproteins as therapeutics hold great promise for the application of the apoproteins for along with their unique mode of action has prompted wide- drug-delivery, transport and stabilisation systems. 1. Introduction 2. The Enediyne Chromoproteins Interactions between proteins and small molecules are central In 1965 a proteinaceous substance, neocarzinostatin (NCS), to many biological processes, and provide targets for the ma- was isolated from a culture of Streptomyces carzinostaticus,[1] jority of drug-discovery programmes. Usually, tight and specific and was found to possess broad-spectrum antibiotic activity. It binding depends on the formation of well-defined 3D protein was also discovered to exhibit antiproliferative activity against structures that incorporate highly selective binding pockets. a number of tumour cell lines, both in vitro and in vivo.[2] Early Our understanding of protein–small molecule interactions is in- biological studies were carried out before its true creasing rapidly, particularly through the combination of chem- composition was known. It was not until 1979 that NCS was ical synthesis, protein mutagenesis and structural techniques identified as a 1:1 noncovalent complex of a labile chromo- such as X-ray crystallography and NMR spectroscopy. In turn, phore and a protein.[3] The chromophore was found to be re- such studies are enabling the exploration of many systems in sponsible for the cytotoxic nature of this complex, although the search for new ligands for proteins and macromolecular because of its instability to nucleophiles, heat, UV light and ex- complexes of interest in fundamental research and as potential tremes of pH,[4] its structure remained elusive until 1985.[5] The leads for the pharmaceutical industry. key features of NCS chromophore are a core nine-membered The enediyne chromoproteins represent an unusual example of protein–ligand interactions in that the protein serves to pro- tect and transport a highly unstable small-molecule chromo- [a] Dr. J. R. Baker, R. G. Stoneman, Prof. S. Caddick University College London, Department of Chemistry phore. These chromophores contain reactive enediyne func- Christopher Ingold Laboratories tionalities and are potent cytotoxic compounds exerting their 20 Gordon Street, London, WC1H 0AJ (UK) effect by reacting with DNA to cause strand cleavage. As a Fax: (+ 44)207-679-7463 consequence, the chromoproteins are potent antibiotics, and E-mail: [email protected] highly effective antitumour agents. This review is not intended [b] Prof. D. N. Woolfson School of Chemistry, University of Bristol as an exhaustive overview of the large amount of research car- Cantock’s Close, Bristol, BS8 1TS (UK) ried out on the enediyne chromoproteins. Rather, it will give [c] Dr. F. W. Muskett an introduction to these intriguing complexes, and then dis- Biological NMR Centre, Department of Biochemistry cuss some of the reported studies on probing the apoproteins Henry Wellcome Building, University of Leicester with new ligands and mutagenesis. Neocarzinostatin provides University Road, Leicester, LE1 9HN (UK) the central focus for the discussion as it is by far the most [d] Dr. M. D. Urbaniak Division of Biological Chemistry and Molecular Microbiology studied of the chromoproteins and is representative of the School of Life Science, University of Dundee class. Dundee, DD1 5EH (UK) ChemBioChem 2007, 8, 704 – 717 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 705 J. R. Baker, S. Caddick et al. enediyne ring, fused to a cyclopentene with pendent naph- 2.1 The NCS chromophore and DNA damage thoate and sugar groups (Figure 1A). The 3D structure of the holocomplex was then reported by Rees and Myers in 1993 The biological activity of NCS derives from its ability to cleave (Figure 1B).[6] DNA.[7] Its mechanism of action involves the naphthoate group James Baker completed his MSci at the Rhys Stoneman graduated with a BSc in University of Nottingham in 2000. He Medicinal Chemistry and a DPhil in then went to work as a research chemist Chemistry from the University of Sussex at Novartis before commencing a PhD at under the supervision of Profs. Caddick the University of Bristol working with Prof. and Woolfson. Following a postdoc posi- Kevin Booker-Milburn. His thesis consid- tion with Prof. Caddick at UCL, he worked ered the application of a photocycloaddi- for Dainippon Sumitomo Pharma Europe, tion reaction to the total synthesis of ste- then at Roche Products in the operational moamide. He received his PhD in 2005 at side of clinical research. He currently which point he moved to UCL to carry works for ICON Clinical Research as a out postdoctoral work with Prof. Stephen Medical Writer. Caddick towards the total synthesis of the neocarzinostatin chromo- phore. He has recently been awarded an RCUK fellowship at UCL. His current interests include the development of novel synthetic method- ology and the discovery of new ligands for proteins of biological sig- nificance. Dek Woolfson gained a BA in Chemistry Mick Urbaniak received his D.Phil from at the University of Oxford and a PhD in the University of Sussex under the supervi- Chemistry at the University of Cambridge. sion of Profs. Caddick and Woolfson. For He carried out postdoctoral research at his postdoctoral work, he moved to the the Universities of Cambridge, London University of Dundee to study the parasite and Berkeley (USA). He was appointed to Trypanosoma brucei with Prof. Mike Fer- Lecturerships in Biochemistry at the Uni- guson, where he is currently a postdoctor- versity of Bristol, and then at the Universi- al associate. He has continued to use an ty of Sussex where he was promoted to interdisciplinary approach to study galac- Professor of Biochemistry. In August 2005 tose metabolism and GPI biosynthesis in he returned to the University of Bristol to T. brucei and has developed assays for take up a joint Chair in Chemistry and Biochemistry. His research in- HTS of key T. brucei enzymes as drug targets in the Dundee Drug terests have always been at the interface between chemistry and biol- DiscoveryACHTUNGRE for Tropical Disease initiative. His current interests are in ogy, with his main focus being on understanding sequence–structure the application of chemical biology techniques to the study of para- relationships in proteins and applying this knowledge to rational pro- site protein kinases. tein design. Fred Muskett received his PhD from the Stephen Caddick completed his BSc at University of Edinburgh and then went on Paisley College. After two years in the to complete a Masters degree in Biologi- agrochemical industry he carried out his cal NMR Spectroscopy at the University of PhD at the University of Southampton Dundee. After five years of postdoctoral and then postdoctoral work at Imperial work in structural biology, he joined the College. In 1991 he joined Birkbeck Col- MRC Biomedical NMR Centre at the lege London and then moved to the Uni- NationalACHTUNGRE Institute for Medical Research versity of Sussex in 1993, where he rose to (London, UK). In 2003, he joined the the rank of full professor. In 2003 he Henry Welcome Laboratories for Structur- joined University College London (UCL) as al Biology (University of Leicester) as the Vernon Professor of Organic Chemistry NMR Centre manager. His current research interests are use of NMR and Chemical Biology. His research interests include natural products methods to study protein–ligand interactions. synthesis and development of new methodologies for organic synthe- sis. Major areas of biological and biomedical research interests in- clude heart failure, functional role of methylarginine processing en- zymes, total and semi-synthesis of proteins, NMDA receptor–ligand interactions, drug design and delivery. 706 www.chembiochem.org 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemBioChem 2007, 8, 704 – 717 Protein–Small Molecule Interactions in Neocarzinostatin glutathione might function as this thiol in cells.[11] This attack leads to opening of the epoxide yielding an unstable cumu- lene species 1, which has been observed at low temperatures by 1H NMR spectroscopy.[12,13] Cycloaromatisation of this cumu- lene gives the diradical 2, which abstracts hydrogen atoms
Recommended publications
  • C-1027, a Radiomimetic Enediyne Anticancer Drug, Preferentially Targets Hypoxic Cells
    Research Article C-1027, A Radiomimetic Enediyne Anticancer Drug, Preferentially Targets Hypoxic Cells Terry A. Beerman,1 Loretta S. Gawron,1 Seulkih Shin,1 Ben Shen,2 and Mary M. McHugh1 1Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York;and 2Division of Pharmaceutical Sciences, University of Wisconsin National Cooperative Drug Discovery Group, and Department of Chemistry, University of Wisconsin, Madison, Wisconsin Abstract identified primarily from studies with neocarzinostatin (NCS), a The hypoxic nature of cells within solid tumors limits the holo-form drug, consisting of an apoprotein carrier and an active efficacy of anticancer therapies such as ionizing radiation and chromophore, and was assumed to be representative of all agents conventional radiomimetics because their mechanisms re- in this class (11). The NCS chromophore contains a bicyclic quire oxygen to induce lethal DNA breaks. For example, the enediyne that damages DNA via a Myers-Saito cycloaromatization conventional radiomimetic enediyne neocarzinostatin is 4- reaction, resulting in a 2,6-indacene diradical structure capable of fold less cytotoxic to cells maintained in low oxygen (hypoxic) hydrogen abstractions from deoxyribose (12, 13). Subsequent to compared with normoxic conditions. By contrast, the ene- generation of a sugar radical, reaction with oxygen quickly and diyne C-1027 was nearly 3-fold more cytotoxic to hypoxic than efficiently leads to formation of hydroxyl radicals that induce to normoxic cells. Like other radiomimetics, C-1027 induced DSBs/SSBs at a 1:5 ratio. The more recently discovered holo-form DNA breaks to a lesser extent in cell-free, or cellular hypoxic, enediyne C-1027 (Fig.
    [Show full text]
  • Enediynes, Enyneallenes, Their Reactions, and Beyond
    Advanced Review Enediynes, enyne-allenes, their reactions, and beyond Elfi Kraka∗ and Dieter Cremer Enediynes undergo a Bergman cyclization reaction to form the labile 1,4-didehy- drobenzene (p-benzyne) biradical. The energetics of this reaction and the related Schreiner–Pascal reaction as well as that of the Myers–Saito and Schmittel reac- tions of enyne-allenes are discussed on the basis of a variety of quantum chemical and available experimental results. The computational investigation of enediynes has been beneficial for both experimentalists and theoreticians because it has led to new synthetic challenges and new computational methodologies. The accurate description of biradicals has been one of the results of this mutual fertilization. Other results have been the computer-assisted drug design of new antitumor antibiotics based on the biological activity of natural enediynes, the investigation of hetero- and metallo-enediynes, the use of enediynes in chemical synthesis and C materials science, or an understanding of catalyzed enediyne reactions. " 2013 John Wiley & Sons, Ltd. How to cite this article: WIREs Comput Mol Sci 2013. doi: 10.1002/wcms.1174 INTRODUCTION symmetry-allowed pericyclic reactions, (ii) aromatic- ity as a driving force for chemical reactions, and (iii) review on the enediynes is necessarily an ac- the investigation of labile intermediates with biradical count of intense and successful interdisciplinary A character. The henceforth called Bergman cyclization interactions of very different fields in chemistry provided deeper insight into the electronic structure involving among others organic chemistry, matrix of biradical intermediates, the mechanism of organic isolation spectroscopy, quantum chemistry, biochem- reactions, and orbital symmetry rules.
    [Show full text]
  • Design, Synthesis and Reactivity of Cyclopropenone
    DESIGN, SYNTHESIS AND REACTIVITY OF CYCLOPROPENONE- CONTAINING NINE MEMBERED CYCLIC ENEDIYNE AND ENYNE-ALLENE PRECURSORS AS PROTOTYPE PHOTOSWITCHABLE ANTITUMOR AGENTS by DINESH R. PANDITHAVIDANA (Under the Direction of Vladimir V. Popik) ABSTRACT The extreme cytotoxicity of natural enediyne antibiotics is attributed to the ability of the ( Z)-3-hexene-1,5-diyne (enediyne) and ( Z)-1,2,4-heptatrien-6-yne (enyne–allene) fragments incorporated into a 10- or 9-membered ring cyclic system to undergo cycloaromatization producing dDNA-damaging 1,4-diradicals. The rate of cyclization of enediynes to p-benzynes strongly depends on the distance between acetylenic termini, which in turn can be controlled by the ring size. Thus, 11-membered ring enediynes are stable, 10-membered ring analogs undergo slow cycloaromatization under ambient conditions or mild heating, 9- membered ring enediynes are virtually unknown and believed to undergo very fast spontaneous cyclization. Cyclic enyne-allenes have not been synthesized so far due to very facile Myers-Saito cyclization. We have developed thermally stable photo-precursors of 9-membered enediynes ( 2.22 , 2.26 ) and enyne-allene ( 2.44 ), in which one of the triple bonds is replaced by the cyclopropenone group. UV irradiation of 2.14 results in the efficient decarbonylation (Φ 254 = 0.34) and the formation of reactive enediyne 2.22. The latter undergoes clean cycloaromatization to 2,3-dihydro-1H- cyclopenta[b]naphthalen-1-ol ( 2.24 ) with a life-time of ca. 2 h in 2-propanol at 25 °C. The rate of this reaction depends linearly on the concentration of hydrogen donor and shows a primary kinetic isotope effect in 2-propanol-d8.
    [Show full text]
  • Molecular Biosystems
    Molecular BioSystems View Article Online PAPER View Journal | View Issue Cloning and sequencing of the kedarcidin biosynthetic Cite this: Mol. BioSyst., 2013, gene cluster from Streptoalloteichus sp. ATCC 53650 9, 478 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics† Jeremy R. Lohman,a Sheng-Xiong Huang,a Geoffrey P. Horsman,b Paul E. Dilfer,a Tingting Huang,a Yihua Chen,b Evelyn Wendt-Pienkowskib and Ben Shenz*abcd Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-b-tyrosine and an iso- propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthonate Received 16th November 2012, formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible Accepted 20th January 2013 for the biosynthesis, activation, and coupling of the L-tyrosine-derived moieties from C-1027 and DOI: 10.1039/c3mb25523a maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the www.rsc.org/molecularbiosystems (R)-2-aza-3-chloro-b-tyrosine and the 2-naphthonate moieties in KED biosynthesis.
    [Show full text]
  • Probing Interaction Motifs for Ligand Binding Prediction from Three
    PROBING INTERACTION MOTIFS FOR LIGAND BINDING PREDICTION FROM THREE PERSPECTIVES: ASSESSING PROTEIN SIMILARITY, LIGAND SIMILARITY AND COMPONENTS OF PROTEIN-LIGAND INTERACTIONS By Nan Liu A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Chemistry – Doctor of Philosophy 2015 ABSTRACT PROBING INTERACTION MOTIFS FOR LIGAND BINDING PREDICTION FROM THREE PERSPECTIVES: ASSESSING PROTEIN SIMILARITY, LIGAND SIMILARITY AND COMPONENTS OF PROTEIN-LIGAND INTERACTIONS By Nan Liu The interactions between small molecules and diverse enzyme, membrane receptor and channel proteins are associated with important biological processes and diseases. This makes the study of binding motifs between proteins and ligands appealing to scientists. We use multiple computational techniques to unveil the protein-ligand interaction motifs from three perspectives. Firstly, from the perspective of proteins, by comparing the structure differences and common features of different binding sites for the same ligand, 3-dimensional motifs that represent the favorable interactions of the same ligands can be extracted. The goal is for such a motif to represent the shared features for binding a certain ligand in unrelated proteins, while discriminating from other ligands. The 3-dimensional motifs for cholesterol and cholate binding to non-homologous protein sites have been extracted, using SimSite3D alignment and analysis of the conserved interactions between these sites. The 3-dimensional protein motif for cholesterol binding can give about 80% accuracy of true positive sites with a low false positive rate. Furthermore, an online server CholMine was established so that the users can use this approach to predict cholesterol and cholate binding sites in proteins of interest.
    [Show full text]
  • Selective Proteolytic Activity of the Antitumor Agent Kedarcidin N
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 8009-8012, September 1993 Biochemistry Selective proteolytic activity of the antitumor agent kedarcidin N. ZEIN*t, A. M. CASAZZA*, T. W. DOYLE*, J. E. LEETt, D. R. SCHROEDERt, W. SOLOMON*, AND S. G. NADLER§ *Cancer Drug Discovery, Molecular Drug Mechanism, Bristol-Myers Squibb, Pharmaceutical Research Institute, P.O. Box 4000, Princeton, NJ 08543-4000; tChemistry Division, Bristol-Myers Squibb, Pharmaceutical Research Institute, P.O. Box 5100, Wallingford, CT 06492-7660; and §Antitumor Immunology, Bristol-Myers Squibb Pharmaceutical Research Institute, 3005 1st Avenue, Seattle, WA 98121 Communicated by William P. Jencks, May 27, 1993 ABSTRACT Kedarcidin is a potent antitumor antibiotic there is substantial in vitro chemical and structural informa- chromoprotein, composed of an enediyne-containing chro- tion (4-21). Furthermore, it was proposed that the neocarzi- mophore embedded in a highly acidic single chain polypeptide. nostatin apoprotein stabilizes and regulates the availability of The chromophore was shown to cleave duplex DNA site- the labile chromophore (4-9). As previously shown for specifically in a single-stranded manner. Herein, we report that neocarzinostatin (4-9), DNA experiments with the isolated in vitro, the kedarcidin apoprotein, which lacks any detectable chromophore and the kedarcidin chromoprotein demon- chromophore, cleaves proteins selectively. Histones that are the strated that DNA cleavage was mostly due to the chro- most opposite in net charge to the apoprotein are cleaved most mophore (N.Z. and W.S., unpublished data). However, readily. Our findings imply that the potency of kedarcidin cytotoxicity assays using human colon cancer cell lines HCT results from the combination of a DNA damaging-chro- 116 showed the chromophore and the chromoprotein to mophore and a protease-like apoprotein.
    [Show full text]
  • Total Synthesis of Calicheamicin Type Enediyne Natural Products
    Total Synthesis of Calicheamicin Type Enediyne Natural Products 17/09/02 Yuki Fujimoto 1 Contents 2 Enediyne Natural Products SSS Me O OMe NHCO 2Me MeO O O H OH HO O N O O O OMe S O OH HO I OH O OMe O NHEt I calicheamicin 1 (calicheamicin type) OMe O O O O CO 2H OH O HN O O OMe OH O O MeH N HO OH O OH O OH dynemicin A (dynemicin type) neocarzinostatin chromophore (chromoprotein type) 3 Bergman Cyclization Jones, R. R.; Bergman, R. G . J. Am. Chem. Soc. 1972 , 94 , 660. 4 Distance of Diyne a) Nicolaou, K. C.; Zuccarello, G.; Ogawa, Y.; Schweiger, E. J.; Kumazawa, T. J. Am. Chem. Soc. 1988 , 110 , 4866. 5 b) Nicolaou, K. C.; Dai, W. M. Angew. Chem. Int. Ed. Engl. 1991 , 30 , 1387. Calicheamicin Type Action Mechanism Nicolaou, K. C.; Dai, W. M. Angew. Chem. Int. Ed. Engl. 1991 , 30 , 1387 6 Contents 7 Introduction of Calicheamicin SSS Me O OMe NHCO 2Me MeO O O H OH HO O N O O O OMe S O OH HO I OH O OMe NHEt I O calicheamicin 1 SSS Me Isolation O 1) NHCO 2Me bacterial strain Micromonospora echinospora ssp calichensis I Total synthesis of calicheamicin 1 HO OH Nicolaou, K. C. (1992, enantiomeric) 2) Danishefsky (1994, enantiomeric) 3) Total synthesis of calicheamicinone Danishefsky, S. J. (1990, racemic) 4) Nicolaou, K. C. (1993, enantiomeric) 5) calicheamicinone Clive, D. L. J. (1996, racemic) 6) (calicheamicin aglycon) Magnus, P. (1998, racemic) 7) 1) Borders, D.
    [Show full text]
  • Precursor-Directed Biosynthesis of Azinomycin a and Related Metabolites by Streptomyces Sahachi- Roi
    ORBIT-OnlineRepository ofBirkbeckInstitutionalTheses Enabling Open Access to Birkbeck’s Research Degree output Precursor-Directed Biosynthesis of Azinomycin A and Related Metabolites by Streptomyces sahachi- roi https://eprints.bbk.ac.uk/id/eprint/40052/ Version: Full Version Citation: Sebbar, Abdel-Ilah (2014) Precursor-Directed Biosynthesis of Azinomycin A and Related Metabolites by Streptomyces sahachiroi. [Thesis] (Unpublished) c 2020 The Author(s) All material available through ORBIT is protected by intellectual property law, including copy- right law. Any use made of the contents should comply with the relevant law. Deposit Guide Contact: email Precursor-Directed Biosynthesis of Azinomycin A and Related Metabolites by Streptomyces sahachiroi Abdel-Ilah Sebbar Department of Biological Sciences School of Science Birkbeck College University of London A thesis submitted to the University of London for the degree of Doctor of Philosophy August 2014 Declaration The work presented in this thesis in entirely on my own, except where I have either acknowledged help from a known person or given a published reference. 15/8/14 Signed: ………………. Date:… ………………... PhD student: Abdel-Ilah Sebbar Department of Biological Sciences School of Science Birkbeck College University of London 15/8/14 Signed: Date: …………………... Supervisor: Dr. Philip Lowden Department of Biological Sciences School of Science Birkbeck College University of London 2 Abstract Azinomycins A and B are bioactive compounds produced by Streptomyces species. These naturally occurring antibiotics exhibit potent in vitro cytotoxic activity, promising in vivo antitumor activity and exert their effect by disruption of DNA replication by the formation of interstrand cross-links. The electrophilic C-10 and C-21 carbons contained within the aziridine and epoxide moieties are known to be responsible for the interstrand cross-links through alkylation of N-7 atoms of guanine bases.
    [Show full text]
  • Induction of Apoptosis by Enediyne Antibiotic Calicheamicin 0II
    Oncogene (2003) 22, 9107–9120 & 2003 Nature Publishing Group All rights reserved 0950-9232/03 $25.00 www.nature.com/onc ORIGINAL PAPERS Induction of apoptosis by enediyne antibiotic calicheamicin 0II proceeds through a caspase-mediated mitochondrial amplification loop in an entirely Bax-dependent manner Aram Prokop1,4, Wolf Wrasidlo2,4, Holger Lode2, Ralf Herold1, Florian Lang3,5,Gu¨ nter Henze1, Bernd Do¨ rken3, Thomas Wieder3,5,6 and Peter T Daniel*,3,6 1Department of Pediatric Oncology/Hematology, University Medical Center Charite´, Humboldt University of Berlin, Berlin 13353, Germany; 2Department of General Pediatrics, University Medical Center Charite´, Humboldt University of Berlin, Berlin 13353, Germany; 3Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charite´, Humboldt University of Berlin, Berlin 13125, Germany Calicheamicin 0II is a member of the enediyne class of Keywords: calicheamicin; apoptosis; caspase-3; Bax; antitumor antibiotics that bind to DNA and induce Bcl-2; cytochrome c; mitochondria; BJAB; Jurkat; apoptosis. These compounds differ, however, from con- HCT116 ventional anticancer drugs as they bind in a sequence- specific manner noncovalently to DNA and cause sequence-selective oxidation of deoxyriboses and bending of the DNA helix. Calicheamicin is clinically employed as Introduction immunoconjugate to antibodies directed against, for example, CD33 in the case of gemtuzumab ozogamicin. In contrast to necrosis, apoptosis is a morphologically Here, we show by the use of the unconjugated drug that and biochemically defined form of cell death that plays a calicheamicin-induced apoptosis is independent from role under different physiological conditions, such as death-receptor/FADD-mediated signals. Moreover, cali- cell turnover, the immune response or embryonic cheamicin triggers apoptosis in a p53-independent manner development.
    [Show full text]
  • Discovery of Bioactive Natural Products from Actinomycetes by Inactivation and Heterologous Expression of Biosynthetic Gene Clusters
    - 1 - Discovery of Bioactive Natural Products from Actinomycetes by Inactivation and Heterologous Expression of Biosynthetic Gene Clusters Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Albert-Ludwigs-Universität Freiburg im Breisgau Vorgelegt von Jing Zhu Aus Wuhan, China 2019 - 2 - Dekan: Prof. Dr. Oliver Einsle Vorsitzender des Promotionsausschusses: Prof. Dr. Stefan Weber Referent: Prof. Dr. Andreas Bechthold Korreferent: Prof. Dr. Irmgard Merfort Drittprüfer: Prof. Dr. Stefan Günther Datum der mündlichen Prüfung: 15.05.2019 Datum der Promotion: 04.07.2019 - 3 - Acknowledgements I would like to express my greatly gratitude to my supervisor, Prof. Dr. Andreas Bechthold for giving me the opportunity to study at his group in University of Freiburg and for his enthusiasm, encouragement and support over the last 4 years. I also appreciate his patience and good suggestions when we discuss my project. I also want to thank my second supervisor Prof. Dr. Irmgard Merfort for kind reviewing my dissertation and caring of my research, her serious attitude for scientific research infected me. I would like to express my appreciation to Prof. Dr. Stefan Günther for being the examiner of my dissertation defense. I am very grateful to Dr. Thomas Paululat from University of Siegen for reviewing my manuscript and for structures elucidation and NMR data preparation. I also want to thank Dr. Manfred Keller and Christoph Warth for NMR and HR-ESIMS measurement. I would like to thank Prof. Dr. David Zechel from Queen's University for reviewing my manuscript. I would like to thank Dr. Lin Zhang for his great help with protein crystallization and for his technical advices.
    [Show full text]
  • Rapid PCR Amplification of Minimal Enediyne Polyketide Synthase Cassettes Leads to a Predictive Familial Classification Model
    Rapid PCR amplification of minimal enediyne polyketide synthase cassettes leads to a predictive familial classification model Wen Liu*, Joachim Ahlert*†, Qunjie Gao*†, Evelyn Wendt-Pienkowski*, Ben Shen*‡§, and Jon S. Thorson*†§ *Pharmaceutical Sciences Division, School of Pharmacy, †Laboratory for Biosynthetic Chemistry, and ‡Department of Chemistry, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705 Edited by Christopher T. Walsh, Harvard Medical School, Boston, MA, and approved August 13, 2003 (received for review July 9, 2003) A universal PCR method for the rapid amplification of minimal enediyne warheads may proceed via similar polyunsaturated enediyne polyketide synthase (PKS) genes and the application of polyketide intermediates and established a PKS paradigm for the this methodology to clone remaining prototypical genes from enediyne biosynthesis (18, 19) (the neocarzintostatin cluster was producers of structurally determined enediynes in both family cloned, sequenced, and characterized from Streptomyces carzi- types are presented. A phylogenetic analysis of the new pool nostaticus ATCC 15944 by W.L., E.W.-P., and B.S., unpublished of bona fide enediyne PKS genes, consisting of three from 9-mem- data). Guided by this information, recent high-throughput ge- bered producers (neocarzinostatin, C1027, and maduropeptin) and nome scanning also led to the surprising discovery of functional three from 10-membered producers (calicheamicin, dynemicin, and enediyne PKS genes in diverse organisms previously not known esperamicin),
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,005,625 B2 Defrees Et Al
    US009005625B2 (12) United States Patent (10) Patent No.: US 9,005,625 B2 DeFrees et al. (45) Date of Patent: Apr. 14, 2015 (54) ANTIBODY TOXIN CONJUGATES 4,767,702 A 8, 1988 Cohenford 4,806,595 A 2f1989 Noishiki et al. (75) Inventors: Shawn DeFrees, North Wales, PA (US); 4,847,3254,826,945 A 7,5/1989 1989 ShadleCohn et et al. al. Zhi-Guang Wang, Dresher, PA (US) 4,879,236 A 1 1/1989 Smith et al. 4,918,009 A 4, 1990 Nilsson (73) Assignee: Novo Nordisk A/S, Bagsvaerd (DK) 4,925,796 A 5/1990 Bergh et al. 4,980,502 A 12/1990 Felder et al. (*) Notice: Subject to any disclaimer, the term of this Sis g A 3. 3: Eas al past SES yed under 35 5,104,651W I A 4, 1992 BooneaSO et al.a M YW- 5,122,614 A 6/1992 Zalipsky 5,147,788 A 9/1992 Page et al. (21) Appl. No.: 10/565,331 5,153,265 A 10/1992 Shadle et al. 5,154,924 A 10, 1992 Friden (22) PCT Filed: Jul. 26, 2004 5,164,374. A 11/1992 Rademacher et al. 5,166.322 A 11/1992 Shaw et al. 5,169,933 A 12, 1992 Anderson et al. (86). PCT No.: PCT/US2004/024042 5, 180,674. A 1, 1993 Roth 5, 182,107 A 1/1993 Friden E. Sep. 11, 2006 5,194,376 A 3/1993 Kang s e ----9 5,202,413 A 4/1993 Spinu 5,206,344 A 4/1993 Katre et al.
    [Show full text]