Uncommon Palms for Central Florida

Total Page:16

File Type:pdf, Size:1020Kb

Uncommon Palms for Central Florida Uncommon Palms for Central Florida Palms are one of the most commonly The form from used plants in the Florida landscape. Taiwan grows larger Palms are monocots, which belong to the and can reach 10 - 15 Arecaceae or Palmae Family. Worldwide, feet tall. The form there are over 2000 different species of from the Ryukyu palms. In central Florida, around 20 Islands only grows different species are available and 5 - 6 feet tall and has commonly planted, but many more will smaller leaves. The grow well in our subtropical climate. pinnate leaves are dark Leu Gardens has over 350 species of green and silvery palms growing in the collection. These underneath. The are evaluated for their suitability to our inflorescences of this climate. Below are 20 uncommon palms that deserve to be used in our local landscapes. Acrocomia aculeata, the Macaw Palm,1 is native from southern Mexico to Brazil. This is a very fast growing palm to about 40 feet tall. This pinnate palm closely resembles the common Queen Palm, Syagrus romanzoffiana. The main difference is that the Macaw Palm is armed with black spines. These spines are palm bear Acrocomia aculeata in landscape found on the trunk and leaves. It likes extremely Older specimens are magnificent with full sun and is drought tolerant. A fragrant large, massive trunks. related species that has been lumped flowers. Beccariophoenix madagascariensis is into Acrocomia aculeata is the Gru These are 5native to Madagascar. It is known as the Gru Palm, which has shorter leaves produced Manarano Palm and grows 30 - 40 feet and is not as fast growing. in late tall. Young plants have leaves that are Acrocomia aculeata spikes Allagoptera arenaria is called the spring and undivided except near the petiole creating Seashore2 Palm. It is native to the dunes early summer. The flowers have a peach- “windows” in the leaves. Older plants of southeastern Brazil and is very drought mango scent and can perfume a large have fully divided leaves. A young and salt tolerant. This palm forms clusters, area. Visitors to the garden never guess Manarano Palm needs shade but older growing 4 - 6 feet tall. The green leaves that a palm is responsible for such a specimens can grow in sun. It also needs are silvery on the undersides. The Seashore sweet scent. The Clustering Sugar Palm moist soil and is prone to iron deficiencies, Palm needs full sun and well-drained will grow in sun or shade but looks best especially younger plants. It thrives on soil. It is ann excellent small palm for with at least afternoon shade. acidic soil, common in central Florida. Central Florida’s sandy soil and will thrive Attalea cohune is a large palm native This palm is fairly tender to cold but in a hot and dry location of the landscape. from4 southern Mexico to Nicaragua and would grow well under a tree canopy Arenga engleri is a clustering palm is called the Cohune Palm. It can grow where it would be protected from frost. nativ3e to Taiwan and the Ryukyu Islands 40 - 50 feet tall but remains trunkless for Mature palms resemble the Coconut (at the southern tip of Japan). It is decades. The leaves are upright and may Palm, Cocos nucifera, and are hardier to sometimes called the Clustering Sugar be over 20 feet long. The Cohune Palm cold. This palm is almost extinct in its Palm. There are two forms of this palm. will grow in sun or shade with moist soil. native habitat. Bismarckia nobilis, the Bismarck Palm, India to southern China where it grows needs full sun. It is drought tolerant but 6native to Madagascar, is one of the most in mountainous forests. This is a large can also grow in wet or seasonally ornamental of all palms. It is a large palm that can reach 100 feet tall in flooded soil. The Caranday Palm is palm that grows 30 feet tall. The large habitat but grows 30 - 40 feet in central native from southern Brazil to northern palmate leaves are an intense silvery-blue Florida. The trunks are massive and Argentina and Bolivia. A very similar color and can be 5 - 10 feet across. It columnar and the leaves reach 20 feet in palm is Copernicia prunifera, the likes full sun and well-drained soil. It is length and nearly as wide. The trunk is Carnauba Wax Palm from Brazil. The very drought tolerant once established. solitary and does not cluster. This palm leaves of this palm are covered in a thick Most Bismarckia Palms grown are the will grow in sun or shade but needs layer of wax and are the source of the silvery-blue form. There is also a form moist fertile soil, especially if grown in famous carnauba wax. The leaves of with green leaves, not as spectacular in full sun. Caryota gigas and Caryota Copernica alba also have a layer of wax color but the leaves are larger. It is not kiriwongensis, both from the mountains and is the source of the inferior as cold hardy as the silvery-blue form of Thailand, are very similar and may be caranday wax. and is not often sold. Seedlings of the the same palm as Caryota obtusa. – continued page 6 silvery-blue form often have a purplish Chamaedorea tinge to them. The more purple coloring microspadix9 is often as a seedling, the more intensely slivery- called the Hardy blue it will be when mature. The seedlings Bamboo Palm. It is a of the green form are green as seedlings. clustering species with Bismarckia nobilis is slow growing for slender stems that the first few years then speeds up as it resemble bamboo. matures. They are almost impossible to The clumps grow 8 - transplant until they have developed a 10 feet tall. It also trunk, so plant this palm in its permanent produces bright red location. It is very popular in southern fruit several times a Florida landscapes. year. This colorful Calamus caryotoides is an unusual fruit contrasts nicely palm,7 climbing and vine like. It forms against the dark green clumps with very slender stems that leaves and stems. grow to about 20 feet tall. The leaves are Chamaedorea dark green and fishtail shaped. The microspadix needs palm is also armed with small spines. It shade and moist soil. climbs with the aid of flagella, a slender, It is native to eastern whip-like structure that is produced. Mexico. These flagella have backward pointing Copernicia alba is spines that help attach and anchor the 1known0 as the palm to the trunk of another tree. Caranday Palm. It has Calamus caryotoides needs a shaded area a slender trunk and and moist soil. There are hundreds of can reach 30 - 40 feet species of Calamus. Most are climbing tall. The palmate and viscously armed making huge clumps leaves are a silvery of spiny stems. Calamus caryotoides is color. This palm one of the smallest species and more suited to the homeowner’s landscape, as it is not as spiny as other Calamus. It is native to northeastern Australia. The stems of some Calamus are the source of true rattan. Caryota obtusa, the Mountain Giant 8Fishtail Palm, is native from northern Copernicia prunifera trunk Copernicia prunifera Palms continued from page 5 that has maroon Livistona decora, the Ribbon Palm, is colored petioles. 11native to eastern Australia and was until This form is not recently known as Livistona decipiens. It as cold hardy as is a fast growing palm, 30 - 40 feet tall. the green petiole The palmate leaves are very deeply form and is divided into long, thin segments giving suitable only in the palm a weeping look. It is very the warmest areas drought tolerant once established. The of central Florida. Ribbon Palm is a good substitute for the The green form common Washingtonia robusta, Mexican can be grown Fan Palm, as it does not grow as tall. throughout the This makes it suited for smaller scaled region. landscapes. The shorter height also makes Phoenix acaulis it much less susceptible to a lightning 14is the Dwarf strike, which is usually the most common Date Palm. It is a cause of death of Washingtonia robusta clustering palm in central Florida. that is usually Livistona nitida is known as the trunkless and 12Carnarvon Gorge Palm. It is native to grows 3 - 5 feet southeastern Queensland, Australia. tall. It grows in This palm grows 30 - 40 feet tall. The full sun or light leaves are a shiny green and the leaflets shade and is very are weeping. Young plants are slow drought tolerant. growing but become faster as they The Dwarf Date mature. It will grow in sun or shade and Palm is native is fairly drought tolerant though it from northern grows best with moist soil. India to southern Phoenix rupicola China. Livistona saribus is the Taraw Palm, that are a cross between Phoenix rupicola 13 , the Cliff Date Palm, native to southeastern Asia and can grow Phoenix rupicola and the common Pygmy Date Palm, 15is native to India where it grows on 30 to 50 feet tall. This palm has large Phoenix roebelenii. These are also very hillsides. It is leaves that are attractive palms that combine the best a slender deeply features of both parents. palm that segmented. Sabal causiarum is native to Puerto reaches 25 The petioles 16Rico and southern Hispaniola and is feet tall. The are armed called the Hat Palmetto. It is a large leaves are with large growing palm that can reach 30 - 40 dark green. attractive feet tall. The trunks are very thick and The Cliff spines that robust.
Recommended publications
  • Anatomia Foliar De Allagoptera Nees (Arecaceae) Como Subsídio À
    Universidade de Brasília Instituto de Ciências Biológicas Departamento de Botânica Programa de Pós Graduação em Botânica Dissertação de Mestrado Anatomia foliar de Allagoptera Nees (Arecaceae) como subsídio à taxonomia André Silva Pinedo Orientadora: Profª Drª Sueli Maria Gomes Brasília, março de 2015 i Universidade de Brasília Instituto de Ciências Biológicas Departamento de Botânica Programa de Pós Graduação em Botânica Dissertação de Mestrado Anatomia foliar de Allagoptera Nees (Arecaceae) como subsídio à taxonomia Dissertação apresentada ao Programa de Pós- Graduação em Botânica da Universidade de Brasília como um dos requisitos para obtenção do título de Mestre em Botânica. André Silva Pinedo Orientadora: Profª Drª Sueli Maria Gomes Brasília, março de 2015 ii Universidade de Brasília Instituto de Ciências Biológicas Departamento de Botânica Programa de Pós Graduação em Botânica Banca examinadora: iii Agradecimentos Primeiramente a Deus, sou eternamente grato pela minha vida, pela oportunidade proporcionada e pela capacitação de estar realizando este curso de pós-graduação, que tem sido uma grande experiência de amadurecimento para mim; À minha orientadora, Profª. Drª. Sueli Maria Gomes, pela sua paciência ao me ensinar e constantes críticas construtivas que fez ao longo do período em que trabalhamos juntos, que fizeram desse mestrado uma grande oportunidade para o meu crescimento profissional; À Profª. Drª. Renata Corrêa Martins, por sua parceria nesse projeto, auxiliando na coleta e identificação das espécies, além de ser uma profissional extremamente prestativa; À Profª. Drª. Cássia Munhoz, minha orientadora em estágio de Iniciação Científica na graduação, motivando-me a trabalhar com plantas; Ao Prof. Dr. Eduardo Gomes Gonçalves, por ter me incentivado a trabalhar com o grupo das palmeiras; À Profª.
    [Show full text]
  • Status of Research on Rattans: a Review
    http://sciencevision.info Sci Vis 10 (2), 51-56 Research Review April-June, 2010 ISSN 0975-6175 Status of research on rattans: a review Lalnuntluanga1*, L. K. Jha2 and H. Lalramnghinglova1 1 Department of Environmental Science, Mizoram University, Aizawl 796009, India 1 Department of Environmental Science, North-Eastern Hill University, Shillong 793022, India Received 20 July 2010 | Accepted 28 July 2010 ABSTRACT Rattan forms one of the major biotic components in tropical and sub -tropical forest ecosys- tem. Contributions made by the researchers on the distribution, taxonomy and uses of rattan species in the world with special reference to India are reviewed here. Key words: Rattan; distribution; taxonomy; utilisation; N.E. states. INTRODUCTION Argentina, the Caribbean, Africa and South-East Asian regions. Rattan diversity is rich in Malay- The name ‘cane’ (rattan) stands collectively sia, Indonesia, Philippines, China, Bangladesh, for the climbing members of a big group of Sri Lanka, Myanmar and India. Rattan is of palms known as Lepidocaryoideae, fruit bearing great economic importance in handicraft and scales. Rattans/canes are prickly climbing palms furniture making because of its richness in fibre, with solid stems, belonging to the family Areca- with suitable toughness and easy for processing. ceae and the sub-family Calamoideae. They are The innumerable pinnate leaves, which extend scaly-fruited palms. The rattans/canes comprise up to two metres in length, with their mosaic more than fifty per cent of the total palm taxa arrangement play a major role in intercepting found in India.1 They are distributed throughout the splash effect of rains and improve the water South-East Asia, the Western Pacific and in the holding capacity of the soil.
    [Show full text]
  • Acrocomia Media 68
    Acrocomia media O.F. Cook Corozo Palmae Familia de las palmas John K. Francis Acrocomia media O.F. Cook, conocido como corozo en Clima español y como “prickly palm” en inglés, es una palma El corozo crece y se reproduce en los bosques húmedos de atractiva y de tamaño mediano (fig. 1) nativo a las áreas tierras bajas que reciben entre 1000 y 1900 mm de costeras y la base de los cerros en Puerto Rico y St. Thomas, precipitación anual promedio (observación personal del Islas Vírgenes de los Estados Unidos. La fruta y el meollo de autor). Aunque menos común, la especie también ocurre de las semillas son comestibles y tienen un alto contenido de manera natural en las áreas con más de 1900 mm de aceite, pero son rara vez usados. A pesar de su tronco espinoso, precipitación anual promedio. En las áreas con menos de 1000 el corozo se ha vuelto popular como una planta de ornamento mm de precipitación, las palmas de corozo se encuentran para uso en la decoración del paisaje. confinadas al curso de las corrientes de agua, los arroyos intermitentes y los micrositios que reciben aguas de desagüe. HABITAT Suelos y Topografía Area de Distribución Natural y de Naturalización Los hábitats más favorables para la reproducción del corozo que proveen a su vez de una ventaja competitiva en el El corozo es nativo a Puerto Rico y St. Thomas, en las crecimiento son las arenas costeras húmedas. Estas son are- Islas Vírgenes de los Estados Unidos (fig. 2) y ha sido nas y arenas margosas con unos pH de entre 6.5 y 8.5 que se introducido como una especie de ornamento a St.
    [Show full text]
  • Livistona Carinensis, Bankoualé Palm
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T30402A95306943 Scope: Global Language: English Livistona carinensis, Bankoualé Palm Assessment by: Cosiaux, A., Welch, H., Gardiner, L.M., Welch, G. & Couvreur, T.L.P. View on www.iucnredlist.org Citation: Cosiaux, A., Welch, H., Gardiner, L.M., Welch, G. & Couvreur, T.L.P. 2018. Livistona carinensis. The IUCN Red List of Threatened Species 2018: e.T30402A95306943. http://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T30402A95306943.en Copyright: © 2018 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: Arizona State University; BirdLife International; Botanic Gardens Conservation International; Conservation International; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Plantae Tracheophyta Liliopsida Arecales Arecaceae Taxon Name: Livistona carinensis (Chiov.) Dransf.
    [Show full text]
  • Ecosystem Profile Madagascar and Indian
    ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra,
    [Show full text]
  • Kelley Palm Species List
    Actinorhytis clapparia Aiphanes horrida Archontophoenix purpurea Areca guppyana Areca triandra Large Hardwoods Areca vestiaria Blue Marble Elaeocarpus angustifolius Arenga hookeriana Monkeypod Samanea saman Astrocaryum murumuru Rubber tree Ficus elastica Attalea cohune Bacurubu Schizolobium parahyba Barretiokentia hapala Kapok Ceiba pentandra Beccariophoenix alfredii Redwood Sequoia Sempervirens Beccariophoenix fenestralis Bentinckia condapanna Bismarckia nobilis Borassodendron machadonis Burretiokentia hapala Caryota gigas Chamaedorea ernesti-augusti Chamaedorea glaucifolia Chamaedoria tepejilote Chambeyronia macrocarpa Clinostigma somoense Corypha umbraculifera Corypha utan Dypsis ampasindavae Dypsis baronii Dypsis basilonga Dypsis bejofo Dypsis carlsmithii Dypsis decipiens Dypsis hovitro Dypsis lanceolata Dypsis lastelliana Dypsis leptocheilos Dypsis mananjarensis Dypsis nauseosa Dypsis onilahensis Dypsis paludosa Dypsis pilulifera Dypsis pinnatifrons Dypsis prestoniana Dypsis procera Dypsis psammophila Dypsis rivularis Dypsis robusta Dypsis rosea Dypsis saintluci Dypsis sp. "orange crush" Dypsis sp. bef Dypsis sp. bejofo Heterospathe glauca aka barfodii Heterospathe intermedia Hydriastele beguinii Obi Island form Hydriastele flabellate Hydriastele pinangoides Hyphorbe indica Iguanura wallichiana Iriartea deltoidea Itaya amicorum Johannesteijsmannia altifrons Johannesteijsmannia magnifica Kerridoxa elegans Lanonia dasyantha Latania loddigesii Lemurophoenix halleuxii Licuala elegans (L. peltata sumawongii) Licuala peltata var. peltata
    [Show full text]
  • P-Methoxycinnamic Acid Diesters Lower Dyslipidemia, Liver Oxidative Stress and Toxicity in High-Fat Diet Fed Mice and Human Peripheral Blood Lymphocytes
    nutrients Article p-Methoxycinnamic Acid Diesters Lower Dyslipidemia, Liver Oxidative Stress and Toxicity in High-Fat Diet Fed Mice and Human Peripheral Blood Lymphocytes Raquel Teixeira Terceiro Paim 1,*, Paula Salmito Alves Rodrigues 1, José Ytalo Gomes da Silva 1, Valdir Ferreira de Paula Junior 2, Bruno Bezerra da Silva 1 , Claísa Andréa Silva De Freitas 1, Reinaldo Barreto Oriá 3, Eridan Orlando Pereira Tramontina Florean 1, Davide Rondina 4 and Maria Izabel Florindo Guedes 1 1 Biotechnology & Molecular Biology Laboratory, State University of Ceara, Fortaleza 60.714-903, Brazil; [email protected] (P.S.A.R.); [email protected] (J.Y.G.d.S.); [email protected] (B.B.d.S.); [email protected] (C.A.S.D.F.); [email protected] (E.O.P.T.F.); fl[email protected] (M.I.F.G.) 2 Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza CE 60.714-903, Brazil; [email protected] 3 Laboratory of Tissue healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Federal University of Ceara, Fortaleza 60.430-270, Brazil; [email protected] 4 Laboratory of Nutrition and Ruminant Production, State University of Ceara, Fortaleza 60.714-903, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-85997287264 Received: 10 December 2019; Accepted: 16 January 2020; Published: 20 January 2020 Abstract: The pursuit of cholesterol lowering natural products with less side effects is needed for controlling dyslipidemia and reducing the increasing toll of cardiovascular diseases that are associated with morbidity and mortality worldwide.
    [Show full text]
  • Ethnobotanical Study on Wild Edible Plants Used by Three Trans-Boundary Ethnic Groups in Jiangcheng County, Pu’Er, Southwest China
    Ethnobotanical study on wild edible plants used by three trans-boundary ethnic groups in Jiangcheng County, Pu’er, Southwest China Yilin Cao Agriculture Service Center, Zhengdong Township, Pu'er City, Yunnan China ren li ( [email protected] ) Xishuangbanna Tropical Botanical Garden https://orcid.org/0000-0003-0810-0359 Shishun Zhou Shoutheast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Liang Song Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Intergrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Ruichang Quan Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Huabin Hu CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Research Keywords: wild edible plants, trans-boundary ethnic groups, traditional knowledge, conservation and sustainable use, Jiangcheng County Posted Date: September 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-40805/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on October 27th, 2020. See the published version at https://doi.org/10.1186/s13002-020-00420-1. Page 1/35 Abstract Background: Dai, Hani, and Yao people, in the trans-boundary region between China, Laos, and Vietnam, have gathered plentiful traditional knowledge about wild edible plants during their long history of understanding and using natural resources. The ecologically rich environment and the multi-ethnic integration provide a valuable foundation and driving force for high biodiversity and cultural diversity in this region.
    [Show full text]
  • Arizona Landscape Palms
    Cooperative Extension ARIZONA LANDSCAPE PALMS ELIZABETH D AVISON Department of Plant Sciences JOHN BEGEMAN Pima County Cooperative Extension AZ1021 • 12/2000 Issued in furtherance of Cooperative Extension work acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, James A. Christenson, Director, Cooperative Extension, College of Agriculture and Life Sciences, The University of Arizona. The University of Arizona College of Agriculture and Life Sciences is an equal opportunity employer authorized to provide research, educational information and other services to individuals and institutions that function without regard to sex, race, religion, color, national origin, age, Vietnam Era Veteran's status, or disability. Contents Landscape Use ......................................... 3 Adaptation ................................................ 3 Planting Palms ......................................... 3 Care of Established Palms...................... 5 Diseases and Insect Pests ....................... 6 Palms for Arizona .................................... 6 Feather Palms ........................................... 8 Fan Palms................................................ 12 Palm-like Plants ..................................... 16 This information has been reviewed by university faculty. ag.arizona.edu/pubs/garden/az1121.pdf 2 The luxuriant tropical appearance and stately Adaptation silhouette of palms add much to the Arizona landscape. Palms generally can be grown below the 4000 ft level Few other plants are as striking in low and mid elevation in Arizona. However, microclimate may make the gardens. Although winter frosts and low humidity limit difference between success and failure in a given location. the choices somewhat, a good number of palms are Frost pockets, where nighttime cold air tends to collect, available, ranging from the dwarf Mediterranean Fan should be avoided, especially for the tender species. Palms palm to the massive Canary Island Date palm.
    [Show full text]
  • WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
    WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall .........................................................................................................
    [Show full text]
  • Species Delimitation and Hybrid Identification of Acrocomia Aculeata
    Species delimitation and hybrid identification of Acrocomia aculeata and A. totai by genetic population approach Brenda D´ıaz1, Maria Zucchi2, Alessandro Alves-Pereira1, Joaquim Azevedo-Filho2, Mariana Sanit´a2, and Carlos Colombo2 1State University of Campinas 2Instituto Agronomico October 9, 2020 Abstract To the Neotropical genus Acrocomia (Arecaceae) is attributed eight species with a wide distribution in America. A. aculeata and A. totai are the most important species because of their high economic potential for oil production. However, there is no consensus in their classification as different taxons and their distinctiveness is particularly challenging due to morphological similarities with large plasticity of the traits. In addition, there is doubt about the occurrence of interspecific hybrids between both species. In this study, we applied a genetic population approach to assessing the genetic boundaries, diversity and to identify interspecific hybrids of A. aculeata and A. totai. Thirteen loci of simple sequence repeat (SSR) were employed to analyze twelve populations representing a wide distribution of species, from Minas Gerais, Brazil to Formosa, Argentina. Based on the Bayesian analysis (STRUCTURE and NewHybrids) and Discriminant Analysis of Principal Components (DAPC), our study supports the recognition of A. aculeata and A. totai as two species and the estimates of genetic parameters revealed more genetic diversity in A. totai (HE=0.551) than in A. aculeata (HE=0.466). We obtained evidence of hybridization between the species and that admixed individuals were assigned as F2 hybrids. In conclusion, this study showed the usefulness of microsatellite markers to elucidate the genetic boundaries of A. aculeata and A. totai, supporting their classification as different species and increase our knowledge about genetic diversity at the level of populations and species.
    [Show full text]
  • Managing Invasive Madagascar Rubbervine in Brazil
    MANAGING INVASIVE MADAGASCAR RUBBERVINE IN BRAZIL Locations Brazil, Madagascar Dates 01/02/2018 - 28/02/2022 Summary Invasion by the alien plant – Madagascar rubbervine is endangering native flora and fauna in northeastern Brazil. In the Caatinga area, the endemic Carnaúba palm, with its highly valued wax, has come under threat. CABI, in collaboration with Brazilian counterparts, is seeking to evaluate the rust Maravalia cryptostegia as a potential biocontrol agent for Madagascar rubbervine. The same rust has been used in Australia to successfully control another invasive alien rubbervine species. The problem Madagascar rubbervine, Cryptostegia madagascariensis (common name: devil’s claw, Portuguese: unha-do-diabo) is a serious invasive weed. Native to Madagascar, it was introduced to Brazil as an ornamental plant but has since invaded the semi-arid northeastern region of the country, especially the unique Caatinga ecosystem. Madagascar rubbervine is well adapted to Brazil’s climate, producing a large seed bank and abundant toxic latex, all of which makes its control with conventional methods extremely difficult. In the Caatinga, the vine is threatening endemic biodiversity such as the three banded armadillo (mascot of the 2014 FIFA world cup) and the Carnaúba palm by smothering vast areas of pristine riparian habitats and forming impenetrable masses that are killing trees and preventing animal and human movement, as well as depleting scarce water resources. The iconic Carnaúba palm (Copernicia prunifera), native to northeastern Brazil, is known as the ‘tree of life’ due to its many uses. The palm is the sole source of the Carnaúba wax, known as the ‘queen of waxes’, which is a valuable natural resource used in polish, skincare and cosmetic products.
    [Show full text]