Mastering Machine Learning with Scikit-Learn

Total Page:16

File Type:pdf, Size:1020Kb

Mastering Machine Learning with Scikit-Learn www.it-ebooks.info Mastering Machine Learning with scikit-learn Apply effective learning algorithms to real-world problems using scikit-learn Gavin Hackeling BIRMINGHAM - MUMBAI www.it-ebooks.info Mastering Machine Learning with scikit-learn Copyright © 2014 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: October 2014 Production reference: 1221014 Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK. ISBN 978-1-78398-836-5 www.packtpub.com Cover image by Amy-Lee Winfield [email protected]( ) www.it-ebooks.info Credits Author Project Coordinator Gavin Hackeling Danuta Jones Reviewers Proofreaders Fahad Arshad Simran Bhogal Sarah Guido Tarsonia Sanghera Mikhail Korobov Lindsey Thomas Aman Madaan Indexer Acquisition Editor Monica Ajmera Mehta Meeta Rajani Graphics Content Development Editor Sheetal Aute Neeshma Ramakrishnan Ronak Dhruv Disha Haria Technical Editor Faisal Siddiqui Production Coordinator Kyle Albuquerque Copy Editors Roshni Banerjee Cover Work Adithi Shetty Kyle Albuquerque www.it-ebooks.info About the Author Gavin Hackeling develops machine learning services for large-scale documents and image classification at an advertising network in New York. He received his Master's degree from New York University's Interactive Telecommunications Program, and his Bachelor's degree from the University of North Carolina. To Hallie, for her support, and Zipper, without whose contributions this book would have been completed in half the time. www.it-ebooks.info About the Reviewers Fahad Arshad completed his PhD at Purdue University in the Department of Electrical and Computer Engineering. His research interests focus on developing algorithms for software testing, error detection, and failure diagnosis in distributed systems. He is particularly interested in data-driven analysis of computer systems. His work has appeared at top dependability conferences—DSN, ISSRE, ICAC, Middleware, and SRDS—and he has been awarded grants to attend DSN, ICAC, and ICNP. Fahad has also been an active contributor to security research while working as a cybersecurity engineer at NEEScomm IT. He has recently taken on a position as a systems engineer in the industry. Sarah Guido is a data scientist at Reonomy, where she's helping build disruptive technology in the commercial real estate industry. She loves Python, machine learning, and the startup world. She is an accomplished conference speaker and an O'Reilly Media author, and is very involved in the Python community. Prior to joining Reonomy, Sarah earned a Master's degree from the University of Michigan School of Information. www.it-ebooks.info Mikhail Korobov is a software developer at ScrapingHub Inc., where he works on web scraping, information extraction, natural language processing, machine learning, and web development tasks. He is an NLTK team member, Scrapy team member, and an author or contributor to many other open source projects. I'd like to thank my wife, Aleksandra, for her support and patience and for the cookies. Aman Madaan is currently pursuing his Master's in Computer Science and Engineering. His interests span across machine learning, information extraction, natural language processing, and distributed computing. More details about his skills, interests, and experience can be found at http://www.amanmadaan.in. www.it-ebooks.info www.PacktPub.com Support files, eBooks, discount offers, and more You might want to visit www.PacktPub.com for support files and downloads related to your book. Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at [email protected] for more details. At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks. TM http://PacktLib.PacktPub.com Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read, and search across Packt's entire library of books. Why subscribe? • Fully searchable across every book published by Packt • Copy and paste, print, and bookmark content • On demand and accessible via web browser Free access for Packt account holders If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access. www.it-ebooks.info www.it-ebooks.info Table of Contents Preface 1 Chapter 1: The Fundamentals of Machine Learning 7 Learning from experience 8 Machine learning tasks 10 Training data and test data 11 Performance measures, bias, and variance 13 An introduction to scikit-learn 16 Installing scikit-learn 16 Installing scikit-learn on Windows 17 Installing scikit-learn on Linux 17 Installing scikit-learn on OS X 18 Verifying the installation 18 Installing pandas and matplotlib 18 Summary 19 Chapter 2: Linear Regression 21 Simple linear regression 21 Evaluating the fitness of a model with a cost function 25 Solving ordinary least squares for simple linear regression 27 Evaluating the model 29 Multiple linear regression 31 Polynomial regression 35 Regularization 40 Applying linear regression 41 Exploring the data 41 Fitting and evaluating the model 44 Fitting models with gradient descent 46 Summary 50 www.it-ebooks.info Table of Contents Chapter 3: Feature Extraction and Preprocessing 51 Extracting features from categorical variables 51 Extracting features from text 52 The bag-of-words representation 52 Stop-word filtering 55 Stemming and lemmatization 56 Extending bag-of-words with TF-IDF weights 59 Space-efficient feature vectorizing with the hashing trick 62 Extracting features from images 63 Extracting features from pixel intensities 63 Extracting points of interest as features 65 SIFT and SURF 67 Data standardization 69 Summary 70 Chapter 4: From Linear Regression to Logistic Regression 71 Binary classification with logistic regression 72 Spam filtering 73 Binary classification performance metrics 76 Accuracy 77 Precision and recall 79 Calculating the F1 measure 80 ROC AUC 81 Tuning models with grid search 84 Multi-class classification 86 Multi-class classification performance metrics 90 Multi-label classification and problem transformation 91 Multi-label classification performance metrics 94 Summary 95 Chapter 5: Nonlinear Classification and Regression with Decision Trees 97 Decision trees 97 Training decision trees 99 Selecting the questions 100 Information gain 103 Gini impurity 108 Decision trees with scikit-learn 109 Tree ensembles 112 The advantages and disadvantages of decision trees 113 Summary 114 [ ii ] www.it-ebooks.info Table of Contents Chapter 6: Clustering with K-Means 115 Clustering with the K-Means algorithm 117 Local optima 123 The elbow method 124 Evaluating clusters 128 Image quantization 130 Clustering to learn features 132 Summary 135 Chapter 7: Dimensionality Reduction with PCA 137 An overview of PCA 137 Performing Principal Component Analysis 142 Variance, Covariance, and Covariance Matrices 142 Eigenvectors and eigenvalues 143 Dimensionality reduction with Principal Component Analysis 146 Using PCA to visualize high-dimensional data 149 Face recognition with PCA 150 Summary 153 Chapter 8: The Perceptron 155 Activation functions 157 The perceptron learning algorithm 158 Binary classification with the perceptron 159 Document classification with the perceptron 166 Limitations of the perceptron 167 Summary 169 Chapter 9: From the Perceptron to Support Vector Machines 171 Kernels and the kernel trick 172 Maximum margin classification and support vectors 176 Classifying characters in scikit-learn 179 Classifying handwritten digits 179 Classifying characters in natural images 182 Summary 185 Chapter 10: From the Perceptron to Artificial Neural Networks 187 Nonlinear decision boundaries 188 Feedforward and feedback artificial neural networks 189 Multilayer perceptrons 189 Minimizing the cost function 191 Forward propagation 192 Backpropagation 198 [ iii ] www.it-ebooks.info Table of Contents Approximating XOR with Multilayer perceptrons 212 Classifying handwritten digits 213 Summary 214 Index 217 [ iv ] www.it-ebooks.info Preface Recent years have seen the rise of machine learning, the study of software that learns from experience. While machine learning is a new discipline, it has found many applications. We rely on some of these applications daily; in some cases, their successes have already
Recommended publications
  • Installing Python Ø Basics of Programming • Data Types • Functions • List Ø Numpy Library Ø Pandas Library What Is Python?
    Python in Data Science Programming Ha Khanh Nguyen Agenda Ø What is Python? Ø The Python Ecosystem • Installing Python Ø Basics of Programming • Data Types • Functions • List Ø NumPy Library Ø Pandas Library What is Python? • “Python is an interpreted high-level general-purpose programming language.” – Wikipedia • It supports multiple programming paradigms, including: • Structured/procedural • Object-oriented • Functional The Python Ecosystem Source: Fabien Maussion’s “Getting started with Python” Workshop Installing Python • Install Python through Anaconda/Miniconda. • This allows you to create and work in Python environments. • You can create multiple environments as needed. • Highly recommended: install Python through Miniconda. • Are we ready to “play” with Python yet? • Almost! • Most data scientists use Python through Jupyter Notebook, a web application that allows you to create a virtual notebook containing both text and code! • Python Installation tutorial: [Mac OS X] [Windows] For today’s seminar • Due to the time limitation, we will be using Google Colab instead. • Google Colab is a free Jupyter notebook environment that runs entirely in the cloud, so you can run Python code, write report in Jupyter Notebook even without installing the Python ecosystem. • It is NOT a complete alternative to installing Python on your local computer. • But it is a quick and easy way to get started/try out Python. • You will need to log in using your university account (possible for some schools) or your personal Google account. Basics of Programming Indentations – Not Braces • Other languages (R, C++, Java, etc.) use braces to structure code. # R code (not Python) a = 10 if (a < 5) { result = TRUE b = 0 } else { result = FALSE b = 100 } a = 10 if (a < 5) { result = TRUE; b = 0} else {result = FALSE; b = 100} Basics of Programming Indentations – Not Braces • Python uses whitespaces (tabs or spaces) to structure code instead.
    [Show full text]
  • Cheat Sheet Pandas Python.Indd
    Python For Data Science Cheat Sheet Asking For Help Dropping >>> help(pd.Series.loc) Pandas Basics >>> s.drop(['a', 'c']) Drop values from rows (axis=0) Selection Also see NumPy Arrays >>> df.drop('Country', axis=1) Drop values from columns(axis=1) Learn Python for Data Science Interactively at www.DataCamp.com Getting Sort & Rank >>> s['b'] Get one element -5 Pandas >>> df.sort_index() Sort by labels along an axis Get subset of a DataFrame >>> df.sort_values(by='Country') Sort by the values along an axis The Pandas library is built on NumPy and provides easy-to-use >>> df[1:] Assign ranks to entries Country Capital Population >>> df.rank() data structures and data analysis tools for the Python 1 India New Delhi 1303171035 programming language. 2 Brazil Brasília 207847528 Retrieving Series/DataFrame Information Selecting, Boolean Indexing & Setting Basic Information Use the following import convention: By Position (rows,columns) Select single value by row & >>> df.shape >>> import pandas as pd >>> df.iloc[[0],[0]] >>> df.index Describe index Describe DataFrame columns 'Belgium' column >>> df.columns Pandas Data Structures >>> df.info() Info on DataFrame >>> df.iat([0],[0]) Number of non-NA values >>> df.count() Series 'Belgium' Summary A one-dimensional labeled array a 3 By Label Select single value by row & >>> df.sum() Sum of values capable of holding any data type b -5 >>> df.loc[[0], ['Country']] Cummulative sum of values 'Belgium' column labels >>> df.cumsum() >>> df.min()/df.max() Minimum/maximum values c 7 Minimum/Maximum index
    [Show full text]
  • Pandas: Powerful Python Data Analysis Toolkit Release 0.25.3
    pandas: powerful Python data analysis toolkit Release 0.25.3 Wes McKinney& PyData Development Team Nov 02, 2019 CONTENTS i ii pandas: powerful Python data analysis toolkit, Release 0.25.3 Date: Nov 02, 2019 Version: 0.25.3 Download documentation: PDF Version | Zipped HTML Useful links: Binary Installers | Source Repository | Issues & Ideas | Q&A Support | Mailing List pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. See the overview for more detail about whats in the library. CONTENTS 1 pandas: powerful Python data analysis toolkit, Release 0.25.3 2 CONTENTS CHAPTER ONE WHATS NEW IN 0.25.2 (OCTOBER 15, 2019) These are the changes in pandas 0.25.2. See release for a full changelog including other versions of pandas. Note: Pandas 0.25.2 adds compatibility for Python 3.8 (GH28147). 1.1 Bug fixes 1.1.1 Indexing • Fix regression in DataFrame.reindex() not following the limit argument (GH28631). • Fix regression in RangeIndex.get_indexer() for decreasing RangeIndex where target values may be improperly identified as missing/present (GH28678) 1.1.2 I/O • Fix regression in notebook display where <th> tags were missing for DataFrame.index values (GH28204). • Regression in to_csv() where writing a Series or DataFrame indexed by an IntervalIndex would incorrectly raise a TypeError (GH28210) • Fix to_csv() with ExtensionArray with list-like values (GH28840). 1.1.3 Groupby/resample/rolling • Bug incorrectly raising an IndexError when passing a list of quantiles to pandas.core.groupby. DataFrameGroupBy.quantile() (GH28113).
    [Show full text]
  • Image Processing with Scikit-Image Emmanuelle Gouillart
    Image processing with scikit-image Emmanuelle Gouillart Surface, Glass and Interfaces, CNRS/Saint-Gobain Paris-Saclay Center for Data Science Image processing Manipulating images in order to retrieve new images or image characteristics (features, measurements, ...) Often combined with machine learning Principle Some features The world is getting more and more visual Image processing Manipulating images in order to retrieve new images or image characteristics (features, measurements, ...) Often combined with machine learning Principle Some features The world is getting more and more visual Image processing Manipulating images in order to retrieve new images or image characteristics (features, measurements, ...) Often combined with machine learning Principle Some features The world is getting more and more visual Image processing Manipulating images in order to retrieve new images or image characteristics (features, measurements, ...) Often combined with machine learning Principle Some features The world is getting more and more visual Image processing Manipulating images in order to retrieve new images or image characteristics (features, measurements, ...) Often combined with machine learning Principle Some features The world is getting more and more visual Principle Some features The world is getting more and more visual Image processing Manipulating images in order to retrieve new images or image characteristics (features, measurements, ...) Often combined with machine learning Principle Some features scikit-image http://scikit-image.org/ A module of the Scientific Python stack Language: Python Core modules: NumPy, SciPy, matplotlib Application modules: scikit-learn, scikit-image, pandas, ... A general-purpose image processing library open-source (BSD) not an application (ImageJ) less specialized than other libraries (e.g. OpenCV for computer vision) 1 Principle Principle Some features 1 First steps from skimage import data , io , filter image = data .
    [Show full text]
  • Zero-Cost, Arrow-Enabled Data Interface for Apache Spark
    Zero-Cost, Arrow-Enabled Data Interface for Apache Spark Sebastiaan Jayjeet Aaron Chu Ivo Jimenez Jeff LeFevre Alvarez Chakraborty UC Santa Cruz UC Santa Cruz UC Santa Cruz Rodriguez UC Santa Cruz [email protected] [email protected] [email protected] Leiden University [email protected] [email protected] Carlos Alexandru Uta Maltzahn Leiden University UC Santa Cruz [email protected] [email protected] ABSTRACT which is a very expensive operation; (2) data processing sys- Distributed data processing ecosystems are widespread and tems require new adapters or readers for each new data type their components are highly specialized, such that efficient to support and for each new system to integrate with. interoperability is urgent. Recently, Apache Arrow was cho- A common example where these two issues occur is the sen by the community to serve as a format mediator, provid- de-facto standard data processing engine, Apache Spark. In ing efficient in-memory data representation. Arrow enables Spark, the common data representation passed between op- efficient data movement between data processing and storage erators is row-based [5]. Connecting Spark to other systems engines, significantly improving interoperability and overall such as MongoDB [8], Azure SQL [7], Snowflake [11], or performance. In this work, we design a new zero-cost data in- data sources such as Parquet [30] or ORC [3], entails build- teroperability layer between Apache Spark and Arrow-based ing connectors and converting data. Although Spark was data sources through the Arrow Dataset API. Our novel data initially designed as a computation engine, this data adapter interface helps separate the computation (Spark) and data ecosystem was necessary to enable new types of workloads.
    [Show full text]
  • Pandas Writing Data to Excell Spreadsheet
    Pandas Writing Data To Excell Spreadsheet Nico automatizes rompingly while pandanaceous Orin elasticizing unheededly or flocculated cannily. Cold-hearted Dewitt Boyduntack sprawl her summersault some canticles? so vulnerably that Yehudi proclaim very distinctly. How auld is Shalom when caryatidal and slate When there are currently being written to a csv seems to increase or writing data to pandas to_excel function After you have data manipulation in excel spreadsheet, write to excel, i permanently delete. Python write two have done by writing them. As you can see my profile, i have good experience of python so i am sure i can make it soon Please chat with me and discuss Mehr. In python package is that writes to our mission: it is a text file is quite a single worksheet. This website uses cookies to improve your experience. My web application object that allows objects. Subscribe for writing large amounts of spreadsheet format across all rows whose sum. Text Import Wizard was more information about using the wizard. Python Data Analysis Library. In this case, mine was show a single Worksheet in the Workbook. Excel is a well known and really good user interface for many tasks. These types of spreadsheets can be used to perform calculations or create diagrams, for example. This out there are working with one reason why our files to python panda will try enabling it in. You have a spreadsheet with excel? Clustered indexes in this particular table, writing column number is. You much also use Python! This violin especially steep when can feel blocked on appropriate next step.
    [Show full text]
  • Interaction Between SAS® and Python for Data Handling and Visualization Yohei Takanami, Takeda Pharmaceuticals
    Paper 3260-2019 Interaction between SAS® and Python for Data Handling and Visualization Yohei Takanami, Takeda Pharmaceuticals ABSTRACT For drug development, SAS is the most powerful tool for analyzing data and producing tables, figures, and listings (TLF) that are incorporated into a statistical analysis report as a part of Clinical Study Report (CSR) in clinical trials. On the other hand, in recent years, programming tools such as Python and R have been growing up and are used in the data science industry, especially for academic research. For this reason, improvement in productivity and efficiency gain can be realized with the combination and interaction among these tools. In this paper, basic data handling and visualization techniques in clinical trials with SAS and Python, including pandas and SASPy modules that enable Python users to access SAS datasets and use other SAS functionalities, are introduced. INTRODUCTION SAS is fully validated software for data handling, visualization and analysis and it has been utilized for long periods of time as a de facto standard in drug development to report the statistical analysis results in clinical trials. Therefore, basically SAS is used for the formal analysis report to make an important decision. On the other hand, although Python is a free software, there are tremendous functionalities that can be utilized in broader areas. In addition, Python provides useful modules to enable users to access and handle SAS datasets and utilize SAS modules from Python via SASPy modules (Nakajima 2018). These functionalities are very useful for users to learn and utilize both the functionalities of SAS and Python to analyze the data more efficiently.
    [Show full text]
  • Python Data Processing with Pandas
    Python Data Processing with Pandas CSE 5542 Introduc:on to Data Visualizaon Pandas • A very powerful package of Python for manipulang tables • Built on top of numpy, so is efficient • Save you a lot of effort from wri:ng lower python code for manipulang, extrac:ng, and deriving tables related informaon • Easy visualizaon with Matplotlib • Main data structures – Series and DataFrame • First thing first • Series: an indexed 1D array • Explicit index • Access data • Can work as a dic:onary • Access and slice data DataFrame Object • Generalized two dimensional array with flexible row and column indices DataFrame Object • Generalized two dimensional array with flexible row and column indices DataFrame Object • From Pandas Series DataFrame Object • From Pandas Series DataFrame Object • Another example Viewing Data • View the first or last N rows Viewing Data • Display the index, columns, and data Viewing Data • Quick stas:cs (for columns A B C D in this case) Viewing Data • Sor:ng: sort by the index (i.e., reorder columns or rows), not by the data in the table column Viewing Data • Sor:ng: sort by the data values Selecng Data • Selec:ng using a label Selecng Data • Mul:-axis, by label Selecng Data • Mul:-axis, by label Slicing: last included Selecng Data • Select by posi:on Selecng Data • Boolean indexing Selecng Data • Boolean indexing Seng Data • Seng a new column aligned by indexes Seng Data Operaons • Descrip:ve stas:cs – Across axis 0 (rows), i.e., column mean – Across axis 1 (column), i.e., row mean Operaons • Apply • Histogram Merge Tables • Join Merge Tables • Append Grouping File I/O • CSV File I/O • Excel .
    [Show full text]
  • Introduction to Python for Econometrics, Statistics and Data Analysis 4Th Edition
    Introduction to Python for Econometrics, Statistics and Data Analysis 4th Edition Kevin Sheppard University of Oxford Thursday 31st December, 2020 2 - ©2020 Kevin Sheppard Solutions and Other Material Solutions Solutions for exercises and some extended examples are available on GitHub. https://github.com/bashtage/python-for-econometrics-statistics-data-analysis Introductory Course A self-paced introductory course is available on GitHub in the course/introduction folder. Solutions are avail- able in the solutions/introduction folder. https://github.com/bashtage/python-introduction/ Video Demonstrations The introductory course is accompanied by video demonstrations of each lesson on YouTube. https://www.youtube.com/playlist?list=PLVR_rJLcetzkqoeuhpIXmG9uQCtSoGBz1 Using Python for Financial Econometrics A self-paced course that shows how Python can be used in econometric analysis, with an emphasis on financial econometrics, is also available on GitHub in the course/autumn and course/winter folders. https://github.com/bashtage/python-introduction/ ii Changes Changes since the Fourth Edition • Added a discussion of context managers using the with statement. • Switched examples to prefer the context manager syntax to reflect best practices. iv Notes to the Fourth Edition Changes in the Fourth Edition • Python 3.8 is the recommended version. The notes require Python 3.6 or later, and all references to Python 2.7 have been removed. • Removed references to NumPy’s matrix class and clarified that it should not be used. • Verified that all code and examples work correctly against 2020 versions of modules. The notable pack- ages and their versions are: – Python 3.8 (Preferred version), 3.6 (Minimum version) – NumPy: 1.19.1 – SciPy: 1.5.3 – pandas: 1.1 – matplotlib: 3.3 • Expanded description of model classes and statistical tests in statsmodels that are most relevant for econo- metrics.
    [Show full text]
  • Cheat Sheet: the Pandas Dataframe Object
    Cheat Sheet: The pandas DataFrame Object Preliminaries Get your data into a DataFrame Always start by importing these Python modules Instantiate an empty DataFrame import numpy as np df = DataFrame() import matplotlib.pyplot as plt import pandas as pd Load a DataFrame from a CSV file from pandas import DataFrame, Series df = pd.read_csv('file.csv') # often works Note: these are the recommended import aliases df = pd.read_csv('file.csv', header=0, Note: you can put these into a PYTHONSTARTUP file index_col=0, quotechar='"', sep=':', na_values = ['na', '-', '.', '']) Note: refer to pandas docs for all arguments Cheat sheet conventions Get data from inline CSV text to a DataFrame from io import StringIO Code examples data = """, Animal, Cuteness, Desirable # Code examples are found in yellow boxes row-1, dog, 8.7, True row-2, cat, 9.5, True In the code examples, typically I use: row-3, bat, 2.6, False""" s to represent a pandas Series object; df = pd.read_csv(StringIO(data), header=0, df to represent a pandas DataFrame object; index_col=0, skipinitialspace=True) idx to represent a pandas Index object. Note: skipinitialspace=True allows for a pretty layout Also: t – tuple, l – list, b – Boolean, i – integer, a – numpy array, st – string, d – dictionary, etc. Load DataFrames from a Microsoft Excel file # Each Excel sheet in a Python dictionary workbook = pd.ExcelFile('file.xlsx') d = {} # start with an empty dictionary The conceptual model for sheet_name in workbook.sheet_names: df = workbook.parse(sheet_name) d[sheet_name] = df DataFrame object: is a two-dimensional table of data with column and row indexes (something like a spread Note: the parse() method takes many arguments like sheet).
    [Show full text]
  • R Or Python? Dilemma, Dilemma
    Paper SM01 R or Python? Dilemma, Dilemma Elsa Lozachmeur, Idorsia, Basel, Switzerland Nicolas Dupuis, Sanofi, Basel, Switzerland ABSTRACT RTM and PythonTM are the new kids in pharma town. These Open Source programming languages seem to be in every discussion lately. We see attempts in our industry to switch to them, replacing SAS®. They indeed come with advantages: licensing cost cut, a large community of users and developers, enabling their fast and impressive development. What are they good at in reality? What are their respective strengths? How do they compare to one another? And even more important, what are their current limitations? What can you do with SAS that you cannot do with R or Python, in your day-to-day Statistical Programmer life? Using our current personal understanding, we will take concrete examples with classic tasks and see how it can be done today with R and Python. INTRODUCTION As statistical programmers, we produce datasets (e.g. SDTM, ADaM), tables, listing and figures. In this paper, we will go through some classic tasks done in SAS and show you what it would look like if we had used R or Python instead. As in SAS, the code provided in this paper can be improved or other approaches could be used. R code has been tested in R Studio and Python code in Jupyter Notebook. WHAT’S R? Released in 1995, R is a popular, open-source language specialized in statistical analysis that can be extended by packages almost at will. R is commonly used with RStudio, a comfortable development environment that can be used locally or in a client-server installation via a web browser.
    [Show full text]
  • Data Handling Using Pandas -1
    New syllabus 2020-21 Chapter 1 Data Handling using Pandas -1 Informatics Practices Class XII ( As per CBSE Board) Visit : python.mykvs.in for regular updates Data Handling using Pandas -1 Python Library – Matplotlib Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.It is used to create 1. Develop publication quality plots with just a few lines of code 2. Use interactive figures that can zoom, pan, update... We can customize and Take full control of line styles, font properties, axes properties... as well as export and embed to a number of file formats and interactive environments Visit : python.mykvs.inVisit : python.mykvs.in for for regular regularupdates updates Data Handling using Pandas -1 Python Library – Pandas It is a most famous Python package for data science, which offers powerful and flexible data structures that make data analysis and manipulation easy.Pandas makes data importing and data analyzing much easier. Pandas builds on packages like NumPy and matplotlib to give us a single & convenient place for data analysis and visualization work. Visit : python.mykvs.inVisit : python.mykvs.in for for regular regularupdates updates Data Handling using Pandas -1 Basic Features of Pandas 1. Dataframe object help a lot in keeping track of our data. 2. With a pandas dataframe, we can have different data types (float, int, string, datetime, etc) all in one place 3. Pandas has built in functionality for like easy grouping & easy joins of data, rolling windows 4. Good IO capabilities; Easily pull data from a MySQL database directly into a data frame 5.
    [Show full text]