Program: ORAL PRESENTATION ● Day 1 2017 / 03 / 16 (Thu) 9:30–12:30

Total Page:16

File Type:pdf, Size:1020Kb

Program: ORAL PRESENTATION ● Day 1 2017 / 03 / 16 (Thu) 9:30–12:30 Program: ORAL PRESENTATION ● Day 1 2017 / 03 / 16 (Thu) 9:30–12:30 Room Room Room Room Time Room A Room B Room C Room D Room E Room F Room G Room H W X Y Z Time Symposium S01 Symposium S02 Symposium S03 Environmental responses/Abiotic stresses Plant-microbe interaction Biomembrane/ Cell wall Organelles/Cytoskeletons Systems biology Vegetative growth Light harvesting/Pigment (Drought/Water/Osmotic pressure) (Immunity) Ion and solute transport 9:30 1aA01 1aB01 1aC01 1aD01 1aE01 1aF01 仝 1aG01 仝 1aH01 仝 9:30 Comparative physiological, metabolomic and Function of xyloglucan in poplar stem Extracellular apyrase PsAPY1 in pea, a Seedling ER bodies consist a novel defense RMV1, a polyamine/paraquat Prediction of responses to Identification of a Novel Regulator Bacteriochlorophyll biosynthetic transcriptomic analyses of rice seedlings grown Rumi Kaida1, Ryota Yamazaki1, Shuhei Bando1, component of elicitor-induced apoplastic system against insect in Brassicaceae plants transporter is involved in thiamine environmental stresses in the entire Required for Wound-Induced pathways based on substrate under different levels of drought stress Keisuke Tanaka2, Kei-ichi Baba3, Teruaki Taji1, oxidative burst, impact on non-host resistance Kenji Yamada1, Shino Goto-Yamada1, Akiko transport plant metabolism using a genome- Cellular Reprogramming in specificities of enzymes for conditions Yoichi Sakata1, Takahisa Hayashi1 (1Dept. of against non-adapted fungal and bacterial Nakazaki2, Atsushi Nagano3, Mikio Nishimura4, Miki Fujita1, Yasunari Fujita2,3, scale mathematical model Arabidopsis thaliana chlorosomal pigment biosynthesis Daisuke Todaka1, Yu Zhao1, Takuya Yoshida2, Bio-Sci., Tokyo Univ. of Agr., 2NGRC, Tokyo pathogens Ikuko Hara-Nishimura5 (1MCB, Jagiellonian Kazuo Shinozaki1 (1RIKEN CSRS, Kansuporn Sriyudthsak, Ayuko Momoko Ikeuchi, Akira Iwase, Misato Teramura1, Jiro Harada2, 1 3 3 1 1 1 2 3 2 1 Production mechanisms of reactive oxygen species and molecular mechanisms of PSI photoinhibition in higher plants (9:30–12:30) Augmented Symplasm: supracellular structure associated with the secondary organogenesis. (9:30–12:30) Madoka Kudo , Yumiko Takebayashi , Mikiko Univ. of Agr., Kyoto University, RISH) Momiji Miki , Shiori Yamasaki , Sachiyo Yao , Uiniv., Grad. Sch. of Sci., Kyoto Univ., Fac. of Biol. Resources Post-harvest Div., Kuwahara, Masami Yokota Hirai Keiko Sugimoto (RIKEN CSRS) Tadashi Mizoguchi , Hitoshi New insights into the phospholipid signaling in plants (9:30–12:30) Kojima3, Hitoshi Sakakibara3, Alisdair R Hidenori Matsui1, Yoshiteru Noutoshi1, Agric., Ryukoku Univ., 4Dept. of Cell Biol., JIRCAS, 3Grad. Sch. Life Environ. (RIKEN Center for Sustainable and Tamiaki1 (1Grad. Sch. Life Sci., Fernie2, Kiminori Toyooka3, Mayuko Sato3, Mikihiro Yamamoto1, Yuki Ichinose1, Tomonori NIBB, 5Fac. of Sci. and Eng., Konan Univ.) Sci., Univ. Tsukuba) Resource Science (CSRS)) Ritsumeikan Univ., 2Dept. Med. Kazuo Shinozaki3, Kazuko Yamaguchi- Shiraishi2, Kazuhiro Toyoda1 (1Graduate School Biochem., Kurume Univ. Sch. Med.) Shinozaki1 (1Grad. Sch. Agr. Life Sci., Univ. of Environmental and Life Science, 2RIBS Tokyo, 2Max-Planck-Institut, 3Center for Okayama) Sustainable Resource Science, RIKEN) 9:45 1aA02 1aB02 1aC02 1aD02 1aE02 1aF02 1aG02 仝 1aH02 9:45 - ABA-unresponsive SnRK2-mediated mRNA Xyloglucan as a vital component in Peroxidase-catalyzed O2 generation in «Impossible de prouver la négative ... »: Circulation and accumulation of Comparative characterization of the Analysis on a novel transcription Type V chromatic acclimation decay under osmotic stress strengthening cell walls Arabidopsis is required for a full oxidative burst Absence of oil body in the chloroplast in sodium and potassium in Arabidopsis leaf tissue of Physalis alkekengi and factor controlling the hormonal controlling phycoerythrocyanin Fumiyuki Soma1, Junro Mogami1, Takuya Yurina Sakamoto1, Rika Ohira1, Toshiki induced by MAMPs and elicitors Chlamydomonas reinhardtii athkt1 mutant Physalis peruviana using RNA-seq response during the vascular content in response to green and red Yoshida1, Midori Abekura1, Fuminori Takeuchi1, Koji Nishida2, Kei-ichi Baba3, Rumi Chikako Kataoka1, Shiori Yamasaki2, Mika Naoki Sato1,2, Takashi Moriyama1,2, Masakazu Kosuke Takebayashi1, Hidetoshi and metabolite profiling development in Arabidopsis root. light. Takahashi2, Satoshi Kidokoro1, Junya Mizoi1, Kaida1, Teruaki Taji1, Yoichi Sakata1, Takahisa Matsuo1, Momiji Miki2, Hidenori Matsui1,2, Toyoshima1,2, Masakazu Saito1,2, Natsumi Kikunaga2, Megumi Kato1, Ryusuke Atsushi Fukushima1, Michimi Shunsuke Miyashima, Kaori Furuta, Yuu Hirose1, Chinatsu Yonekawa1, Kazuo Shinozaki2, Kazuko Yamaguchi- Hayashi1 (1Biosci. TUA, 2Chem. Kyoto-u, 3Sust. Yoshiteru Noutoshi1,2, Mikihiro Yamamoto1,2, Mori1,2, Takashi Hirashima1,2, Hajime Wada1,2 Yokoyama3, Kazuhiko Nishitani3, Nakamura2, Hideyuki Suzuki3, Mami Keiji Nakajima (Grad. Sch. Bio. Sci., Nobuyoshi Nagao1, Mai Watanabe2, Shinozaki1 (1Grad. Sch. Agr. Life Sci., Univ. Kyoto-u) Yuki Ichinose1,2, Tomonori Shiraishi3, Kazuhiro (1University of Tokyo, Graduate School of Arts Hiroshi Watabe4, Toshimi Suda2, Yamazaki2, Eva Knoch1, Tetsuya NAIST) Masahiko Ikeuchi2, Toshihiko Eki1 Tokyo, 2Center for Sustainable Resource Toyoda1,2 (1Faculty of Agriculture, Okayama and Sciences, 2JST, CREST) Takashi Kuromori5, Atushi Ishikawa6, Mori1, Naoyuki Umemoto1, Masaki (1Toyohashi Univ. of Tech., Dpt. of Science, RIKEN) University, 2Graduate School of Environmental Tomoaki Horie7, Nobuo Suzui8, Morita4, Go Hirai1,4, Mikiko Life and Env. Sci., 2The Univ. of and Life Science, Okayama University, 3RIBS Yong-Gen Yin8, Naoki Kawachi8, Sodeoka1,4, Kazuki Saito1,2 (1RIKEN Tokyo, Grad. Sch. of Arts and Sci.) Okayama) Shu Fujimaki8, Kyoko Higuchi9, CSRS, 2Grad. Sch. Pharm. Sci., Izumi Mori10, Shin Hamamoto1, Chiba Univ., 3Kazusa DNA Res. Nobuyuki Uozumi1 (1Grad. Sch. Inst., 4Synth. Org. Chem. Lab., Eng., Tohoku Univ, 2Research Center RIKEN) for Electron Photon Science., Tohoku Univ, 3Grad. Sch. Life Sci., Tohoku Univ, 4Cyclotron and Radioisotope Center., Tohoku Univ, 5Center for Sustainable Resource Science., RIKEN, 6Grad. Sch. Bio., Fukui Prefecture Univ, 7Grad. Sch. Tex., Shinshu Univ, 8Takasaki Advanced Radiation Research Inst, 9Grad. Sch. Applied Bio., Tokyo Univ of Agriculture, 10Inst of Plant Science and Resource., Okayama Univ) 10:00 1aA03 1aB03 1aC03 1aD03 1aE03 1aF03 1aG03 仝 1aH03 10:00 Improvement of growth of drought tolerant Involvement of root-produced extracellular The importance of Arabidopsis LBP/BPI Live cell imaging analysis of piecemeal Functional analysis of an Arabidopsis Rice transcriptome profiling under Two transcription factors govern root Development of the CRISPR plants by gene stacking xylem sap proteins in freezing tolerance in related-2 (AtLBR-2) in gene ontology analysis autophagy for chloroplast degradation in thaliana ZIP transporter involved in low temperature conditions at the hair growth in Arabidopsis interference system for alteration of Madoka Kudo1, Satoshi Kidokoro1, Takuya poplar of LPS-induced up-regulated genes Arabidopsis leaves IAA-Ala resistance germination stage Michitaro Shibata1, Christian cyanobacterial photosynthetic Yoshida1,2, Junya Mizoi1, Daisuke Todaka1, R. Tsutomu Aohara, Jun Furukawa, Kenji Miura, Sayaka Iizasa1,2, Ei-ichi Iizasa3, Keiichi Masanori Izumi1,2,3, Kohei Otomo4, Sakuya Katsushi Kobayashi1, Shoji Segami1, Kyonoshin Maruyama (Biol. Breuer1, Ayako Kawamura1, Bart pigment composition Fernie Alisdair2, Kazuo Shinozaki3, Kazuko Shinobu Satoh (Faculty of Life and Watanabe2, Yukio Nagano1,2 (1Anal. Res. Ctr. for Nakamura2, Jun Hidema2, Tomomi Nemoto4, Masayoshi Maeshima1, Miki Resources Div., JIRCAS) Rymen1, Lewis Watt1, Natalie Ryo Hayakawa1, Tohru Tsuchiya2,3 Yamaguchi-Shinozaki1 (1Grad. Sch. Agr. Life Environmental Sciences, University of Exp. Sci., Saga Univ., 2Grad. Sch. Agric., Saga Hiroyuki Ishida5 (1FRIS, Tohoku Univ., 2Grad Kawachi2 (1Graduate School of Clark2,3, Luke Braidwood1, (1Faculty of Integrated Human Sci., Univ. Tokyo, 2Max Planck Institute of Tsukuba) Univ., 3Dept. Immunol., Grad. Sch. Med. and Sch of Life Sci, Tohoku Univ, 3PRESTO, JST, Bioagricultural Sciences, 2Institute Rosangela Sozzani2,3, Philip Benfey4, Studies, Kyoto University, 2Graduate Molecular Plant Physiology, 3Center for Dent. Sci., Kagoshima Univ.) 4RIES, Hokkaido Univ., 5Grad Sch Agri Sci, for Advanced Research, Nagoya Keiko Sugimoto1 (1RIKEN CSRS, School of Human and Environmental Sustainable Resource Science, RIKEN) Tohoku Univ.) University) 2Department of Plant and Microbial Studies, Kyoto University, 3Graduate Biology, North Carolina State School of Global Environmental University, 3Biomathematics Studies) Graduate Program, North Carolina State University, 4Department of Biology, Howard Hughes Medical Institute, Duke University) 10:15 1aA04 1aB04 1aC04 1aD04 1aE04 1aF04 1aG04 仝 1aH04 10:15 ACQOS, a single NLR immunity locus Inhibition of AGP functions with a specific Mechanosensitive ion channels mediate plant High light-induced abnormal chloroplasts are Expression and function of the Development of wet and dry Functional characteristics of a new Engineering of isoprenoid and underlies in a trade-off between osmotic-stress glycoside hydrolase in Arabidopsis. innate immunity selectively eliminated via chlorophagy process ALMT-family proteins in tomato technologies for field transcriptome senescence associated NAC carotenoid biosynthesis pathway and immune responses in Arabidopsis thaliana Yoshihisa Yoshimi1, Mami Yoshimura1,
Recommended publications
  • (GSNOR1) Function Leads to an Altered DNA and Histone Methylation Pattern in Arabidopsis Thaliana
    TECHNISCHE UNIVERSITÄT MÜNCHEN Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt (WZW) Lehrstuhl für Biochemische Pflanzenpathologie Loss of S-NITROSOGLUTATHIONE REDUCTASE 1 (GSNOR1) function leads to an altered DNA and histone methylation pattern in Arabidopsis thaliana Eva Rudolf Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Prof. Dr. Frank Johannes Prüfer der Dissertation: 1. Prof. Dr. Jörg Durner 2. apl. Prof. Dr. Ramon A. Torres Ruiz Die Dissertation wurde am 30.01.2020 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 20.04.2020 angenommen. To my family, Florian and Tobias. Publications and conference contributions related to this thesis: Izabella Kovacs, Alexandra Ageeva, Eva König and Christian Lindermayr, 2016. Chapter Two – S-Nitrosylation of Nuclear Proteins: New Pathways in Regulation of Gene Expression. In Advances in Botanical Research edited by David Wendehenne. Nitric Oxide and Signaling in Plants. Academic Press, 77, 15–39. Eva Rudolf, Markus Wirtz, Ignasi Forné and Christian Lindermayr. S-Nitrosothiols as architect of the methylome in Arabidopsis thaliana. EMBO Conference - Chromatin and Epigenetics 2017, Heidelberg, Germany, Poster. Eva Rudolf, Alexandra Ageeva-Kieferle, Alexander Mengel, Ignasi Forné, Rüdiger Hell, Axel Imhof, Markus Wirtz, Jörg Durner and Christian Lindermayr. Post-translational modification of histones: Nitric oxide modulates chromatin structure. Symposium - From Proteome to Phenotype: role of post- translational modifications 2017, Edinburgh, United Kingdom, Oral presentation. Alexandra Ageeva-Kieferle, Eva Rudolf and Christian Lindermayr, 2019. Redox-Dependent Chromatin Remodeling: A New Function of Nitric Oxide as Architect of Chromatin Structure in Plants.
    [Show full text]
  • Norspermine Substitutes for Thermospermine in the Control of Stem Elongation in Arabidopsis Thaliana
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 584 (2010) 3042–3046 journal homepage: www.FEBSLetters.org Norspermine substitutes for thermospermine in the control of stem elongation in Arabidopsis thaliana Jun-Ichi Kakehi a, Yoshitaka Kuwashiro a, Hiroyasu Motose a, Kazuei Igarashi b, Taku Takahashi a,* a Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan b Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan article info abstract Article history: Thermospermine is a structural isomer of spermine and is required for stem elongation in Arabid- Received 26 March 2010 opsis thaliana. We noted the C3C3 arrangement of carbon chains in thermospermine (C3C3C4), Revised 16 May 2010 which is not present in spermine (C3C4C3), and examined if it is functionally replaced with norsper- Accepted 17 May 2010 mine (C3C3C3) or not. Exogenous application of norspermine to acl5, a mutant defective in the syn- Available online 24 May 2010 thesis of thermospermine, partially suppressed its dwarf phenotype, and down-regulated the level Edited by Ulf-Ingo Flügge of the acl5 transcript which is much higher than that of the ACL5 transcript in the wild type. Further- more, in the Zinnia culture, differentiation of mesophyll cells into tracheary elements was blocked by thermospermine and norspermine but not by spermine. Our results indicate that norspermine Keywords: Arabidopsis can functionally substitute for thermospermine. Thermospermine Ó 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Norspermine Polyamine Stem elongation Xylem 1.
    [Show full text]
  • Investigations About N-Aminopropyl Transferases Probably Involved in Biomineralization
    JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2008, 59, Suppl 5, 27–37 www.jpp.krakow.pl P. ROMER1, 3, A. FALTERMEIER1, V. MERTINS1, T. GEDRANGE2, R. MAI2, P. PROFF1 INVESTIGATIONS ABOUT N-AMINOPROPYL TRANSFERASES PROBABLY INVOLVED IN BIOMINERALIZATION 1Department of Orthodontics, Regensburg University, Germany; 2Department of Orthodontics, Preventive and Pediatric Dentistry, Ernst-Moritz-Arndt University Greifswald, Germany; 3Department of Biochemistry I, Regensburg University, Germany Polyamines are widespread distributed all over in living organisms. In Thalassiosira pseudonana 10 N-aminopropyl transferase like nucleotide sequences exists. It is assumed that these sequences are involved in the biomineralization of the diatom shell. The cDNA of the sequences were cloned, recombinant overexpressed and assayed with decarboxylated S-adenosylmethionine and several radioactive labelled polyamines. However, only a spermidine synthase and a thermospermine synthase were found to be enzymatically active in an in vitro assay. Both enzyme activities could be recognized in the crude extracts of Thalassiosira pseudonana and Cyclotella meneghiana. In further investigations the kinetics of the thermospermine synthase was determined and a site-specific mutagenesis of the bindig cavity of decarboxylated S-adenosylmethionine was carried out. Key words: biomineralization, N-aminopropyl transferase, polyamine, thermospermine INTRODUCTION Polyamines are cationic and amphiphilic organic molecules that are ubiquitously present in almost all known organisms. Common
    [Show full text]
  • Phenolamides: Bridging Polyamines to the Phenolic Metabolism ⇑ Jean-Etienne Bassard, Pascaline Ullmann, François Bernier, Danièle Werck-Reichhart
    Phytochemistry 71 (2010) 1808–1824 Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem Molecules of Interest Phenolamides: Bridging polyamines to the phenolic metabolism ⇑ Jean-Etienne Bassard, Pascaline Ullmann, François Bernier, Danièle Werck-Reichhart Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, 28 rue Goethe, 67000 Strasbourg, France article info abstract Article history: Phenolamides constitute a diverse and quantitatively major group of secondary metabolites resulting Received 26 July 2010 from the conjugation of a phenolic moiety with polyamines or with deaminated aromatic aminoacids. Accepted 3 August 2010 This review summarizes their bioactivities and their reported roles in plant development, adaptation Available online 26 August 2010 and defence compared to those of their polyamine precursors. The most conclusive recent developments point to their contribution to cell-wall reinforcement and to direct toxicity for predators and pathogens, Keywords: either as built-in or inducible defence. Phenolamides were often considered as accumulated end-chain Phenolamides products. Recent data bring a light on their biosynthesis and suggests their possible contribution in Polyamines the branching of the phenylpropanoid metabolism. Phenylpropanoid metabolism Defence Ó 2010 Elsevier Ltd. All rights reserved. Bioactivity Flower development Adaptation 1. Introduction positive charge of polyamines at physiological pH confers them the property to bind negatively charged macromolecules or to Phenolamides are frequently referred to as hydroxycinnamic modulate the activity of some ion channels. In plants, polyamines acid amides (HCAA) or phenylamides. They have been reported are found not only in the cytoplasm but also in vacuoles, plastids throughout the plant kingdom, usually as main phenolic constitu- and mitochondria (Kumar et al., 1997).
    [Show full text]
  • Japan-Taiwan Plant Biology 2019 (JTPB2019)
    Japan-Taiwan Plant Biology 2019 (JTPB2019) Date: March 14 (Thu)–16 (Sat), 2019 Venue: Higashiyama Campus, Nagoya University Preparatory Committee for JTPB 2019 [Co-Chairs] Yasuomi Tada / Yi-Fang Tsay [Members] Toshinori Kinoshita / Toshiro Ito / Wataru Sakamoto / Yuichiro Tsuchiya / Ryo Tabata / Hirofumi Yoshioka / Masayoshi Nakamura / Masahiro Kanaoka / Mika Nomoto Su-Chiung Fang / Ming-Tsair Chan / Yuki Nakamura / Shih-Long Tu / Jun-Yi Yang / Yee-Yung Charng / Chwan-Yang Hong JTPB 2019 Office Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan Center for Gene Research, Nagoya University Tel: +81-52-789-2951 E-mail: [email protected] Abstract Book of JTPB2019 https://jspp.org/annualmeeting/JTPB2019/abstractbook.html Abstract Book of JSPP2019 https://jspp.org/annualmeeting/60/abstractbook.html *All contact regarding JTPB2019 should be made by e-mail if possible. Welcome Message Dear Colleagues, It is a great pleasure and an honor to announce that Japan-Taiwan Plant Biology 2019 (JTPB2019) will be held on March 14 to 16, 2019, at Nagoya University, Nagoya, Japan. Registration is open now, and we invite you to attend this second joint meeting. JSPP (Japanese Society of Plant Physiologists) and TSPB (Taiwan Society of Plant Biologists) represent major scientific societies in Japan and Taiwan, respectively, both established in the late 1950’s partly as a nation-representing plant science community tied with International Association of Plant Physiologists. Both societies promote communication within the members who are engaged or interested in researches on plant physiology and related subjects, ranging from basic sciences, agriculture, to pharmacology. Sharing the history and scientific background in plant research, both societies have been seeking for an opportunity for strengthening their intimate interactions, and agreed to co-organize a joint meeting.
    [Show full text]
  • Mohsin Bashir Horticulture HS
    i Varietal evaluation and quality enhancement of cut tulips by exogenous application of growth promoting substances By Mohsin Bashir M.Sc. (Hons.) Horticulture A thesis submitted in the partial fulfillment of the requirement for the degree of Doctor of Philosophy In Horticulture Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan 2017 ii To The Controller of Examinations, University of Agriculture, Faisalabad. We the supervisory committee, certify that after necessary revision in accordance to the suggestions made by external reviewers, the contents and forms of the thesis of Mr. Mohsin Bashir (Regd. No. 2004-ag-1447) have been found satisfactory. The final thesis is therefore may kindly be submitted for the notification of the PhD degree. SUPERVISORY COMMITTEE 1. Supervisor ___________________________________ (Prof. Dr. Muhammad Aslam Khan) 2. Member ___________________________________ (Prof. Dr. Muhammad Qasim) 3. Member ___________________________________ (Prof. Dr. Shahzad M. A. Basra) iii DECLARATION “I hereby declare that contents of thesis, entitled “Varietal evaluation and quality enhancement of cut tulips by exogenous application of growth promoting substances” are the product of my own research and no part has been copied from any published source (except the references, standard mathematical or genetic models/equation/formulae etc.). I further declare that this work has not been submitted for award of any other diploma/degree. The university may take action if the information
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Citrus Polyamines: Structure, Biosynthesis, and Physiological Functions
    plants Review Citrus Polyamines: Structure, Biosynthesis, and Physiological Functions Nabil Killiny 1,* and Yasser Nehela 1,2 1 Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA; yasser.nehela@ufl.edu 2 Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt * Correspondence: nabilkilliny@ufl.edu; Tel.: +1-863-956-8833 Received: 2 March 2020; Accepted: 24 March 2020; Published: 31 March 2020 Abstract: Polyamines (PAs) are ubiquitous biogenic amines found in all living organisms from bacteria to Archaea, and Eukaryotes including plants and animals. Since the first description of putrescine conjugate, feruloyl-putrescine (originally called subaphylline), from grapefruit leaves and juice, many research studies have highlighted the importance of PAs in growth, development, and other physiological processes in citrus plants. PAs appear to be involved in a wide range of physiological processes in citrus plants; however, their exact roles are not fully understood. Accordingly, in the present review, we discuss the biosynthesis of PAs in citrus plants, with an emphasis on the recent advances in identifying and characterizing PAs-biosynthetic genes and other upstream regulatory genes involved in transcriptional regulation of PAs metabolism. In addition, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the roles of PAs metabolism in citrus physiology including somatic embryogenesis; root system formation,
    [Show full text]
  • Methods and Protocols M ETHODS in M OLECULAR B IOLOGY
    Methods in Molecular Biology 1694 Rubén Alcázar Antonio F. Tiburcio Editors Polyamines Methods and Protocols M ETHODS IN M OLECULAR B IOLOGY Series Editor John M. Walker School of Life and Medical Sciences University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK For further volumes: http://www.springer.com/series/7651 Polyamines Methods and Protocols Edited by Rubén Alcázar and Antonio F. Tiburcio Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Section of Plant Physiology, University of Barcelona, Spain Editors Rube´n Alca´zar Antonio F. Tiburcio Department of Biology, Department of Biology, Healthcare and Environment, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Faculty of Pharmacy and Food Sciences, Section of Plant Physiology Section of Plant Physiology University of Barcelona University of Barcelona Spain Spain ISSN 1064-3745 ISSN 1940-6029 (electronic) Methods in Molecular Biology ISBN 978-1-4939-7397-2 ISBN 978-1-4939-7398-9 (eBook) DOI 10.1007/978-1-4939-7398-9 Library of Congress Control Number: 2017956111 © Springer Science+Business Media LLC 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Polyamine Metabolism in Scots Pine Embryogenic Cells Under Potassium Deficiency
    cells Article Polyamine Metabolism in Scots Pine Embryogenic Cells under Potassium Deficiency Riina Muilu-Mäkelä 1,*, Jaana Vuosku 2, Hely Häggman 2 and Tytti Sarjala 1 1 Natural Resources Institute Finland (Luke), 00791 Helsinki, Finland; tytti.sarjala@sci.fi 2 Ecology and Genetics Research Unit, University of Oulu, 90570 Oulu, Finland; jaana.vuosku@oulu.fi (J.V.); hely.haggman@oulu.fi (H.H.) * Correspondence: riina.muilu-makela@luke.fi; Tel.: +35-85-0391-4044 Abstract: Polyamines (PA) have a protective role in maintaining growth and development in Scots pine during abiotic stresses. In the present study, a controlled liquid Scots pine embryogenic cell culture was used for studying the responses of PA metabolism related to potassium deficiency. The transcription level regulation of PA metabolism led to the accumulation of putrescine (Put). Arginine decarboxylase (ADC) had an increased expression trend under potassium deficiency, whereas spermi- dine synthase (SPDS) expression decreased. Generally, free spermidine (Spd) and spermine (Spm)/ thermospermine (t-Spm) contents were kept relatively stable, mostly by the downregulation of polyamine oxidase (PAO) expression. The low potassium contents in the culture medium decreased the potassium content of the cells, which inhibited cell mass growth, but did not affect cell viability. The reduced growth was probably caused by repressed metabolic activity and cell division, whereas there were no signs of H2O2-induced oxidative stress or increased cell death. The low intracellular content of K+ decreased the content of Na+. The decrease in the pH of the culture medium indicated + that H ions were pumped out of the cells. Altogether, our findings emphasize the specific role(s) of Put under potassium deficiency and strict developmental regulation of PA metabolism in Scots pine.
    [Show full text]
  • Molecular Machines Encoded by Bacterially-Derived Multi-Domain Gene Fusions That Potentially Synthesize, N-Methylate and Transfer Long Chain Polyamines in Diatoms
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 585 (2011) 2627–2634 journal homepage: www.FEBSLetters.org Hypothesis Molecular machines encoded by bacterially-derived multi-domain gene fusions that potentially synthesize, N-methylate and transfer long chain polyamines in diatoms Anthony J. Michael Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA article info abstract Article history: Silica glass formation in diatoms requires the biosynthesis of unusual, very long chain polyamines Received 20 July 2011 (LCPA) composed of iterated aminopropyl units. Diatoms processively synthesize LCPA, N-methylate Accepted 21 July 2011 the amine groups and transfer concatenated, N-dimethylated aminopropyl groups to silaffin pro- Available online 4 August 2011 teins. Here I show that diatom genomes possess signal peptide-containing gene fusions of bacteri- ally-derived polyamine biosynthetic enzymes S-adenosylmethionine decarboxylase (AdoMetDC) Edited by Miguel De la Rosa and an aminopropyltransferase, sometimes fused to a eukaryotic histone N-methyltransferase domain, that potentially synthesize and N-methylate LCPA. Fusions of similar, alternatively Keywords: configured domains but with a catalytically dead AdoMetDC and in one case a Tudor domain, may Diatom Biosilica glass N-dimethylate and transfer multiple aminopropyl unit polyamines onto silaffin proteins. Long chain polyamine biosynthesis Ó 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. N-methylation Aminopropyltransferase 1. Introduction Polyamines are small organic polycations found in almost all cells and are essential for growth and cell proliferation in eukary- Diatoms are ubiquitous, aquatic single-celled eukaryotic organ- otes.
    [Show full text]
  • Thermospermine Is Not a Minor Polyamine in the Plant Kingdom
    Thermospermine is Not a Minor Polyamine in the Review Plant Kingdom Ayaka Takano, Jun-Ichi Kakehi and Taku Takahashi* Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan *Corresponding author: E-mail, [email protected]; Fax, +81-86-251-7876 (Received January 5, 2012; Accepted February 18, 2012) Thermospermine is a structural isomer of spermine, which is post-translational modification (Tabor and Tabor 1999, Igarashi one of the polyamines studied extensively in the past, and is and Kashiwagi 2000, Wallace et al. 2003). One of the major produced from spermidine by the action of thermospermine polyamines, spermine, was discovered as a crystal in human synthase encoded by a gene named ACAULIS5 (ACL5)in semen by Van Leeuwenhoek in 1678 and named after its plants. According to recent genome sequencing analyses, origin in the late 19th century. The crystal has now been iden- ACL5-like genes are widely distributed throughout the tified as spermine phosphate. There are two pathways for the plant kingdom. In Arabidopsis, ACL5 is expressed specifically biosynthesis of the diamine putrescine from arginine, one via during xylem formation from procambial cells to differen- ornithine and the other via agmatine (Fig. 1). In the former tiating xylem vessels. Loss-of-function mutants of ACL5 dis- pathway, arginine is converted to ornithine by arginase. Then, play overproliferation of xylem vessels along with severe ornithine decarboxylase (ODC) catalyzes the decarboxylation of dwarfism, suggesting that thermospermine plays a role in ornithine to form putrescine. The ODC pathway is dominant in the repression of xylem differentiation.
    [Show full text]