Molecular Machines Encoded by Bacterially-Derived Multi-Domain Gene Fusions That Potentially Synthesize, N-Methylate and Transfer Long Chain Polyamines in Diatoms

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Machines Encoded by Bacterially-Derived Multi-Domain Gene Fusions That Potentially Synthesize, N-Methylate and Transfer Long Chain Polyamines in Diatoms View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 585 (2011) 2627–2634 journal homepage: www.FEBSLetters.org Hypothesis Molecular machines encoded by bacterially-derived multi-domain gene fusions that potentially synthesize, N-methylate and transfer long chain polyamines in diatoms Anthony J. Michael Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA article info abstract Article history: Silica glass formation in diatoms requires the biosynthesis of unusual, very long chain polyamines Received 20 July 2011 (LCPA) composed of iterated aminopropyl units. Diatoms processively synthesize LCPA, N-methylate Accepted 21 July 2011 the amine groups and transfer concatenated, N-dimethylated aminopropyl groups to silaffin pro- Available online 4 August 2011 teins. Here I show that diatom genomes possess signal peptide-containing gene fusions of bacteri- ally-derived polyamine biosynthetic enzymes S-adenosylmethionine decarboxylase (AdoMetDC) Edited by Miguel De la Rosa and an aminopropyltransferase, sometimes fused to a eukaryotic histone N-methyltransferase domain, that potentially synthesize and N-methylate LCPA. Fusions of similar, alternatively Keywords: configured domains but with a catalytically dead AdoMetDC and in one case a Tudor domain, may Diatom Biosilica glass N-dimethylate and transfer multiple aminopropyl unit polyamines onto silaffin proteins. Long chain polyamine biosynthesis Ó 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. N-methylation Aminopropyltransferase 1. Introduction Polyamines are small organic polycations found in almost all cells and are essential for growth and cell proliferation in eukary- Diatoms are ubiquitous, aquatic single-celled eukaryotic organ- otes. In normal eukaryotic polyamine metabolism (Fig. 1A), the isms responsible for 20% of planetary photosynthetic activity, triamine spermidine is formed by transfer of an aminopropyl group equal to all terrestrial rainforests combined [1]. Their highly elab- to the diamine putrescine (1,4-diaminobutane). The aminopropyl orate, biosilica glass cell wall is constructed from monosilicic acid group is derived from decarboxylated S-adenosylmethionine (Si(OH)4) by a biomineralization process initiated by highly modi- formed by S-adenosylmethionine decarboxylase (AdoMetDC) fied proteins known as silaffins [2–5] and by very long chain linear [14]. Transfer of the aminopropyl group to putrescine is performed polyamines (LCPA) (Fig. 1A) that may be N-methylated on second- by the aminopropyltransferase spermidine synthase [15]. The ary and primary amines [6–10]. In some species, proteins called tetramines spermine and thermospermine are formed from sper- cingulins form an organic matrix that acts as a template to guide midine by transfer of another aminopropyl group to the N8 (amin- silicification [11]. Silaffin proteins are modified by dimethylation obutyl) or N1 (aminopropyl) ends of spermidine, respectively, by of some lysine residues and by transfer of multiple aminopropyl the aminopropyltransferases spermine [16] and thermospermine unit polyamines to other lysine e-amino groups. Transferred poly- synthase [17]. At the beginning of the pathway (Fig. 1A), putrescine amine moieties may be dimethylated on primary and secondary is formed from ornithine by the action of ornithine decarboxylase amine groups. The LCPA may be composed of as many as 20 ami- (ODC) [18]. In eukaryotic cells, spermidine levels are highly regu- nopropyl units [12], the chain length and degree of methylation lated at the level of biosynthesis, catabolism, uptake and export of primary and secondary amine groups dependent on species. In [19]. The key biosynthetic enzymes ODC and AdoMetDC are the diatom Thalassiosira pseudonana, LCPA may contain putrescine, negatively regulated in response to polyamine levels by sensitive spermidine or 1,3-diaminopropane as well as the multiple post-transcriptional feedback systems that include programmed aminopropyl repeat units [7,13]. ribosomal frameshifting and ribosome stalling [20,21]. These pow- erful homeostatic systems adjust spermidine concentrations to the level required by the physiological state of the cell. Synthesis of Abbreviations: LCPA, long chain polyamine; ODC, ornithine decarboxylase; LCPA therefore must not disrupt spermidine homeostasis and LCPA AdoMet, S-adenosylmethionine; AdoMetDC, S-adenosylmethionine decarboxylase; MTA, methylthioadenosine must be sequestered from the normal cellular binding sites of E-mail address: [email protected] polyamines. The pathway for LCPA biosynthesis, polyamine 0014-5793/$36.00 Ó 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.febslet.2011.07.038 2628 A.J. Michael / FEBS Letters 585 (2011) 2627–2634 O ornithine H2N OH S-adenosylmethionine NH2 N N HO OH ornithine O decarboxylase H2N N SH NH N O OH 2 H2N putrescine NH2 S-adenosylmethionine decarboxylase spermidine synthase NH2 N HO N H2NN OH H spermidine H2N N SH N O decarboxylated NH2 thermospermine S-adenosylmethionine synthase NH2 H2N NN H H thermospermine S-adenosylmethionine N N HO Silica deposition vesicle OH O H2N N SH N O OH aminopropyltransferase/ S-adenosylmethionine decarboxylase NH2 fusion domain for successive aminopropyl SET domain group transfer methyltransferase n = up to 20 NH2 H2N N NN H {}H present in some N N HO OH long chain polyamines O H2N N S N O OH S-adenosylhomocysteine NH2 Fig. 1A. Polyamine and LCPA biosynthesis in diatoms. modification of silaffins, and methylation of primary and second- perturbation of normal polyamine homeostasis. Here I show that ary amines has remained enigmatic. In particular, it is unclear the genomes of T. pseudonana, Phaeodactylum tricornutum and how multiple aminopropyl units could be sequentially transferred Fragilariopsis cylindrus encode one set of molecular machines that to the growing polyamine chain of LCPA. It is unlikely that LCPA potentially perform the tasks of iterative addition of multiple biosynthesis is similar to normal polyamine biosynthesis where aminopropyl groups to form LCPA, by supplying their own decar- each aminopropyl group transfer is achieved by different amino- boxylated S-adenosylmethionine and concommitent or subsequent propyltransferase enzymes, otherwise there would need to be up N-methylation of the LCPA. Another set of fusion proteins could to 20 different successive aminopropyltransferases. It is also not perform aminopropyl group transfer to lysine residues of silaffins, clear how multiple amino groups in a single LCPA chain could be and processive N-dimethylation of amine groups. The molecular methylated. LCPA synthesis would require a relatively large supply machines are derived from bacterial polyamine biosynthetic of decarboxylated S-adenosylmethionine, and a mechanism would enzyme fusions and chromatin protein modification and binding have to be in place to prevent physiologically damaging domains. A.J. Michael / FEBS Letters 585 (2011) 2627–2634 2629 2. Materials and methods Formation of the triamine spermidine from putrescine in eukaryotes requires AdoMetDC and the aminopropyltransferase 2.1. Sequence and phylogenetic analysis spermidine synthase (Fig. 1A). Typical eukaryotic AdoMetDC orthologues are present in the three diatom genomes (Table S1), The diatom genomes were analysed using the US Department of and in T. pseudonana and P. tricornutum AdoMetDC mRNAs, for Energy Joint Genome Institute Genome Portal (http://genome.jgi- which mRNA sequences with long 50 leader sequences are avail- psf.org/). BLASTP of diatom proteins in the NCBI non-redundant able, an upstream open reading frame encoding peptides of 29 protein sequences yielded only very partial proteins (e.g., 70–90 and 26 amino acids, respectively, is present in the mRNA 50 region. a.a. instead of 750–950 a.a., using a Thermotoga maritima Ado- The upstream ORFs likely encode ribosome-stalling peptides anal- MetDC sequence to screen the diatom proteins). Phylogenetic anal- ogous to plant and mammalian AdoMetDC mRNAs [21], as part of a ysis was performed as previously described [22]. Alignments were polyamine-responsive autoregulatory negative feedback system. performed with ClustalW in ClustalX [23] and trees were made Typical spermidine synthase orthologues are present in each of with PAUP⁄ [24]. Signal peptides were analysed using the SignalP the three diatom genomes, and in T. pseudonana, the spermidine server http://www.cbs.dtu.dk/services/SignalP/ taking into consid- synthase paralogue ThaSDS1 has been shown [26] to be functional. eration both the result from the neural network analysis and Hid- There are three spermidine synthase paralogues in F. cylindrus, and den Markov models. All aminopropyltransferase fusions were two each in P. tricornutum and T. pseudonana (shown below in identified by TBLASTN and BLASTP usuing the DoE JGI database Fig. 3). Uniquely for spermidine synthase orthologues, the F.cylin- for each diatom species, and additional domains in the fusion pro- drusFraSDS3 and the T. pseudonana ThaSDS2 proteins have ac- teins were identified by BLASTP or PSIBLAST using the NCBI server quired signal peptides. It is possible that one of the spermidine (http://blast.ncbi.nlm.nih.gov/Blast.cgi). synthase paralogues encodes the related aminopropyltransferase spermine synthase. Each of the three sequenced diatom genomes 3. Results
Recommended publications
  • (GSNOR1) Function Leads to an Altered DNA and Histone Methylation Pattern in Arabidopsis Thaliana
    TECHNISCHE UNIVERSITÄT MÜNCHEN Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt (WZW) Lehrstuhl für Biochemische Pflanzenpathologie Loss of S-NITROSOGLUTATHIONE REDUCTASE 1 (GSNOR1) function leads to an altered DNA and histone methylation pattern in Arabidopsis thaliana Eva Rudolf Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Prof. Dr. Frank Johannes Prüfer der Dissertation: 1. Prof. Dr. Jörg Durner 2. apl. Prof. Dr. Ramon A. Torres Ruiz Die Dissertation wurde am 30.01.2020 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 20.04.2020 angenommen. To my family, Florian and Tobias. Publications and conference contributions related to this thesis: Izabella Kovacs, Alexandra Ageeva, Eva König and Christian Lindermayr, 2016. Chapter Two – S-Nitrosylation of Nuclear Proteins: New Pathways in Regulation of Gene Expression. In Advances in Botanical Research edited by David Wendehenne. Nitric Oxide and Signaling in Plants. Academic Press, 77, 15–39. Eva Rudolf, Markus Wirtz, Ignasi Forné and Christian Lindermayr. S-Nitrosothiols as architect of the methylome in Arabidopsis thaliana. EMBO Conference - Chromatin and Epigenetics 2017, Heidelberg, Germany, Poster. Eva Rudolf, Alexandra Ageeva-Kieferle, Alexander Mengel, Ignasi Forné, Rüdiger Hell, Axel Imhof, Markus Wirtz, Jörg Durner and Christian Lindermayr. Post-translational modification of histones: Nitric oxide modulates chromatin structure. Symposium - From Proteome to Phenotype: role of post- translational modifications 2017, Edinburgh, United Kingdom, Oral presentation. Alexandra Ageeva-Kieferle, Eva Rudolf and Christian Lindermayr, 2019. Redox-Dependent Chromatin Remodeling: A New Function of Nitric Oxide as Architect of Chromatin Structure in Plants.
    [Show full text]
  • Norspermine Substitutes for Thermospermine in the Control of Stem Elongation in Arabidopsis Thaliana
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 584 (2010) 3042–3046 journal homepage: www.FEBSLetters.org Norspermine substitutes for thermospermine in the control of stem elongation in Arabidopsis thaliana Jun-Ichi Kakehi a, Yoshitaka Kuwashiro a, Hiroyasu Motose a, Kazuei Igarashi b, Taku Takahashi a,* a Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan b Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan article info abstract Article history: Thermospermine is a structural isomer of spermine and is required for stem elongation in Arabid- Received 26 March 2010 opsis thaliana. We noted the C3C3 arrangement of carbon chains in thermospermine (C3C3C4), Revised 16 May 2010 which is not present in spermine (C3C4C3), and examined if it is functionally replaced with norsper- Accepted 17 May 2010 mine (C3C3C3) or not. Exogenous application of norspermine to acl5, a mutant defective in the syn- Available online 24 May 2010 thesis of thermospermine, partially suppressed its dwarf phenotype, and down-regulated the level Edited by Ulf-Ingo Flügge of the acl5 transcript which is much higher than that of the ACL5 transcript in the wild type. Further- more, in the Zinnia culture, differentiation of mesophyll cells into tracheary elements was blocked by thermospermine and norspermine but not by spermine. Our results indicate that norspermine Keywords: Arabidopsis can functionally substitute for thermospermine. Thermospermine Ó 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Norspermine Polyamine Stem elongation Xylem 1.
    [Show full text]
  • Investigations About N-Aminopropyl Transferases Probably Involved in Biomineralization
    JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2008, 59, Suppl 5, 27–37 www.jpp.krakow.pl P. ROMER1, 3, A. FALTERMEIER1, V. MERTINS1, T. GEDRANGE2, R. MAI2, P. PROFF1 INVESTIGATIONS ABOUT N-AMINOPROPYL TRANSFERASES PROBABLY INVOLVED IN BIOMINERALIZATION 1Department of Orthodontics, Regensburg University, Germany; 2Department of Orthodontics, Preventive and Pediatric Dentistry, Ernst-Moritz-Arndt University Greifswald, Germany; 3Department of Biochemistry I, Regensburg University, Germany Polyamines are widespread distributed all over in living organisms. In Thalassiosira pseudonana 10 N-aminopropyl transferase like nucleotide sequences exists. It is assumed that these sequences are involved in the biomineralization of the diatom shell. The cDNA of the sequences were cloned, recombinant overexpressed and assayed with decarboxylated S-adenosylmethionine and several radioactive labelled polyamines. However, only a spermidine synthase and a thermospermine synthase were found to be enzymatically active in an in vitro assay. Both enzyme activities could be recognized in the crude extracts of Thalassiosira pseudonana and Cyclotella meneghiana. In further investigations the kinetics of the thermospermine synthase was determined and a site-specific mutagenesis of the bindig cavity of decarboxylated S-adenosylmethionine was carried out. Key words: biomineralization, N-aminopropyl transferase, polyamine, thermospermine INTRODUCTION Polyamines are cationic and amphiphilic organic molecules that are ubiquitously present in almost all known organisms. Common
    [Show full text]
  • Phenolamides: Bridging Polyamines to the Phenolic Metabolism ⇑ Jean-Etienne Bassard, Pascaline Ullmann, François Bernier, Danièle Werck-Reichhart
    Phytochemistry 71 (2010) 1808–1824 Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem Molecules of Interest Phenolamides: Bridging polyamines to the phenolic metabolism ⇑ Jean-Etienne Bassard, Pascaline Ullmann, François Bernier, Danièle Werck-Reichhart Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, 28 rue Goethe, 67000 Strasbourg, France article info abstract Article history: Phenolamides constitute a diverse and quantitatively major group of secondary metabolites resulting Received 26 July 2010 from the conjugation of a phenolic moiety with polyamines or with deaminated aromatic aminoacids. Accepted 3 August 2010 This review summarizes their bioactivities and their reported roles in plant development, adaptation Available online 26 August 2010 and defence compared to those of their polyamine precursors. The most conclusive recent developments point to their contribution to cell-wall reinforcement and to direct toxicity for predators and pathogens, Keywords: either as built-in or inducible defence. Phenolamides were often considered as accumulated end-chain Phenolamides products. Recent data bring a light on their biosynthesis and suggests their possible contribution in Polyamines the branching of the phenylpropanoid metabolism. Phenylpropanoid metabolism Defence Ó 2010 Elsevier Ltd. All rights reserved. Bioactivity Flower development Adaptation 1. Introduction positive charge of polyamines at physiological pH confers them the property to bind negatively charged macromolecules or to Phenolamides are frequently referred to as hydroxycinnamic modulate the activity of some ion channels. In plants, polyamines acid amides (HCAA) or phenylamides. They have been reported are found not only in the cytoplasm but also in vacuoles, plastids throughout the plant kingdom, usually as main phenolic constitu- and mitochondria (Kumar et al., 1997).
    [Show full text]
  • Japan-Taiwan Plant Biology 2019 (JTPB2019)
    Japan-Taiwan Plant Biology 2019 (JTPB2019) Date: March 14 (Thu)–16 (Sat), 2019 Venue: Higashiyama Campus, Nagoya University Preparatory Committee for JTPB 2019 [Co-Chairs] Yasuomi Tada / Yi-Fang Tsay [Members] Toshinori Kinoshita / Toshiro Ito / Wataru Sakamoto / Yuichiro Tsuchiya / Ryo Tabata / Hirofumi Yoshioka / Masayoshi Nakamura / Masahiro Kanaoka / Mika Nomoto Su-Chiung Fang / Ming-Tsair Chan / Yuki Nakamura / Shih-Long Tu / Jun-Yi Yang / Yee-Yung Charng / Chwan-Yang Hong JTPB 2019 Office Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan Center for Gene Research, Nagoya University Tel: +81-52-789-2951 E-mail: [email protected] Abstract Book of JTPB2019 https://jspp.org/annualmeeting/JTPB2019/abstractbook.html Abstract Book of JSPP2019 https://jspp.org/annualmeeting/60/abstractbook.html *All contact regarding JTPB2019 should be made by e-mail if possible. Welcome Message Dear Colleagues, It is a great pleasure and an honor to announce that Japan-Taiwan Plant Biology 2019 (JTPB2019) will be held on March 14 to 16, 2019, at Nagoya University, Nagoya, Japan. Registration is open now, and we invite you to attend this second joint meeting. JSPP (Japanese Society of Plant Physiologists) and TSPB (Taiwan Society of Plant Biologists) represent major scientific societies in Japan and Taiwan, respectively, both established in the late 1950’s partly as a nation-representing plant science community tied with International Association of Plant Physiologists. Both societies promote communication within the members who are engaged or interested in researches on plant physiology and related subjects, ranging from basic sciences, agriculture, to pharmacology. Sharing the history and scientific background in plant research, both societies have been seeking for an opportunity for strengthening their intimate interactions, and agreed to co-organize a joint meeting.
    [Show full text]
  • Mohsin Bashir Horticulture HS
    i Varietal evaluation and quality enhancement of cut tulips by exogenous application of growth promoting substances By Mohsin Bashir M.Sc. (Hons.) Horticulture A thesis submitted in the partial fulfillment of the requirement for the degree of Doctor of Philosophy In Horticulture Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan 2017 ii To The Controller of Examinations, University of Agriculture, Faisalabad. We the supervisory committee, certify that after necessary revision in accordance to the suggestions made by external reviewers, the contents and forms of the thesis of Mr. Mohsin Bashir (Regd. No. 2004-ag-1447) have been found satisfactory. The final thesis is therefore may kindly be submitted for the notification of the PhD degree. SUPERVISORY COMMITTEE 1. Supervisor ___________________________________ (Prof. Dr. Muhammad Aslam Khan) 2. Member ___________________________________ (Prof. Dr. Muhammad Qasim) 3. Member ___________________________________ (Prof. Dr. Shahzad M. A. Basra) iii DECLARATION “I hereby declare that contents of thesis, entitled “Varietal evaluation and quality enhancement of cut tulips by exogenous application of growth promoting substances” are the product of my own research and no part has been copied from any published source (except the references, standard mathematical or genetic models/equation/formulae etc.). I further declare that this work has not been submitted for award of any other diploma/degree. The university may take action if the information
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Citrus Polyamines: Structure, Biosynthesis, and Physiological Functions
    plants Review Citrus Polyamines: Structure, Biosynthesis, and Physiological Functions Nabil Killiny 1,* and Yasser Nehela 1,2 1 Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA; yasser.nehela@ufl.edu 2 Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt * Correspondence: nabilkilliny@ufl.edu; Tel.: +1-863-956-8833 Received: 2 March 2020; Accepted: 24 March 2020; Published: 31 March 2020 Abstract: Polyamines (PAs) are ubiquitous biogenic amines found in all living organisms from bacteria to Archaea, and Eukaryotes including plants and animals. Since the first description of putrescine conjugate, feruloyl-putrescine (originally called subaphylline), from grapefruit leaves and juice, many research studies have highlighted the importance of PAs in growth, development, and other physiological processes in citrus plants. PAs appear to be involved in a wide range of physiological processes in citrus plants; however, their exact roles are not fully understood. Accordingly, in the present review, we discuss the biosynthesis of PAs in citrus plants, with an emphasis on the recent advances in identifying and characterizing PAs-biosynthetic genes and other upstream regulatory genes involved in transcriptional regulation of PAs metabolism. In addition, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the roles of PAs metabolism in citrus physiology including somatic embryogenesis; root system formation,
    [Show full text]
  • Methods and Protocols M ETHODS in M OLECULAR B IOLOGY
    Methods in Molecular Biology 1694 Rubén Alcázar Antonio F. Tiburcio Editors Polyamines Methods and Protocols M ETHODS IN M OLECULAR B IOLOGY Series Editor John M. Walker School of Life and Medical Sciences University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK For further volumes: http://www.springer.com/series/7651 Polyamines Methods and Protocols Edited by Rubén Alcázar and Antonio F. Tiburcio Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Section of Plant Physiology, University of Barcelona, Spain Editors Rube´n Alca´zar Antonio F. Tiburcio Department of Biology, Department of Biology, Healthcare and Environment, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Faculty of Pharmacy and Food Sciences, Section of Plant Physiology Section of Plant Physiology University of Barcelona University of Barcelona Spain Spain ISSN 1064-3745 ISSN 1940-6029 (electronic) Methods in Molecular Biology ISBN 978-1-4939-7397-2 ISBN 978-1-4939-7398-9 (eBook) DOI 10.1007/978-1-4939-7398-9 Library of Congress Control Number: 2017956111 © Springer Science+Business Media LLC 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Polyamine Metabolism in Scots Pine Embryogenic Cells Under Potassium Deficiency
    cells Article Polyamine Metabolism in Scots Pine Embryogenic Cells under Potassium Deficiency Riina Muilu-Mäkelä 1,*, Jaana Vuosku 2, Hely Häggman 2 and Tytti Sarjala 1 1 Natural Resources Institute Finland (Luke), 00791 Helsinki, Finland; tytti.sarjala@sci.fi 2 Ecology and Genetics Research Unit, University of Oulu, 90570 Oulu, Finland; jaana.vuosku@oulu.fi (J.V.); hely.haggman@oulu.fi (H.H.) * Correspondence: riina.muilu-makela@luke.fi; Tel.: +35-85-0391-4044 Abstract: Polyamines (PA) have a protective role in maintaining growth and development in Scots pine during abiotic stresses. In the present study, a controlled liquid Scots pine embryogenic cell culture was used for studying the responses of PA metabolism related to potassium deficiency. The transcription level regulation of PA metabolism led to the accumulation of putrescine (Put). Arginine decarboxylase (ADC) had an increased expression trend under potassium deficiency, whereas spermi- dine synthase (SPDS) expression decreased. Generally, free spermidine (Spd) and spermine (Spm)/ thermospermine (t-Spm) contents were kept relatively stable, mostly by the downregulation of polyamine oxidase (PAO) expression. The low potassium contents in the culture medium decreased the potassium content of the cells, which inhibited cell mass growth, but did not affect cell viability. The reduced growth was probably caused by repressed metabolic activity and cell division, whereas there were no signs of H2O2-induced oxidative stress or increased cell death. The low intracellular content of K+ decreased the content of Na+. The decrease in the pH of the culture medium indicated + that H ions were pumped out of the cells. Altogether, our findings emphasize the specific role(s) of Put under potassium deficiency and strict developmental regulation of PA metabolism in Scots pine.
    [Show full text]
  • Thermospermine Is Not a Minor Polyamine in the Plant Kingdom
    Thermospermine is Not a Minor Polyamine in the Review Plant Kingdom Ayaka Takano, Jun-Ichi Kakehi and Taku Takahashi* Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan *Corresponding author: E-mail, [email protected]; Fax, +81-86-251-7876 (Received January 5, 2012; Accepted February 18, 2012) Thermospermine is a structural isomer of spermine, which is post-translational modification (Tabor and Tabor 1999, Igarashi one of the polyamines studied extensively in the past, and is and Kashiwagi 2000, Wallace et al. 2003). One of the major produced from spermidine by the action of thermospermine polyamines, spermine, was discovered as a crystal in human synthase encoded by a gene named ACAULIS5 (ACL5)in semen by Van Leeuwenhoek in 1678 and named after its plants. According to recent genome sequencing analyses, origin in the late 19th century. The crystal has now been iden- ACL5-like genes are widely distributed throughout the tified as spermine phosphate. There are two pathways for the plant kingdom. In Arabidopsis, ACL5 is expressed specifically biosynthesis of the diamine putrescine from arginine, one via during xylem formation from procambial cells to differen- ornithine and the other via agmatine (Fig. 1). In the former tiating xylem vessels. Loss-of-function mutants of ACL5 dis- pathway, arginine is converted to ornithine by arginase. Then, play overproliferation of xylem vessels along with severe ornithine decarboxylase (ODC) catalyzes the decarboxylation of dwarfism, suggesting that thermospermine plays a role in ornithine to form putrescine. The ODC pathway is dominant in the repression of xylem differentiation.
    [Show full text]
  • Program: ORAL PRESENTATION ● Day 1 2017 / 03 / 16 (Thu) 9:30–12:30
    Program: ORAL PRESENTATION ● Day 1 2017 / 03 / 16 (Thu) 9:30–12:30 Room Room Room Room Time Room A Room B Room C Room D Room E Room F Room G Room H W X Y Z Time Symposium S01 Symposium S02 Symposium S03 Environmental responses/Abiotic stresses Plant-microbe interaction Biomembrane/ Cell wall Organelles/Cytoskeletons Systems biology Vegetative growth Light harvesting/Pigment (Drought/Water/Osmotic pressure) (Immunity) Ion and solute transport 9:30 1aA01 1aB01 1aC01 1aD01 1aE01 1aF01 仝 1aG01 仝 1aH01 仝 9:30 Comparative physiological, metabolomic and Function of xyloglucan in poplar stem Extracellular apyrase PsAPY1 in pea, a Seedling ER bodies consist a novel defense RMV1, a polyamine/paraquat Prediction of responses to Identification of a Novel Regulator Bacteriochlorophyll biosynthetic transcriptomic analyses of rice seedlings grown Rumi Kaida1, Ryota Yamazaki1, Shuhei Bando1, component of elicitor-induced apoplastic system against insect in Brassicaceae plants transporter is involved in thiamine environmental stresses in the entire Required for Wound-Induced pathways based on substrate under different levels of drought stress Keisuke Tanaka2, Kei-ichi Baba3, Teruaki Taji1, oxidative burst, impact on non-host resistance Kenji Yamada1, Shino Goto-Yamada1, Akiko transport plant metabolism using a genome- Cellular Reprogramming in specificities of enzymes for conditions Yoichi Sakata1, Takahisa Hayashi1 (1Dept. of against non-adapted fungal and bacterial Nakazaki2, Atsushi Nagano3, Mikio Nishimura4, Miki Fujita1, Yasunari Fujita2,3, scale
    [Show full text]