Superprobability on Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Superprobability on Graphs SUPERPROBABILITY ON GRAPHS Andrew Charles Kenneth Swan Clare College A thesis submitted for the degree of Doctor of Philosophy October 2020 Abstract The classical random walk isomorphism theorems relate the local times of a continuous- time random walk to the square of a Gaussian free field. The Gaussian free field is a spin system (or sigma model) that takes values in Euclidean space; in this work, we generalise the classical isomorphism theorems to spin systems taking values in hyperbolic and spherical geometries. The corresponding random walks are no longer Markovian: they are the vertex-reinforced and vertex-diminished jump processes. We also investigate supersymmetric versions of these formulas, which give exact random walk representations. The proofs are based on exploiting the continuous symmetries of the corresponding spin systems. The classical isomorphism theorems use the translation symmetry of Euclidean space, while in hyperbolic and spherical geometries the relevant symmetries are Lorentz boosts and rotations, respectively. These very short proofs are new even in the Euclidean case. To illustrate the utility of these new isomorphism theorems, we present several applications. These include simple proofs of exponential decay for spin system correlations, exact formulas for the resolvents of the joint processes of random walks together with their local times, and a new derivation of the Sabot–Tarrès magic formula for the limiting local time of the vertex- reinforced jump process. The second ingredient is a new Mermin–Wagner theorem for hyperbolic sigma models. This result is of intrinsic interest for the sigma models, and together with the aforementioned isomorphism theorems, implies our main theorem on the VRJP, namely, that it is recurrent in two dimensions for any translation invariant finite-range initial jump rates. We also use supersymmetric hyperbolic sigma models to study the arboreal gas. This is a model of unrooted random forests on a graph, where the probability of a forest F with jF j edges is multiplicatively weighted by a parameter βjF j > 0. In simple terms, it can be defined β to be Bernoulli bond percolation with parameter p = 1+β conditioned to be acyclic, or as the q ! 0 limit with p = βq of the random cluster model. It is known that on the complete graph KN with β = α=N there is a phase transition similar to that of the Erdos–Rényi˝ random graph: a giant tree percolates for α > 1 and all trees have bounded size for α < 1. In contrast to this, by exploiting an exact relationship with the hyperbolic sigma model, we show that the forest constraint is significant in two dimensions: trees do not percolate on Z2 for any finite β > 0. This result is again a consequence of our hyperbolic Mermin–Wagner theorem, and is used in conjunction with a version of the principle of dimensional reduction. To further illustrate our methods, we also give a spin-theoretic proof of the phase transition on the complete graph. Preface This thesis consists five chapters, which I have further grouped into two parts. The second part, entitled superprobability, consists of three papers. These are as follows: • The geometry of random walk isomorphism theorems, Ann. Inst. Henri Poincaré Probab. Stat., 57(1): 408-454, 2021, coauthored with Roland Bauerschmidt and Tyler Helmuth. • Random spanning forests and hyperbolic symmetry, Commun. Math. Phys. 381 1223–1261, 2021, coauthored with Roland Bauerschmidt, Nicholas Crawford, and Tyler Helmuth. • Dynkin isomorphism and Mermin–Wagner theorems for hyperbolic sigma models and re- currence of the two-dimensional vertex-reinforced jump process, Ann. Probab., 47(5):3375– 3396, 2019, coauthored with Roland Bauerschmidt and Tyler Helmuth. These three can be read in any order, but I would recommend reading “The geometry of random walk isomorphism theorems” before the other two. The first part, entitled superanalysis, contains the necessary background material on supermathematics that is required for the second part. It is an expanded version of the appendix to [8], and as such, it can be used either as an introduction or an appendix to the second part, being referred back to as needed. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared above and specified in the text. It is not substantially the same as any that I have submitted, or is being concurrently submitted, for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution. I further state that no substantial part of my dissertation has already been submitted, or is being concurrently submitted, for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution. Acknowledgements Before we dive into mathematical matters, I thought I might take a brief moment to reflect upon my experience at Cambridge over the last five years, and to give my heart felt thanks to all those who have helped me along the way. And what a experience it has been! I have been so fortunate to have met so many wonderful people who have inspired me on both personal and professional levels. Without doubt, I owe my greatest thanks to my supervisor, Roland Bauerschmidt. Roland has been a continuous source of guidance, support, and inspiration, and I am truly grateful for the time that he has devoted towards helping me develop as a mathematician. I could not have asked for a better supervisor. Secondly, I would like to extend a very big thank you to both Tyler Helmuth and Nick Crawford for their enthusiastic collaboration which has ultimately lead to this thesis. These last few years have reinforced my belief that the real joy in mathematics comes from sharing it with others, and on that note, there are two communities to which I would like to express my thanks. The first, of course, is the Cambridge Centre for Analysis: Matthias, Erlend, Kweku, Maxime, Mo Dick, Nicolai, Fritz, Eardi, Lisa, Megan, (and Sam!), thank you all so much for such stimulating company, and for providing just the right amount distraction when necessary. I owe particular thanks to Tessa Blackman for her unending help and support in dealing with my administrative shortfalls. I would also like to thank Arieh Iserles and Perla Sousi for supervising me during my first year at the CCA. The second, is the ‘superprobability’ community (if I may call it that!): I would like to thank David Brydges, Gordon Slade, Tom Spencer, Persi Diaconis, Margarita Disertori, and particularly Christophe Sabot and Pierre Tarrès for sharing their thoughts and insights at various conferences and visits over the years. I would also like to thank Codina Cotar and Sergio Bacallado for taking the time to carefully examine this thesis, and for their helpful comments and suggestions which have surely improved the final product. Before attending Cambridge, I had the fortune of studying under both Geoff Vasil and Sheehan Olver at the University of Sydney, and I would like to thank them both for their significant role in preparing me for graduate school, and for their continued support and interest in my studies. A huge thank you to my siblings, Maddie and Simon, and to my friends, James, Michael, Andy, Jim, Kal, Will, and Camilo, for all the joy you have shared with me over the years. A very special thank you to Miruna for all of her love, support, and encouragement, and for helping me carry on when things were tough. Finally, I would like to thank Mr Ruthven for teaching me how to integrate by parts: despite my initial protests1, it has indeed proven quite useful. BFS–Dynkin SRW GFF Ray–Knight Reinforcement Curvature Hyperbolic BFS–Dynkin 2j2 VRJP H Hyperbolic Ray–Knight t ! 1 Gaussian Lorentz Integration ST Magic Boost L1 GFF Recoupling a t-marginal L1 Sabot–Tarrès Limit Isomorphism To Mum and Dad, of course. 1“Why can’t I just integrate it like normal?” Contents I SUPERANALYSIS 1 1 Superalgebra and Supergeometry 3 1.1 Supervector Spaces . 3 1.2 Superalgebras . 7 1.3 Superfunction algebras . 9 1.4 Further remarks on superspaces . 16 1.5 Supermodules and Supermatrices . 18 1.6 Superspins . 21 2 Supercalculus and Supersymmetries 25 2.1 Derivatives and Derivations . 25 2.2 Berezin Integration . 27 2.3 Supersymmetries and Lie Superalgebras . 30 2.4 Supersymmetric Localisation . 33 II SUPERPROBABILITY 37 3 The geometry of random walk isomorphism theorems 39 3.1 Introduction . 39 3.2 Isomorphism theorems for flat geometry . 42 3.3 Isomorphism theorems for hyperbolic geometry . 49 3.4 Isomorphism theorems for spherical geometry . 54 3.5 Isomorphism theorems for supersymmetric spin models . 58 3.6 Application to limiting local times: the Sabot–Tarrès limit . 66 3.7 Time changes and resolvent formulas . 67 3.8 Application to exponential decay of correlations in spin systems . 70 Appendices 73 3.A Introduction to supersymmetric integration . 73 3.B Further aspects of symmetries and supersymmetry . 78 3.C Sabot–Tarrès limit and the BFS–Dynkin Isomorphism Theorem . 86 4 Random spanning forests and hyperbolic symmetry 93 4.1 The arboreal gas and uniform forest model . 93 4.2 Hyperbolic sigma model representation . 98 4.3 Phase transition on the complete graph . 109 4.4 No percolation in two dimensions . 114 Appendices 119 4.A Percolation properties . 119 4.B Rooted spanning forests and the uniform spanning tree . 121 CONTENTS 5 Recurrence of the two-dimensional VRJP 125 5.1 Introduction and results . 125 5.2 Supersymmetry and horospherical coordinates . 131 5.3 Proof of Theorem 5.1.2 . 135 5.4 Proof of Theorem 5.1.5 . 136 Appendices 139 5.A Horospherical coordinates .
Recommended publications
  • PSEUDO SCHUR COMPLEMENTS, PSEUDO PRINCIPAL PIVOT TRANSFORMS and THEIR INHERITANCE PROPERTIES∗ 1. Introduction. Let M ∈ R M×
    Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 30, pp. 455-477, August 2015 ELA PSEUDO SCHUR COMPLEMENTS, PSEUDO PRINCIPAL PIVOT TRANSFORMS AND THEIR INHERITANCE PROPERTIES∗ K. BISHT† , G. RAVINDRAN‡, AND K.C. SIVAKUMAR§ Abstract. Extensions of the Schur complement and the principal pivot transform, where the usual inverses are replaced by the Moore-Penrose inverse, are revisited. These are called the pseudo Schur complement and the pseudo principal pivot transform, respectively. First, a generalization of the characterization of a block matrix to be an M-matrix is extended to the nonnegativity of the Moore-Penrose inverse. A comprehensive treatment of the fundamental properties of the extended notion of the principal pivot transform is presented. Inheritance properties with respect to certain matrix classes are derived, thereby generalizing some of the existing results. Finally, a thorough discussion on the preservation of left eigenspaces by the pseudo principal pivot transformation is presented. Key words. Principal pivot transform, Schur complement, Nonnegative Moore-Penrose inverse, P†-Matrix, R†-Matrix, Left eigenspace, Inheritance properties. AMS subject classifications. 15A09, 15A18, 15B48. 1. Introduction. Let M ∈ Rm×n be a block matrix partitioned as A B , C D where A ∈ Rk×k is nonsingular. Then the classical Schur complement of A in M denoted by M/A is given by D − CA−1B ∈ R(m−k)×(n−k). This notion has proved to be a fundamental idea in many applications like numerical analysis, statistics and operator inequalities, to name a few. We refer the reader to [27] for a comprehen- sive account of the Schur complement.
    [Show full text]
  • On Supermatrix Operator Semigroups 1. Introduction
    Quasigroups and Related Systems 7 (2000), 71 − 88 On supermatrix operator semigroups Steven Duplij Abstract One-parameter semigroups of antitriangle idempotent su- permatrices and corresponding superoperator semigroups are introduced and investigated. It is shown that t-linear idempo- tent superoperators and exponential superoperators are mutu- ally dual in some sense, and the rst give additional to expo- nential dierent solution to the initial Cauchy problem. The corresponding functional equation and analog of resolvent are found for them. Dierential and functional equations for idem- potent (super)operators are derived for their general t power- type dependence. 1. Introduction Operator semigroups [1] play an important role in mathematical physics [2, 3, 4] viewed as a general theory of evolution systems [5, 6, 7]. Its development covers many new elds [8, 9, 10, 11], but one of vital for modern theoretical physics directions supersymmetry and related mathematical structures was not considered before in application to operator semigroup theory. The main dierence between previous considerations is the fact that among building blocks (e.g. elements of corresponding matrices) there exist noninvertible objects (divisors 2000 Mathematics Subject Classication: 25A50, 81Q60, 81T60 Keywords: Cauchy problem, idempotence, semigroup, supermatrix, superspace 72 S. Duplij of zero and nilpotents) which by themselves can form another semi- group. Therefore, we have to take that into account and investigate it properly, which can be called a semigroup × semigroup method. Here we study continuous supermatrix representations of idempo- tent operator semigroups rstly introduced in [12, 13] for bands. Usu- ally matrix semigroups are dened over a eld K [14] (on some non- supersymmetric generalizations of K-representations see [15, 16]).
    [Show full text]
  • Notes on the Schur Complement
    University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science 12-10-2010 Notes on the Schur Complement Jean H. Gallier University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/cis_papers Part of the Computer Sciences Commons Recommended Citation Jean H. Gallier, "Notes on the Schur Complement", . December 2010. Gallier, J., Notes on the Schur Complement This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/601 For more information, please contact [email protected]. Notes on the Schur Complement Disciplines Computer Sciences Comments Gallier, J., Notes on the Schur Complement This working paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/601 The Schur Complement and Symmetric Positive Semidefinite (and Definite) Matrices Jean Gallier December 10, 2010 1 Schur Complements In this note, we provide some details and proofs of some results from Appendix A.5 (especially Section A.5.5) of Convex Optimization by Boyd and Vandenberghe [1]. Let M be an n × n matrix written a as 2 × 2 block matrix AB M = ; CD where A is a p × p matrix and D is a q × q matrix, with n = p + q (so, B is a p × q matrix and C is a q × p matrix). We can try to solve the linear system AB x c = ; CD y d that is Ax + By = c Cx + Dy = d; by mimicking Gaussian elimination, that is, assuming that D is invertible, we first solve for y getting y = D−1(d − Cx) and after substituting this expression for y in the first equation, we get Ax + B(D−1(d − Cx)) = c; that is, (A − BD−1C)x = c − BD−1d: 1 If the matrix A − BD−1C is invertible, then we obtain the solution to our system x = (A − BD−1C)−1(c − BD−1d) y = D−1(d − C(A − BD−1C)−1(c − BD−1d)): The matrix, A − BD−1C, is called the Schur Complement of D in M.
    [Show full text]
  • Howe Pairs, Supersymmetry, and Ratios of Random Characteristic
    HOWE PAIRS, SUPERSYMMETRY, AND RATIOS OF RANDOM CHARACTERISTIC POLYNOMIALS FOR THE UNITARY GROUPS UN by J.B. Conrey, D.W. Farmer & M.R. Zirnbauer Abstract. — For the classical compact Lie groups K UN the autocorrelation functions of ratios of characteristic polynomials (z,w) Det(z≡ k)/Det(w k) are studied with k K as random variable. Basic to our treatment7→ is a property− shared− by the spinor repre- sentation∈ of the spin group with the Shale-Weil representation of the metaplectic group: in both cases the character is the analytic square root of a determinant or the reciprocal thereof. By combining this fact with Howe’s theory of supersymmetric dual pairs (g,K), we express the K-Haar average product of p ratios of characteristic polynomials and q conjugate ratios as a character χ which is associated with an irreducible representation of χ the Lie superalgebra g = gln n for n = p+q. The primitive character is shown to extend | to an analytic radial section of a real supermanifold related to gln n , and is computed by | invoking Berezin’s description of the radial parts of Laplace-Casimir operators for gln n . The final result for χ looks like a natural transcription of the Weyl character formula| to the context of highest-weight representations of Lie supergroups. While several other works have recently reproduced our results in the stable range N max(p,q), the present approach covers the full range of matrix dimensions N N. ≥To make this paper accessible to the non-expert reader, we have included a chapter∈ containing the required background material from superanalysis.
    [Show full text]
  • The Schur Complement and H-Matrix Theory
    UNIVERSITY OF NOVI SAD FACULTY OF TECHNICAL SCIENCES Maja Nedović THE SCHUR COMPLEMENT AND H-MATRIX THEORY DOCTORAL DISSERTATION Novi Sad, 2016 УНИВЕРЗИТЕТ У НОВОМ САДУ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА 21000 НОВИ САД, Трг Доситеја Обрадовића 6 КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА Accession number, ANO: Identification number, INO: Document type, DT: Monographic publication Type of record, TR: Textual printed material Contents code, CC: PhD thesis Author, AU: Maja Nedović Mentor, MN: Professor Ljiljana Cvetković, PhD Title, TI: The Schur complement and H-matrix theory Language of text, LT: English Language of abstract, LA: Serbian, English Country of publication, CP: Republic of Serbia Locality of publication, LP: Province of Vojvodina Publication year, PY: 2016 Publisher, PB: Author’s reprint Publication place, PP: Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6 Physical description, PD: 6/161/85/1/0/12/0 (chapters/pages/ref./tables/pictures/graphs/appendixes) Scientific field, SF: Applied Mathematics Scientific discipline, SD: Numerical Mathematics Subject/Key words, S/KW: H-matrices, Schur complement, Eigenvalue localization, Maximum norm bounds for the inverse matrix, Closure of matrix classes UC Holding data, HD: Library of the Faculty of Technical Sciences, Trg Dositeja Obradovića 6, Novi Sad Note, N: Abstract, AB: This thesis studies subclasses of the class of H-matrices and their applications, with emphasis on the investigation of the Schur complement properties. The contributions of the thesis are new nonsingularity results, bounds for the maximum norm of the inverse matrix, closure properties of some matrix classes under taking Schur complements, as well as results on localization and separation of the eigenvalues of the Schur complement based on the entries of the original matrix.
    [Show full text]
  • Super Fuzzy Matrices and Super Fuzzy Models for Social Scientists
    SUPER FUZZY MATRICES AND SUPER FUZZY MODELS FOR SOCIAL SCIENTISTS W. B. Vasantha Kandasamy e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv www.vasantha.net Florentin Smarandache e-mail: [email protected] K. Amal e-mail: [email protected] INFOLEARNQUEST Ann Arbor 2008 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. Zeeb Road P.O. Box 1346, Ann Arbor MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/ Peer reviewers: Dr. S. Osman, Menofia University, Shebin Elkom, Egypt Prof. Valentin Boju, Ph.D., Officer of the Order “Cultural Merit” Category — “Scientific Research” MontrealTech — Institut de Techologie de Montreal Director, MontrealTech Press, P.O. Box 78574 Station Wilderton, Montreal, Quebec, H3S2W9, Canada Prof. Mircea Eugen Selariu, Polytech University of Timisoara, Romania. Copyright 2008 by InfoLearnQuest and authors Cover Design and Layout by Kama Kandasamy Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm ISBN-10: 1-59973-027-8 ISBN-13: 978-1-59973-027-1 EAN: 9781599730271 Standard Address Number: 297-5092 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One BASIC CONCEPTS 7 1.1 Supermatrices 7 1.2 Introduction of Fuzzy Matrices 65 Chapter Two FUZZY SUPERMATRICES AND THEIR PROPERTIES 75 2.1 Fuzzy Supermatrices and their Properties 75 2.2 Pseudo Symmetric Supermatrices 117 2.3 Special Operations on Fuzzy Super Special Row and Column Matrix 140 Chapter Three INTRODUCTION TO NEW FUZZY SUPER MODELS 167 3.1 New Super Fuzzy Relational Maps (SFRM) Model 167 3.2 New Fuzzy Super Bidirectional Associative Memories (BAM) model 176 3.3 Description of Super Fuzzy Associative Memories 188 3 3.4 Illustration of Super Fuzzy Models 199 3.5 Super FCM Models 236 FURTHER READING 247 INDEX 275 ABOUT THE AUTHORS 279 4 PREFACE The concept of supermatrix for social scientists was first introduced by Paul Horst.
    [Show full text]
  • Chapter 2: Linear Algebra User's Manual
    Preprint typeset in JHEP style - HYPER VERSION Chapter 2: Linear Algebra User's Manual Gregory W. Moore Abstract: An overview of some of the finer points of linear algebra usually omitted in physics courses. May 3, 2021 -TOC- Contents 1. Introduction 5 2. Basic Definitions Of Algebraic Structures: Rings, Fields, Modules, Vec- tor Spaces, And Algebras 6 2.1 Rings 6 2.2 Fields 7 2.2.1 Finite Fields 8 2.3 Modules 8 2.4 Vector Spaces 9 2.5 Algebras 10 3. Linear Transformations 14 4. Basis And Dimension 16 4.1 Linear Independence 16 4.2 Free Modules 16 4.3 Vector Spaces 17 4.4 Linear Operators And Matrices 20 4.5 Determinant And Trace 23 5. New Vector Spaces from Old Ones 24 5.1 Direct sum 24 5.2 Quotient Space 28 5.3 Tensor Product 30 5.4 Dual Space 34 6. Tensor spaces 38 6.1 Totally Symmetric And Antisymmetric Tensors 39 6.2 Algebraic structures associated with tensors 44 6.2.1 An Approach To Noncommutative Geometry 47 7. Kernel, Image, and Cokernel 47 7.1 The index of a linear operator 50 8. A Taste of Homological Algebra 51 8.1 The Euler-Poincar´eprinciple 54 8.2 Chain maps and chain homotopies 55 8.3 Exact sequences of complexes 56 8.4 Left- and right-exactness 56 { 1 { 9. Relations Between Real, Complex, And Quaternionic Vector Spaces 59 9.1 Complex structure on a real vector space 59 9.2 Real Structure On A Complex Vector Space 64 9.2.1 Complex Conjugate Of A Complex Vector Space 66 9.2.2 Complexification 67 9.3 The Quaternions 69 9.4 Quaternionic Structure On A Real Vector Space 79 9.5 Quaternionic Structure On Complex Vector Space 79 9.5.1 Complex Structure On Quaternionic Vector Space 81 9.5.2 Summary 81 9.6 Spaces Of Real, Complex, Quaternionic Structures 81 10.
    [Show full text]
  • The Multivariate Normal Distribution
    Multivariate normal distribution Linear combinations and quadratic forms Marginal and conditional distributions The multivariate normal distribution Patrick Breheny September 2 Patrick Breheny University of Iowa Likelihood Theory (BIOS 7110) 1 / 31 Multivariate normal distribution Linear algebra background Linear combinations and quadratic forms Definition Marginal and conditional distributions Density and MGF Introduction • Today we will introduce the multivariate normal distribution and attempt to discuss its properties in a fairly thorough manner • The multivariate normal distribution is by far the most important multivariate distribution in statistics • It’s important for all the reasons that the one-dimensional Gaussian distribution is important, but even more so in higher dimensions because many distributions that are useful in one dimension do not easily extend to the multivariate case Patrick Breheny University of Iowa Likelihood Theory (BIOS 7110) 2 / 31 Multivariate normal distribution Linear algebra background Linear combinations and quadratic forms Definition Marginal and conditional distributions Density and MGF Inverse • Before we get to the multivariate normal distribution, let’s review some important results from linear algebra that we will use throughout the course, starting with inverses • Definition: The inverse of an n × n matrix A, denoted A−1, −1 −1 is the matrix satisfying AA = A A = In, where In is the n × n identity matrix. • Note: We’re sort of getting ahead of ourselves by saying that −1 −1 A is “the” matrix satisfying
    [Show full text]
  • Lectures on Super Analysis
    Lectures on Super Analysis —– Why necessary and What’s that? Towards a new approach to a system of PDEs arXiv:1504.03049v4 [math-ph] 15 Dec 2015 e-Version1.5 December 16, 2015 By Atsushi INOUE NOTICE: COMMENCEMENT OF A CLASS i Notice: Commencement of a class Syllabus Analysis on superspace —– a construction of non-commutative analysis 3 October 2008 – 30 January 2009, 10.40-12.10, H114B at TITECH, Tokyo, A. Inoue Roughly speaking, RA(=real analysis) means to study properties of (smooth) functions defined on real space, and CA(=complex analysis) stands for studying properties of (holomorphic) functions defined on spaces with complex structure. On the other hand, we may extend the differentiable calculus to functions having definition domain in Banach space, for example, S. Lang “Differentiable Manifolds” or J.A. Dieudonn´e“Trea- tise on Analysis”. But it is impossible in general to extend differentiable calculus to those defined on infinite dimensional Fr´echet space, because the implicit function theorem doesn’t hold on such generally given Fr´echet space. Then, if the ground ring (like R or C) is replaced by non-commutative one, what type of analysis we may develop under the condition that newly developed analysis should be applied to systems of PDE or RMT(=Random Matrix Theory). In this lectures, we prepare as a “ground ring”, Fr´echet-Grassmann algebra having count- ably many Grassmann generators and we define so-called superspace over such algebra. On such superspace, we take a space of super-smooth functions as the main objects to study. This procedure is necessary not only to associate a Hamilton flow for a given 2d 2d system × of PDE which supports to resolve Feynman’s murmur, but also to make rigorous Efetov’s result in RMT.
    [Show full text]
  • The General Linear Supergroup and Its Hopf Superalgebra of Regular Functions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Algebra 254 (2002) 44–83 www.academicpress.com The general linear supergroup and its Hopf superalgebra of regular functions M. Scheunert a and R.B. Zhang b,∗ a Physikalisches Institut der Universität Bonn, Nussallee 12, D-53115 Bonn, Germany b School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia Received 28 September 2001 Communicated by Susan Montgomery Abstract The structure of the Hopf superalgebra B of regular functions on the general linear supergroup is developed, and applied to study the representation theory of the supergroup. It is shown that the general linear supergroup can be reconstructed from B in a way reminiscent of the Tannaka–Krein theory. A Borel–Weil type realization is also obtained for the irreducible integrable representations. As a side result on the structure of B, Schur superalgebras are introduced and are shown to be semi-simple over the complex field, with the simple ideals determined explicitly. 2002 Elsevier Science (USA). All rights reserved. 1. Introduction We study the general linear supergroup from a Hopf algebraic point of view [16,17,24]. Our main motivation is from quantum supergroups, where the prime object of interest is the Hopf superalgebra of functions on a quantum supergroup. However, such a Hopf superalgebra is not supercommutative, and is much more difficult to study compared to its classical counterpart. A good understanding * Corresponding author. E-mail addresses: [email protected] (M. Scheunert), [email protected] (R.B.
    [Show full text]
  • 1. Introduction
    Pr´e-Publica¸c~oesdo Departamento de Matem´atica Universidade de Coimbra Preprint Number 17{07 ON SKEW-SYMMETRIC MATRICES RELATED TO THE VECTOR CROSS PRODUCT IN R7 P. D. BEITES, A. P. NICOLAS´ AND JOSE´ VITORIA´ Abstract: A study of real skew-symmetric matrices of orders 7 and 8, defined through the vector cross product in R7, is presented. More concretely, results on matrix properties, eigenvalues, (generalized) inverses and rotation matrices are established. Keywords: vector cross product, skew-symmetric matrix, matrix properties, eigen- values, (generalized) inverses, rotation matrices. Math. Subject Classification (2010): 15A72, 15B57, 15A18, 15A09, 15B10. 1. Introduction A classical result known as the generalized Hurwitz Theorem asserts that, over a field of characteristic different from 2, if A is a finite dimensional composition algebra with identity, then its dimension is equal to 1; 2; 4 or 8. Furthermore, A is isomorphic either to the base field, a separable quadratic extension of the base field, a generalized quaternion algebra or a generalized octonion algebra, [8]. A consequence of the cited theorem is that the values of n for which the Euclidean spaces Rn can be equippped with a binary vector cross product, satisfying the same requirements as the usual one in R3, are restricted to 1 (trivial case), 3 and 7. A complete account on the existence of r-fold vector cross products for d-dimensional vector spaces, where they are used to construct exceptional Lie superalgebras, is in [3]. The interest in octonions, seemingly forgotten for some time, resurged in the last decades, not only for their intrinsic mathematical relevance but also because of their applications, as well as those of the vector cross product in R7.
    [Show full text]
  • Dsm Super Vector Space of Refined Labels
    W. B. Vasantha Kandasamy Florentin Smarandache ZIP PUBLISHING Ohio 2011 This book can be ordered from: Zip Publishing 1313 Chesapeake Ave. Columbus, Ohio 43212, USA Toll Free: (614) 485-0721 E-mail: [email protected] Website: www.zippublishing.com Copyright 2011 by Zip Publishing and the Authors Peer reviewers: Prof. Catalin Barbu, V. Alecsandri National College, Mathematics Department, Bacau, Romania Prof. Zhang Wenpeng, Department of Mathematics, Northwest University, Xi’an, Shaanxi, P.R.China. Prof. Mihàly Bencze, Department of Mathematics Áprily Lajos College, Bra2ov, Romania Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm ISBN-13: 978-1-59973-167-4 EAN: 9781599731674 Printed in the United States of America 2 5 7 1.1 Supermatrices and their Properties 7 1.2 Refined Labels and Ordinary Labels and their Properties 30 37 65 101 3 165 245 247 289 293 297 4 In this book authors for the first time introduce the notion of supermatrices of refined labels. Authors prove super row matrix of refined labels form a group under addition. However super row matrix of refined labels do not form a group under product; it only forms a semigroup under multiplication. In this book super column matrix of refined labels and m × n matrix of refined labels are introduced and studied. We mainly study this to introduce to super vector space of refined labels using matrices. We in this book introduce the notion of semifield of refined labels using which we define for the first time the notion of supersemivector spaces of refined labels.
    [Show full text]