Lectures on Super Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
171 Composition Operator on the Space of Functions
Acta Math. Univ. Comenianae 171 Vol. LXXXI, 2 (2012), pp. 171{183 COMPOSITION OPERATOR ON THE SPACE OF FUNCTIONS TRIEBEL-LIZORKIN AND BOUNDED VARIATION TYPE M. MOUSSAI Abstract. For a Borel-measurable function f : R ! R satisfying f(0) = 0 and Z sup t−1 sup jf 0(x + h) − f 0(x)jp dx < +1; (0 < p < +1); t>0 R jh|≤t s n we study the composition operator Tf (g) := f◦g on Triebel-Lizorkin spaces Fp;q(R ) in the case 0 < s < 1 + (1=p). 1. Introduction and the main result The study of the composition operator Tf : g ! f ◦ g associated to a Borel- s n measurable function f : R ! R on Triebel-Lizorkin spaces Fp;q(R ), consists in finding a characterization of the functions f such that s n s n (1.1) Tf (Fp;q(R )) ⊆ Fp;q(R ): The investigation to establish (1.1) was improved by several works, for example the papers of Adams and Frazier [1,2 ], Brezis and Mironescu [6], Maz'ya and Shaposnikova [9], Runst and Sickel [12] and [10]. There were obtained some necessary conditions on f; from which we recall the following results. For s > 0, 1 < p < +1 and 1 ≤ q ≤ +1 n s n s n • if Tf takes L1(R ) \ Fp;q(R ) to Fp;q(R ), then f is locally Lipschitz con- tinuous. n s n • if Tf takes the Schwartz space S(R ) to Fp;q(R ), then f belongs locally to s Fp;q(R). The first assertion is proved in [3, Theorem 3.1]. -
On Supermatrix Operator Semigroups 1. Introduction
Quasigroups and Related Systems 7 (2000), 71 − 88 On supermatrix operator semigroups Steven Duplij Abstract One-parameter semigroups of antitriangle idempotent su- permatrices and corresponding superoperator semigroups are introduced and investigated. It is shown that t-linear idempo- tent superoperators and exponential superoperators are mutu- ally dual in some sense, and the rst give additional to expo- nential dierent solution to the initial Cauchy problem. The corresponding functional equation and analog of resolvent are found for them. Dierential and functional equations for idem- potent (super)operators are derived for their general t power- type dependence. 1. Introduction Operator semigroups [1] play an important role in mathematical physics [2, 3, 4] viewed as a general theory of evolution systems [5, 6, 7]. Its development covers many new elds [8, 9, 10, 11], but one of vital for modern theoretical physics directions supersymmetry and related mathematical structures was not considered before in application to operator semigroup theory. The main dierence between previous considerations is the fact that among building blocks (e.g. elements of corresponding matrices) there exist noninvertible objects (divisors 2000 Mathematics Subject Classication: 25A50, 81Q60, 81T60 Keywords: Cauchy problem, idempotence, semigroup, supermatrix, superspace 72 S. Duplij of zero and nilpotents) which by themselves can form another semi- group. Therefore, we have to take that into account and investigate it properly, which can be called a semigroup × semigroup method. Here we study continuous supermatrix representations of idempo- tent operator semigroups rstly introduced in [12, 13] for bands. Usu- ally matrix semigroups are dened over a eld K [14] (on some non- supersymmetric generalizations of K-representations see [15, 16]). -
Comparative Programming Languages
CSc 372 Comparative Programming Languages 10 : Haskell — Curried Functions Department of Computer Science University of Arizona [email protected] Copyright c 2013 Christian Collberg 1/22 Infix Functions Declaring Infix Functions Sometimes it is more natural to use an infix notation for a function application, rather than the normal prefix one: 5+6 (infix) (+) 5 6 (prefix) Haskell predeclares some infix operators in the standard prelude, such as those for arithmetic. For each operator we need to specify its precedence and associativity. The higher precedence of an operator, the stronger it binds (attracts) its arguments: hence: 3 + 5*4 ≡ 3 + (5*4) 3 + 5*4 6≡ (3 + 5) * 4 3/22 Declaring Infix Functions. The associativity of an operator describes how it binds when combined with operators of equal precedence. So, is 5-3+9 ≡ (5-3)+9 = 11 OR 5-3+9 ≡ 5-(3+9) = -7 The answer is that + and - associate to the left, i.e. parentheses are inserted from the left. Some operators are right associative: 5^3^2 ≡ 5^(3^2) Some operators have free (or no) associativity. Combining operators with free associativity is an error: 5==4<3 ⇒ ERROR 4/22 Declaring Infix Functions. The syntax for declaring operators: infixr prec oper -- right assoc. infixl prec oper -- left assoc. infix prec oper -- free assoc. From the standard prelude: infixl 7 * infix 7 /, ‘div‘, ‘rem‘, ‘mod‘ infix 4 ==, /=, <, <=, >=, > An infix function can be used in a prefix function application, by including it in parenthesis. Example: ? (+) 5 ((*) 6 4) 29 5/22 Multi-Argument Functions Multi-Argument Functions Haskell only supports one-argument functions. -
Cohomological Approach to the Graded Berezinian
J. Noncommut. Geom. 9 (2015), 543–565 Journal of Noncommutative Geometry DOI 10.4171/JNCG/200 © European Mathematical Society Cohomological approach to the graded Berezinian Tiffany Covolo n Abstract. We develop the theory of linear algebra over a .Z2/ -commutative algebra (n N), which includes the well-known super linear algebra as a special case (n 1). Examples of2 such graded-commutative algebras are the Clifford algebras, in particularD the quaternion algebra H. Following a cohomological approach, we introduce analogues of the notions of trace and determinant. Our construction reduces in the classical commutative case to the coordinate-free description of the determinant by means of the action of invertible matrices on the top exterior power, and in the supercommutative case it coincides with the well-known cohomological interpretation of the Berezinian. Mathematics Subject Classification (2010). 16W50, 17A70, 11R52, 15A15, 15A66, 16E40. Keywords. Graded linear algebra, graded trace and Berezinian, quaternions, Clifford algebra. 1. Introduction Remarkable series of algebras, such as the algebra of quaternions and, more generally, Clifford algebras turn out to be graded-commutative. Originated in [1] and [2], this idea was developed in [10] and [11]. The grading group in this case is n 1 .Z2/ C , where n is the number of generators, and the graded-commutativity reads as a;b ab . 1/hQ Qiba (1.1) D n 1 where a; b .Z2/ C denote the degrees of the respective homogeneous elements Q Q 2 n 1 n 1 a and b, and ; .Z2/ C .Z2/ C Z2 is the standard scalar product of binary .n 1/h-vectorsi W (see Section 2). -
Howe Pairs, Supersymmetry, and Ratios of Random Characteristic
HOWE PAIRS, SUPERSYMMETRY, AND RATIOS OF RANDOM CHARACTERISTIC POLYNOMIALS FOR THE UNITARY GROUPS UN by J.B. Conrey, D.W. Farmer & M.R. Zirnbauer Abstract. — For the classical compact Lie groups K UN the autocorrelation functions of ratios of characteristic polynomials (z,w) Det(z≡ k)/Det(w k) are studied with k K as random variable. Basic to our treatment7→ is a property− shared− by the spinor repre- sentation∈ of the spin group with the Shale-Weil representation of the metaplectic group: in both cases the character is the analytic square root of a determinant or the reciprocal thereof. By combining this fact with Howe’s theory of supersymmetric dual pairs (g,K), we express the K-Haar average product of p ratios of characteristic polynomials and q conjugate ratios as a character χ which is associated with an irreducible representation of χ the Lie superalgebra g = gln n for n = p+q. The primitive character is shown to extend | to an analytic radial section of a real supermanifold related to gln n , and is computed by | invoking Berezin’s description of the radial parts of Laplace-Casimir operators for gln n . The final result for χ looks like a natural transcription of the Weyl character formula| to the context of highest-weight representations of Lie supergroups. While several other works have recently reproduced our results in the stable range N max(p,q), the present approach covers the full range of matrix dimensions N N. ≥To make this paper accessible to the non-expert reader, we have included a chapter∈ containing the required background material from superanalysis. -
SUSY and XD Notes
Supersymmetry and Extra Dimensions Flip Tanedo LEPP, Cornell University Ithaca, New York A pedagogical set of notes based on lectures by Fernando Quevedo, Adrian Signer, and Csaba Cs´aki,as well as various books and reviews. Last updated: January 9, 2009 ii iii Abstract This is a set of combined lecture notes on supersymmetry and extra dimensions based on various lectures, textbooks, and review articles. The core of these notes come from Professor Fernando Quevedo's 2006- 2007 Lent Part III lecture course of the same name [1]. iv v Acknowledgements Inspiration to write up these notes in LATEX came from Steffen Gielen's excel- lent notes from the Part III Advanced Quantum Field Theory course and the 2008 ICTP Introductory School on the Gauge Gravity Correspondence. Notes from Profes- sor Quevedo's 2005-2006 Part III Supersymmetry and Extra Dimensions course exist in TEXform due to Oliver Schlotterer. The present set of notes were written up indepen- dently, but simliarities are unavoidable. It is my hope that these notes will provide a broader pedagogical introduction supersymmetry and extra dimensions. vi vii Preface These are lecture notes. Version 1 of these notes are based on Fernando Quevedo's lecture notes and structure. I've also incorporated some relevant topics from my research that I think are important to round-out the course. Version 2 of these notes will also incorporate Csaba Cs´aki'sAdvanced Particle Physics notes. Framed text. Throughout these notes framed text will include parenthetical dis- cussions that may be omitted on a first reading. They are meant to provide a broader picture or highlight particular applications that are not central to the main purpose of the chapter. -
Super Fuzzy Matrices and Super Fuzzy Models for Social Scientists
SUPER FUZZY MATRICES AND SUPER FUZZY MODELS FOR SOCIAL SCIENTISTS W. B. Vasantha Kandasamy e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv www.vasantha.net Florentin Smarandache e-mail: [email protected] K. Amal e-mail: [email protected] INFOLEARNQUEST Ann Arbor 2008 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. Zeeb Road P.O. Box 1346, Ann Arbor MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/ Peer reviewers: Dr. S. Osman, Menofia University, Shebin Elkom, Egypt Prof. Valentin Boju, Ph.D., Officer of the Order “Cultural Merit” Category — “Scientific Research” MontrealTech — Institut de Techologie de Montreal Director, MontrealTech Press, P.O. Box 78574 Station Wilderton, Montreal, Quebec, H3S2W9, Canada Prof. Mircea Eugen Selariu, Polytech University of Timisoara, Romania. Copyright 2008 by InfoLearnQuest and authors Cover Design and Layout by Kama Kandasamy Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm ISBN-10: 1-59973-027-8 ISBN-13: 978-1-59973-027-1 EAN: 9781599730271 Standard Address Number: 297-5092 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One BASIC CONCEPTS 7 1.1 Supermatrices 7 1.2 Introduction of Fuzzy Matrices 65 Chapter Two FUZZY SUPERMATRICES AND THEIR PROPERTIES 75 2.1 Fuzzy Supermatrices and their Properties 75 2.2 Pseudo Symmetric Supermatrices 117 2.3 Special Operations on Fuzzy Super Special Row and Column Matrix 140 Chapter Three INTRODUCTION TO NEW FUZZY SUPER MODELS 167 3.1 New Super Fuzzy Relational Maps (SFRM) Model 167 3.2 New Fuzzy Super Bidirectional Associative Memories (BAM) model 176 3.3 Description of Super Fuzzy Associative Memories 188 3 3.4 Illustration of Super Fuzzy Models 199 3.5 Super FCM Models 236 FURTHER READING 247 INDEX 275 ABOUT THE AUTHORS 279 4 PREFACE The concept of supermatrix for social scientists was first introduced by Paul Horst. -
Interpreting Supersymmetry
Interpreting Supersymmetry David John Baker Department of Philosophy, University of Michigan [email protected] October 7, 2018 Abstract Supersymmetry in quantum physics is a mathematically simple phenomenon that raises deep foundational questions. To motivate these questions, I present a toy model, the supersymmetric harmonic oscillator, and its superspace representation, which adds extra anticommuting dimensions to spacetime. I then explain and comment on three foundational questions about this superspace formalism: whether superspace is a sub- stance, whether it should count as spatiotemporal, and whether it is a necessary pos- tulate if one wants to use the theory to unify bosons and fermions. 1 Introduction Supersymmetry{the hypothesis that the laws of physics exhibit a symmetry that transforms bosons into fermions and vice versa{is a long-standing staple of many popular (but uncon- firmed) theories in particle physics. This includes several attempts to extend the standard model as well as many research programs in quantum gravity, such as the failed supergravity program and the still-ascendant string theory program. Its popularity aside, supersymmetry (SUSY for short) is also a foundationally interesting hypothesis on face. The fundamental equivalence it posits between bosons and fermions is prima facie puzzling, given the very different physical behavior of these two types of particle. And supersymmetry is most naturally represented in a formalism (called superspace) that modifies ordinary spacetime by adding Grassmann-valued anticommuting coordinates. It 1 isn't obvious how literally we should interpret these extra \spatial" dimensions.1 So super- symmetry presents us with at least two highly novel interpretive puzzles. Only two philosophers of science have taken up these questions thus far. -
Making a Faster Curry with Extensional Types
Making a Faster Curry with Extensional Types Paul Downen Simon Peyton Jones Zachary Sullivan Microsoft Research Zena M. Ariola Cambridge, UK University of Oregon [email protected] Eugene, Oregon, USA [email protected] [email protected] [email protected] Abstract 1 Introduction Curried functions apparently take one argument at a time, Consider these two function definitions: which is slow. So optimizing compilers for higher-order lan- guages invariably have some mechanism for working around f1 = λx: let z = h x x in λy:e y z currying by passing several arguments at once, as many as f = λx:λy: let z = h x x in e y z the function can handle, which is known as its arity. But 2 such mechanisms are often ad-hoc, and do not work at all in higher-order functions. We show how extensional, call- It is highly desirable for an optimizing compiler to η ex- by-name functions have the correct behavior for directly pand f1 into f2. The function f1 takes only a single argu- expressing the arity of curried functions. And these exten- ment before returning a heap-allocated function closure; sional functions can stand side-by-side with functions native then that closure must subsequently be called by passing the to practical programming languages, which do not use call- second argument. In contrast, f2 can take both arguments by-name evaluation. Integrating call-by-name with other at once, without constructing an intermediate closure, and evaluation strategies in the same intermediate language ex- this can make a huge difference to run-time performance in presses the arity of a function in its type and gives a princi- practice [Marlow and Peyton Jones 2004]. -
A Proof of the Multiplicative Property of the Berezinian ∗
Morfismos, Vol. 12, No. 1, 2008, pp. 45–61 A proof of the multiplicative property of the Berezinian ∗ Manuel Vladimir Vega Blanco Abstract The Berezinian is the analogue of the determinant in super-linear algebra. In this paper we give an elementary and explicative proof that the Berezinian is a multiplicative homomorphism. This paper is self-conatined, so we begin with a short introduction to super- algebra, where we study the category of supermodules. We write the matrix representation of super-linear transformations. Then we can define a concept analogous to the determinant, this is the superdeterminant or Berezinian. We finish the paper proving the multiplicative property. 2000 Mathematics Subject Classification: 81R99. Keywords and phrases: Berezinian, superalgebra, supergeometry, super- calculus. 1 Introduction Linear superalgebra arises in the study of elementary particles and its fields, specially with the introduction of super-symmetry. In nature we can find two classes of elementary particles, in accordance with the statistics of Einstein-Bose and the statistics of Fermi, the bosons and the fermions, respectively. The fields that represent it have a parity, there are bosonic fields (even) and fermionic fields (odd): the former commute with themselves and with the fermionic fields, while the latter anti-commute with themselves. This fields form an algebra, and with the above non-commutativity property they form an algebraic structure ∗Research supported by a CONACyT scholarship. This paper is part of the autor’s M. Sc. thesis presented at the Department of Mathematics of CINVESTAV-IPN. 45 46 Manuel Vladimir Vega Blanco called a which we call a superalgebra. -
Sufficient Generalities About Topological Vector Spaces
(November 28, 2016) Topological vector spaces Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ [This document is http://www.math.umn.edu/~garrett/m/fun/notes 2016-17/tvss.pdf] 1. Banach spaces Ck[a; b] 2. Non-Banach limit C1[a; b] of Banach spaces Ck[a; b] 3. Sufficient notion of topological vector space 4. Unique vectorspace topology on Cn 5. Non-Fr´echet colimit C1 of Cn, quasi-completeness 6. Seminorms and locally convex topologies 7. Quasi-completeness theorem 1. Banach spaces Ck[a; b] We give the vector space Ck[a; b] of k-times continuously differentiable functions on an interval [a; b] a metric which makes it complete. Mere pointwise limits of continuous functions easily fail to be continuous. First recall the standard [1.1] Claim: The set Co(K) of complex-valued continuous functions on a compact set K is complete with o the metric jf − gjCo , with the C -norm jfjCo = supx2K jf(x)j. Proof: This is a typical three-epsilon argument. To show that a Cauchy sequence ffig of continuous functions has a pointwise limit which is a continuous function, first argue that fi has a pointwise limit at every x 2 K. Given " > 0, choose N large enough such that jfi − fjj < " for all i; j ≥ N. Then jfi(x) − fj(x)j < " for any x in K. Thus, the sequence of values fi(x) is a Cauchy sequence of complex numbers, so has a limit 0 0 f(x). Further, given " > 0 choose j ≥ N sufficiently large such that jfj(x) − f(x)j < " . -
Chapter 2: Linear Algebra User's Manual
Preprint typeset in JHEP style - HYPER VERSION Chapter 2: Linear Algebra User's Manual Gregory W. Moore Abstract: An overview of some of the finer points of linear algebra usually omitted in physics courses. May 3, 2021 -TOC- Contents 1. Introduction 5 2. Basic Definitions Of Algebraic Structures: Rings, Fields, Modules, Vec- tor Spaces, And Algebras 6 2.1 Rings 6 2.2 Fields 7 2.2.1 Finite Fields 8 2.3 Modules 8 2.4 Vector Spaces 9 2.5 Algebras 10 3. Linear Transformations 14 4. Basis And Dimension 16 4.1 Linear Independence 16 4.2 Free Modules 16 4.3 Vector Spaces 17 4.4 Linear Operators And Matrices 20 4.5 Determinant And Trace 23 5. New Vector Spaces from Old Ones 24 5.1 Direct sum 24 5.2 Quotient Space 28 5.3 Tensor Product 30 5.4 Dual Space 34 6. Tensor spaces 38 6.1 Totally Symmetric And Antisymmetric Tensors 39 6.2 Algebraic structures associated with tensors 44 6.2.1 An Approach To Noncommutative Geometry 47 7. Kernel, Image, and Cokernel 47 7.1 The index of a linear operator 50 8. A Taste of Homological Algebra 51 8.1 The Euler-Poincar´eprinciple 54 8.2 Chain maps and chain homotopies 55 8.3 Exact sequences of complexes 56 8.4 Left- and right-exactness 56 { 1 { 9. Relations Between Real, Complex, And Quaternionic Vector Spaces 59 9.1 Complex structure on a real vector space 59 9.2 Real Structure On A Complex Vector Space 64 9.2.1 Complex Conjugate Of A Complex Vector Space 66 9.2.2 Complexification 67 9.3 The Quaternions 69 9.4 Quaternionic Structure On A Real Vector Space 79 9.5 Quaternionic Structure On Complex Vector Space 79 9.5.1 Complex Structure On Quaternionic Vector Space 81 9.5.2 Summary 81 9.6 Spaces Of Real, Complex, Quaternionic Structures 81 10.