Chapter 2: Linear Algebra User's Manual
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Superregular Matrices and Applications to Convolutional Codes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositório Institucional da Universidade de Aveiro Superregular matrices and applications to convolutional codes P. J. Almeidaa, D. Nappa, R.Pinto∗,a aCIDMA - Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Aveiro, Portugal. Abstract The main results of this paper are twofold: the first one is a matrix theoretical result. We say that a matrix is superregular if all of its minors that are not trivially zero are nonzero. Given a a × b, a ≥ b, superregular matrix over a field, we show that if all of its rows are nonzero then any linear combination of its columns, with nonzero coefficients, has at least a − b + 1 nonzero entries. Secondly, we make use of this result to construct convolutional codes that attain the maximum possible distance for some fixed parameters of the code, namely, the rate and the Forney indices. These results answer some open questions on distances and constructions of convolutional codes posted in the literature [6, 9]. Key words: convolutional code, Forney indices, optimal code, superregular matrix 2000MSC: 94B10, 15B33, 15B05 1. Introduction Several notions of superregular matrices (or totally positive) have appeared in different areas of mathematics and engineering having in common the specification of some properties regarding their minors [2, 3, 5, 11, 14]. In the context of coding theory these matrices have entries in a finite field F and are important because they can be used to generate linear codes with good distance properties. -
Tight Frames and Their Symmetries
Technical Report 9 December 2003 Tight Frames and their Symmetries Richard Vale, Shayne Waldron Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand e–mail: [email protected] (http:www.math.auckland.ac.nz/˜waldron) e–mail: [email protected] ABSTRACT The aim of this paper is to investigate symmetry properties of tight frames, with a view to constructing tight frames of orthogonal polynomials in several variables which share the symmetries of the weight function, and other similar applications. This is achieved by using representation theory to give methods for constructing tight frames as orbits of groups of unitary transformations acting on a given finite-dimensional Hilbert space. Along the way, we show that a tight frame is determined by its Gram matrix and discuss how the symmetries of a tight frame are related to its Gram matrix. We also give a complete classification of those tight frames which arise as orbits of an abelian group of symmetries. Key Words: Tight frames, isometric tight frames, Gram matrix, multivariate orthogonal polynomials, symmetry groups, harmonic frames, representation theory, wavelets AMS (MOS) Subject Classifications: primary 05B20, 33C50, 20C15, 42C15, sec- ondary 52B15, 42C40 0 1. Introduction u1 u2 u3 2 The three equally spaced unit vectors u1, u2, u3 in IR provide the following redundant representation 2 3 f = f, u u , f IR2, (1.1) 3 h ji j ∀ ∈ j=1 X which is the simplest example of a tight frame. Such representations arose in the study of nonharmonic Fourier series in L2(IR) (see Duffin and Schaeffer [DS52]) and have recently been used extensively in the theory of wavelets (see, e.g., Daubechies [D92]). -
On Supermatrix Operator Semigroups 1. Introduction
Quasigroups and Related Systems 7 (2000), 71 − 88 On supermatrix operator semigroups Steven Duplij Abstract One-parameter semigroups of antitriangle idempotent su- permatrices and corresponding superoperator semigroups are introduced and investigated. It is shown that t-linear idempo- tent superoperators and exponential superoperators are mutu- ally dual in some sense, and the rst give additional to expo- nential dierent solution to the initial Cauchy problem. The corresponding functional equation and analog of resolvent are found for them. Dierential and functional equations for idem- potent (super)operators are derived for their general t power- type dependence. 1. Introduction Operator semigroups [1] play an important role in mathematical physics [2, 3, 4] viewed as a general theory of evolution systems [5, 6, 7]. Its development covers many new elds [8, 9, 10, 11], but one of vital for modern theoretical physics directions supersymmetry and related mathematical structures was not considered before in application to operator semigroup theory. The main dierence between previous considerations is the fact that among building blocks (e.g. elements of corresponding matrices) there exist noninvertible objects (divisors 2000 Mathematics Subject Classication: 25A50, 81Q60, 81T60 Keywords: Cauchy problem, idempotence, semigroup, supermatrix, superspace 72 S. Duplij of zero and nilpotents) which by themselves can form another semi- group. Therefore, we have to take that into account and investigate it properly, which can be called a semigroup × semigroup method. Here we study continuous supermatrix representations of idempo- tent operator semigroups rstly introduced in [12, 13] for bands. Usu- ally matrix semigroups are dened over a eld K [14] (on some non- supersymmetric generalizations of K-representations see [15, 16]). -
Reed-Solomon Code and Its Application 1 Equivalence
IERG 6120 Coding Theory for Storage Systems Lecture 5 - 27/09/2016 Reed-Solomon Code and Its Application Lecturer: Kenneth Shum Scribe: Xishi Wang 1 Equivalence of Codes Two linear codes are said to be equivalent if one of them can be obtained from the other by means of a sequence of transformations of the following types: (i) a permutation of the positions of the code; (ii) multiplication of symbols in a fixed position by a non-zero scalar in F . Note that these transformations can be applied to all code symbols. 2 Reed-Solomon Code In RS code each symbol in the codewords is the evaluation of a polynomial at one point α, namely, 2 1 3 6 α 7 6 2 7 6 α 7 f(α) = c0 c1 c2 ··· ck−1 6 7 : 6 . 7 4 . 5 αk−1 The whole codeword is given by n such evaluations at distinct points α1; ··· ; αn, 2 1 1 ··· 1 3 6 α1 α2 ··· αn 7 6 2 2 2 7 6 α1 α2 ··· αn 7 T f(α1) f(α2) ··· f(αn) = c0 c1 c2 ··· ck−1 6 7 = c G: 6 . .. 7 4 . 5 k−1 k−1 k−1 α1 α2 ··· αn G is the generator matrix of RSq(n; k; d) code. The order of writing down the field elements α1 to αn is not important as far as the code structure is concerned, as any permutation of the αi's give an equivalent code. i j=1;:::;n The generator matrix G is a Vandermonde matrix, which is of the form [aj]i=0;:::;k−1. -
Clifford Algebras, Spinors and Supersymmetry. Francesco Toppan
IV Escola do CBPF – Rio de Janeiro, 15-26 de julho de 2002 Algebraic Structures and the Search for the Theory Of Everything: Clifford algebras, spinors and supersymmetry. Francesco Toppan CCP - CBPF, Rua Dr. Xavier Sigaud 150, cep 22290-180, Rio de Janeiro (RJ), Brazil abstract These lectures notes are intended to cover a small part of the material discussed in the course “Estruturas algebricas na busca da Teoria do Todo”. The Clifford Algebras, necessary to introduce the Dirac’s equation for free spinors in any arbitrary signature space-time, are fully classified and explicitly constructed with the help of simple, but powerful, algorithms which are here presented. The notion of supersymmetry is introduced and discussed in the context of Clifford algebras. 1 Introduction The basic motivations of the course “Estruturas algebricas na busca da Teoria do Todo”consisted in familiarizing graduate students with some of the algebra- ic structures which are currently investigated by theoretical physicists in the attempt of finding a consistent and unified quantum theory of the four known interactions. Both from aesthetic and practical considerations, the classification of mathematical and algebraic structures is a preliminary and necessary require- ment. Indeed, a very ambitious, but conceivable hope for a unified theory, is that no free parameter (or, less ambitiously, just few) has to be fixed, as an external input, due to phenomenological requirement. Rather, all possible pa- rameters should be predicted by the stringent consistency requirements put on such a theory. An example of this can be immediately given. It concerns the dimensionality of the space-time. -
Week 8-9. Inner Product Spaces. (Revised Version) Section 3.1 Dot Product As an Inner Product
Math 2051 W2008 Margo Kondratieva Week 8-9. Inner product spaces. (revised version) Section 3.1 Dot product as an inner product. Consider a linear (vector) space V . (Let us restrict ourselves to only real spaces that is we will not deal with complex numbers and vectors.) De¯nition 1. An inner product on V is a function which assigns a real number, denoted by < ~u;~v> to every pair of vectors ~u;~v 2 V such that (1) < ~u;~v>=< ~v; ~u> for all ~u;~v 2 V ; (2) < ~u + ~v; ~w>=< ~u;~w> + < ~v; ~w> for all ~u;~v; ~w 2 V ; (3) < k~u;~v>= k < ~u;~v> for any k 2 R and ~u;~v 2 V . (4) < ~v;~v>¸ 0 for all ~v 2 V , and < ~v;~v>= 0 only for ~v = ~0. De¯nition 2. Inner product space is a vector space equipped with an inner product. Pn It is straightforward to check that the dot product introduces by ~u ¢ ~v = j=1 ujvj is an inner product. You are advised to verify all the properties listed in the de¯nition, as an exercise. The dot product is also called Euclidian inner product. De¯nition 3. Euclidian vector space is Rn equipped with Euclidian inner product < ~u;~v>= ~u¢~v. De¯nition 4. A square matrix A is called positive de¯nite if ~vT A~v> 0 for any vector ~v 6= ~0. · ¸ 2 0 Problem 1. Show that is positive de¯nite. 0 3 Solution: Take ~v = (x; y)T . Then ~vT A~v = 2x2 + 3y2 > 0 for (x; y) 6= (0; 0). -
Gram Matrix and Orthogonality in Frames 1
U.P.B. Sci. Bull., Series A, Vol. 80, Iss. 1, 2018 ISSN 1223-7027 GRAM MATRIX AND ORTHOGONALITY IN FRAMES Abolhassan FEREYDOONI1 and Elnaz OSGOOEI 2 In this paper, we aim at introducing a criterion that determines if f figi2I is a Bessel sequence, a frame or a Riesz sequence or not any of these, based on the norms and the inner products of the elements in f figi2I. In the cases of Riesz and Bessel sequences, we introduced a criterion but in the case of a frame, we did not find any answers. This criterion will be shown by K(f figi2I). Using the criterion introduced, some interesting extensions of orthogonality will be presented. Keywords: Frames, Bessel sequences, Orthonormal basis, Riesz bases, Gram matrix MSC2010: Primary 42C15, 47A05. 1. Preliminaries Frames are generalizations of orthonormal bases, but, more than orthonormal bases, they have shown their ability and stability in the representation of functions [1, 4, 10, 11]. The frames have been deeply studied from an abstract point of view. The results of such studies have been used in concrete frames such as Gabor and Wavelet frames which are very important from a practical point of view [2, 9, 5, 8]. An orthonormal set feng in a Hilbert space is characterized by a simple relation hem;eni = dm;n: In the other words, the Gram matrix is the identity matrix. Moreover, feng is an orthonor- mal basis if spanfeng = H. But, for frames the situation is more complicated; i.e., the Gram Matrix has no such a simple form. -
Uniqueness of Low-Rank Matrix Completion by Rigidity Theory
UNIQUENESS OF LOW-RANK MATRIX COMPLETION BY RIGIDITY THEORY AMIT SINGER∗ AND MIHAI CUCURINGU† Abstract. The problem of completing a low-rank matrix from a subset of its entries is often encountered in the analysis of incomplete data sets exhibiting an underlying factor model with applications in collaborative filtering, computer vision and control. Most recent work had been focused on constructing efficient algorithms for exact or approximate recovery of the missing matrix entries and proving lower bounds for the number of known entries that guarantee a successful recovery with high probability. A related problem from both the mathematical and algorithmic point of view is the distance geometry problem of realizing points in a Euclidean space from a given subset of their pairwise distances. Rigidity theory answers basic questions regarding the uniqueness of the realization satisfying a given partial set of distances. We observe that basic ideas and tools of rigidity theory can be adapted to determine uniqueness of low-rank matrix completion, where inner products play the role that distances play in rigidity theory. This observation leads to efficient randomized algorithms for testing necessary and sufficient conditions for local completion and for testing sufficient conditions for global completion. Crucial to our analysis is a new matrix, which we call the completion matrix, that serves as the analogue of the rigidity matrix. Key words. Low rank matrices, missing values, rigidity theory, iterative methods, collaborative filtering. AMS subject classifications. 05C10, 05C75, 15A48 1. Introduction. Can the missing entries of an incomplete real valued matrix be recovered? Clearly, a matrix can be completed in an infinite number of ways by replacing the missing entries with arbitrary values. -
5 the Dirac Equation and Spinors
5 The Dirac Equation and Spinors In this section we develop the appropriate wavefunctions for fundamental fermions and bosons. 5.1 Notation Review The three dimension differential operator is : ∂ ∂ ∂ = , , (5.1) ∂x ∂y ∂z We can generalise this to four dimensions ∂µ: 1 ∂ ∂ ∂ ∂ ∂ = , , , (5.2) µ c ∂t ∂x ∂y ∂z 5.2 The Schr¨odinger Equation First consider a classical non-relativistic particle of mass m in a potential U. The energy-momentum relationship is: p2 E = + U (5.3) 2m we can substitute the differential operators: ∂ Eˆ i pˆ i (5.4) → ∂t →− to obtain the non-relativistic Schr¨odinger Equation (with = 1): ∂ψ 1 i = 2 + U ψ (5.5) ∂t −2m For U = 0, the free particle solutions are: iEt ψ(x, t) e− ψ(x) (5.6) ∝ and the probability density ρ and current j are given by: 2 i ρ = ψ(x) j = ψ∗ ψ ψ ψ∗ (5.7) | | −2m − with conservation of probability giving the continuity equation: ∂ρ + j =0, (5.8) ∂t · Or in Covariant notation: µ µ ∂µj = 0 with j =(ρ,j) (5.9) The Schr¨odinger equation is 1st order in ∂/∂t but second order in ∂/∂x. However, as we are going to be dealing with relativistic particles, space and time should be treated equally. 25 5.3 The Klein-Gordon Equation For a relativistic particle the energy-momentum relationship is: p p = p pµ = E2 p 2 = m2 (5.10) · µ − | | Substituting the equation (5.4), leads to the relativistic Klein-Gordon equation: ∂2 + 2 ψ = m2ψ (5.11) −∂t2 The free particle solutions are plane waves: ip x i(Et p x) ψ e− · = e− − · (5.12) ∝ The Klein-Gordon equation successfully describes spin 0 particles in relativistic quan- tum field theory. -
Linear Algebra Handbook
CS419 Linear Algebra January 7, 2021 1 What do we need to know? By the end of this booklet, you should know all the linear algebra you need for CS419. More specifically, you'll understand: • Vector spaces (the important ones, at least) • Dirac (bra-ket) notation and why it's quite nice to use • Linear combinations, linearly independent sets, spanning sets and basis sets • Matrices and linear transformations (they're the same thing) • Changing basis • Inner products and norms • Unitary operations • Tensor products • Why we care about linear algebra 2 Vector Spaces In quantum computing, the `vectors' we'll be working with are going to be made up of complex numbers1. A vector space, V , over C is a set of vectors with the vital property2 that αu + βv 2 V for all α; β 2 C and u; v 2 V . Intuitively, this means we can add together and scale up vectors in V, and we know the result is still in V. Our vectors are going to be lists of n complex numbers, v 2 Cn, and Cn will be our most important vector space. Note we can just as easily define vector spaces over R, the set of real numbers. Over the course of this module, we'll see the reasons3 we use C, but for all this linear algebra, we can stick with R as everyone is happier with real numbers. Rest assured for the entire module, every time you see something like \Consider a vector space V ", this vector space will be Rn or Cn for some n 2 N. -
A List of All the Errata Known As of 19 December 2013
14 Linear Algebra that is nonnegative when the matrices are the same N L N L † ∗ 2 (A, A)=TrA A = AijAij = |Aij| ≥ 0 (1.87) !i=1 !j=1 !i=1 !j=1 which is zero only when A = 0. So this inner product is positive definite. A vector space with a positive-definite inner product (1.73–1.76) is called an inner-product space,ametric space, or a pre-Hilbert space. A sequence of vectors fn is a Cauchy sequence if for every ϵ>0 there is an integer N(ϵ) such that ∥fn − fm∥ <ϵwhenever both n and m exceed N(ϵ). A sequence of vectors fn converges to a vector f if for every ϵ>0 there is an integer N(ϵ) such that ∥f −fn∥ <ϵwhenever n exceeds N(ϵ). An inner-product space with a norm defined as in (1.80) is complete if each of its Cauchy sequences converges to a vector in that space. A Hilbert space is a complete inner-product space. Every finite-dimensional inner-product space is complete and so is a Hilbert space. But the term Hilbert space more often is used to describe infinite-dimensional complete inner-product spaces, such as the space of all square-integrable functions (David Hilbert, 1862–1943). Example 1.17 (The Hilbert Space of Square-Integrable Functions) For the vector space of functions (1.55), a natural inner product is b (f,g)= dx f ∗(x)g(x). (1.88) "a The squared norm ∥ f ∥ of a function f(x)is b ∥ f ∥2= dx |f(x)|2. -
Howe Pairs, Supersymmetry, and Ratios of Random Characteristic
HOWE PAIRS, SUPERSYMMETRY, AND RATIOS OF RANDOM CHARACTERISTIC POLYNOMIALS FOR THE UNITARY GROUPS UN by J.B. Conrey, D.W. Farmer & M.R. Zirnbauer Abstract. — For the classical compact Lie groups K UN the autocorrelation functions of ratios of characteristic polynomials (z,w) Det(z≡ k)/Det(w k) are studied with k K as random variable. Basic to our treatment7→ is a property− shared− by the spinor repre- sentation∈ of the spin group with the Shale-Weil representation of the metaplectic group: in both cases the character is the analytic square root of a determinant or the reciprocal thereof. By combining this fact with Howe’s theory of supersymmetric dual pairs (g,K), we express the K-Haar average product of p ratios of characteristic polynomials and q conjugate ratios as a character χ which is associated with an irreducible representation of χ the Lie superalgebra g = gln n for n = p+q. The primitive character is shown to extend | to an analytic radial section of a real supermanifold related to gln n , and is computed by | invoking Berezin’s description of the radial parts of Laplace-Casimir operators for gln n . The final result for χ looks like a natural transcription of the Weyl character formula| to the context of highest-weight representations of Lie supergroups. While several other works have recently reproduced our results in the stable range N max(p,q), the present approach covers the full range of matrix dimensions N N. ≥To make this paper accessible to the non-expert reader, we have included a chapter∈ containing the required background material from superanalysis.