23. Eigenvalues and Eigenvectors

Total Page:16

File Type:pdf, Size:1020Kb

23. Eigenvalues and Eigenvectors 23. Eigenvalues and Eigenvectors 11/17/20 Eigenvalues and eigenvectors have a variety of uses. They allow us to solve linear difference and differential equations. For many non-linear equations, they inform us about the long-run behavior of the system. They are also useful for defining functions of matrices. 23.1 Eigenvalues We start with eigenvalues. Eigenvalues and Spectrum. Let A be an m m matrix. An eigenvalue (characteristic value, proper value) of A is a number λ so that× A λI is singular. The spectrum of A, σ(A)= {eigenvalues of A}.− Sometimes it’s possible to find eigenvalues by inspection of the matrix. ◮ Example 23.1.1: Some Eigenvalues. Suppose 1 0 2 1 A = , B = . 0 2 1 2 Here it is pretty obvious that subtracting either I or 2I from A yields a singular matrix. As for matrix B, notice that subtracting I leaves us with two identical columns (and rows), so 1 is an eigenvalue. Less obvious is the fact that subtracting 3I leaves us with linearly independent columns (and rows), so 3 is also an eigenvalue. We’ll see in a moment that 2 2 matrices have at most two eigenvalues, so we have determined the spectrum of each:× σ(A)= {1, 2} and σ(B)= {1, 3}. ◭ 2 MATH METHODS 23.2 Finding Eigenvalues: 2 2 × We have several ways to determine whether a matrix is singular. One method is to check the determinant. It is zero if and only the matrix is singular. That means we can find the eigenvalues by solving the equation det(A λI)=0. (23.2.1) − When A is m m, the left hand side of equation (23.2.1) is a polynomial in λ, called the characteristic× polynomial. When A isa2 2 matrix, we have × 0 = det(A λI) − a λ a = 11 − 12 a21 a22 λ − 2 = λ (a11 + a22)λ + (a11a22 a12a21) (23.2.2) − − = p(λ) Here the characteristic equation is a polynomial of degree two, p(λ). It has at most two distinct roots. 23. EIGENVALUES AND EIGENVECTORS 3 23.3 Finding Eigenvalues: m m × Let’s consider the eigenvalues of a general m m matrix. The characteristic equation is × 0 = det(A λI) − a λ a a 11 − 12 ··· 1n a21 a22 λ a2n = . .− ···. .. a a a λ m1 m2 ··· mn − m m m−1 = ( 1) λ + a1λ + + am−1 λ + am − ··· = p(λ) for some numbers a1,...,am. The characteristic polynomial p(λ) is a polynomial of degree m. In general, the characteristic equation of an m m matrix is a polynomial of degree m, with at most m distinct roots. The spectrum× of an m m matrix has at most m elements. × In fact, the Fundamental Theorem of Algebra states that the characteristic polynomial p(λ) can be factored as p(λ) = ( 1)m(λ λ ) (λ λ ) (23.3.3) − − 1 ··· − m where the λi are the (possibly complex) roots of the polynomial, the eigenvalues. They need not be distinct, so the spectrum may include fewer than m points. A and the Characteristic Polynomial. We can also apply the characteristic polynomial p(λ) to the matrix A.1 Then m m m−1 p(A) = ( 1) A + a A + + a − A + a I − 1 ··· m 1 m = ( 1)m(A λ I) (A λ I) − − 1 ··· − m = 0. 1 This is not a proof, which is more involved. 4 MATH METHODS 23.4 Invariance of the Characteristic Polynomial One interesting thing about the characteristic polynomial is that it is the same regardless of the basis used to write the matrix. That’s another way of saying that the characteristic polynomial really belongs the transformation represented by the matrix. Recall our change of basis formula for matrices representing linear transformations in equation (31.11.1). Given a new basis B = {b1,..., bm} with basis matrix B = [b1,..., bm], the matrix in the new coordinates becomes −1 AB = B AEB. (31.11.1) Now −1 det(AB λI) = det(B AEB λI) − − −1 −1 = det(B AEB λB IB) − −1 = det B (AE λI)B − −1 = (det B ) det(AE λI) (det B) − = det(AE λI). − which shows that the characteristic polynomial of a transformation is the same in all bases. 23. EIGENVALUES AND EIGENVECTORS 5 23.5 Coefficients of the Characteristic Polynomial Since the characteristic polynomial is the same in all bases, its coefficients are the same in all bases too. Such numbers are referred to as invariants. We can rewrite equation (23.2.2) to expose two invariants. 0= λ2 λ tr A + det A − where tr A is the trace, the sum of the diagonal elements, tr A = i aii. Both the trace and determinant are independent of the basis used. The coefficient on the λm−1 term is always ( 1)m−1 tr A and the constant term is always det A. P We can use equation− (23.5.4) to write the trace and determinant in terms of eigen- values. p(λ) = ( 1)m(λ λ ) (λ λ ) (23.5.4) − − 1 ··· − m m m = ( 1)m λm λ λ + + ( 1)m λ . − − i ··· − i i i ! X=1 Y=1 It follows that tr A = λ + + λ and det A = λ λ . 1 ··· m 1 ··· m 6 MATH METHODS 23.6 Finding Eigenvectors For each eigenvalue λ there is an eigenspace. It is ker(A λI)= {v Rm : (A λI)v = 0} = {v Rm : Av = λv}. − ∈ − ∈ The non-zero elements of the eigenspace are called eigenvectors. We can find elements of the eigenspace for eigenvalue λ by solving the equation (A λI)v = 0 or Av = λv − ◮ Example 23.6.1: Some Eigenvectors. Consider the matrices from Example 23.1.1. 1 0 2 1 A = , B = . 0 2 1 2 We set 0 0 v 0 0 = (A I)v = 1 = . − 0 1 v2 v2 Since v2 = 0, the eigenspace consists of vectors of the form (v1, 0) for λ = 1. Now for λ = 2, we set 1 0 v v 0 = (A 2I)v = − 1 = − 1 . − 0 0 v2 0 Now v1 = 0, so vectors of the form (0, v2) comprise the eigenspace for λ = 2. As for B, σ(B)= {1, 3} so we examine 1 1 v v + v 0 = (B I)v = 1 = 1 2 − 1 1 v2 v1 + v2 Here v = v so eigenvectors for λ = 1 have the form v (1, 1). As for λ = 3, 2 − 1 1 − 1 1 v v + v 0 = (B 3I)v = − 1 = − 1 2 − 1 1 v2 v1 v2 − − and the eigenvectors have the form v1(1, 1). ◭ 23. EIGENVALUES AND EIGENVECTORS 7 23.7 Complex Eigenvectors Even when we are dealing with a real matrix, the eigenvalues and eigenvectors can be complex. Consider 0 1 A = , which obeys A2 = I. 1 0 − − The characteristic polynomial is λ 1 p(λ) = det(A λI)= A = − = λ2 +1. − 1 λ − − It follows that the eigenvalues are purely imaginary number s, σ(A)= {+i, i}. To find the corresponding eigenvectors, we first set − i 1 iu + u 0 (A iI)u = − u = − 1 2 = − 1 i u1 iu2 0 − − − − with solution u = (i, 1). Then set i 1 iv + v 0 (A + iI)u = u = 1 2 = 1 i v1 + iv2 0 − − with solution v = ( i, 1). Notice that we found− eigenvectors that are complex conjugates of one another. It is always possible to do this, although it is not necessary because we can always multiply one of them by any non-zero complex number to get another eigenvector. Theorem 23.7.1. Suppose a matrix A has real entries. If λ1 is a complex eigenvalue, then so is λ1. If u is a eigenvector corresponding to λ1, then u is an eigenvector corresponding to λ1. Proof. Since A has real entries, the characteristic polynomial p(λ) has real coefficients. Then p(λ1)=0= p(λ1) showing that λ1 is an eigenvalue if λ1 is an eigenvalue. Now suppose u is an eigenvector for λ1. Then Au = λ1u. It follows that Au = λ1u by conjugation Au = λ1u since A is real showing that u is a eigenvector for λ1. 8 MATH METHODS 23.8 The Leslie Population Model Simon and Blume employ a form of Leslie population model to show how eigenvalues and eigenvectors can be used. We too will examine that, but do things a bit differently to highlight the role of eigenvalues and eigenvectors. This simple version of the Leslie model involves an organism that lies for exactly two th years. Let bi be the birth rate to individuals in their i year, i =1, 2, and di the death rate in each year. Survival in each year is (1 d ) and the fact that the organism lives − i at most two years means that d2 = 1. Let xn be the number of individuals in their first year in year n and yn be the number in their second (and final) year in year n. The following difference equations describe the evolution of the system. xn+1 = b1xn + b2yn y = (1 d )x + (1 d )y = (1 d )x . n+1 − 1 n − 2 n − 1 n since d2 = 1. Write this in matrix form as x b b x n+1 = 1 2 n . yn+1 1 d1 0 yn − Consider the case b1 = 1, b2 = 4, d1 = 1/2, and of course d2 = 1. The system becomes x 1 4 x x n+1 = n = A n . (23.8.5) yn+1 1/2 0 yn yn Notice that the solution to this dynamical system is already clear.
Recommended publications
  • Linear Algebra Handbook
    CS419 Linear Algebra January 7, 2021 1 What do we need to know? By the end of this booklet, you should know all the linear algebra you need for CS419. More specifically, you'll understand: • Vector spaces (the important ones, at least) • Dirac (bra-ket) notation and why it's quite nice to use • Linear combinations, linearly independent sets, spanning sets and basis sets • Matrices and linear transformations (they're the same thing) • Changing basis • Inner products and norms • Unitary operations • Tensor products • Why we care about linear algebra 2 Vector Spaces In quantum computing, the `vectors' we'll be working with are going to be made up of complex numbers1. A vector space, V , over C is a set of vectors with the vital property2 that αu + βv 2 V for all α; β 2 C and u; v 2 V . Intuitively, this means we can add together and scale up vectors in V, and we know the result is still in V. Our vectors are going to be lists of n complex numbers, v 2 Cn, and Cn will be our most important vector space. Note we can just as easily define vector spaces over R, the set of real numbers. Over the course of this module, we'll see the reasons3 we use C, but for all this linear algebra, we can stick with R as everyone is happier with real numbers. Rest assured for the entire module, every time you see something like \Consider a vector space V ", this vector space will be Rn or Cn for some n 2 N.
    [Show full text]
  • Lecture 6 — Generalized Eigenspaces & Generalized Weight
    18.745 Introduction to Lie Algebras September 28, 2010 Lecture 6 | Generalized Eigenspaces & Generalized Weight Spaces Prof. Victor Kac Scribe: Andrew Geng and Wenzhe Wei Definition 6.1. Let A be a linear operator on a vector space V over field F and let λ 2 F, then the subspace N Vλ = fv j (A − λI) v = 0 for some positive integer Ng is called a generalized eigenspace of A with eigenvalue λ. Note that the eigenspace of A with eigenvalue λ is a subspace of Vλ. Example 6.1. A is a nilpotent operator if and only if V = V0. Proposition 6.1. Let A be a linear operator on a finite dimensional vector space V over an alge- braically closed field F, and let λ1; :::; λs be all eigenvalues of A, n1; n2; :::; ns be their multiplicities. Then one has the generalized eigenspace decomposition: s M V = Vλi where dim Vλi = ni i=1 Proof. By the Jordan normal form of A in some basis e1; e2; :::en. Its matrix is of the following form: 0 1 Jλ1 B Jλ C A = B 2 C B .. C @ . A ; Jλn where Jλi is an ni × ni matrix with λi on the diagonal, 0 or 1 in each entry just above the diagonal, and 0 everywhere else. Let Vλ1 = spanfe1; e2; :::; en1 g;Vλ2 = spanfen1+1; :::; en1+n2 g; :::; so that Jλi acts on Vλi . i.e. Vλi are A-invariant and Aj = λ I + N , N nilpotent. Vλi i ni i i From the above discussion, we obtain the following decomposition of the operator A, called the classical Jordan decomposition A = As + An where As is the operator which in the basis above is the diagonal part of A, and An is the rest (An = A − As).
    [Show full text]
  • Calculus and Differential Equations II
    Calculus and Differential Equations II MATH 250 B Linear systems of differential equations Linear systems of differential equations Calculus and Differential Equations II Second order autonomous linear systems We are mostly interested with2 × 2 first order autonomous systems of the form x0 = a x + b y y 0 = c x + d y where x and y are functions of t and a, b, c, and d are real constants. Such a system may be re-written in matrix form as d x x a b = M ; M = : dt y y c d The purpose of this section is to classify the dynamics of the solutions of the above system, in terms of the properties of the matrix M. Linear systems of differential equations Calculus and Differential Equations II Existence and uniqueness (general statement) Consider a linear system of the form dY = M(t)Y + F (t); dt where Y and F (t) are n × 1 column vectors, and M(t) is an n × n matrix whose entries may depend on t. Existence and uniqueness theorem: If the entries of the matrix M(t) and of the vector F (t) are continuous on some open interval I containing t0, then the initial value problem dY = M(t)Y + F (t); Y (t ) = Y dt 0 0 has a unique solution on I . In particular, this means that trajectories in the phase space do not cross. Linear systems of differential equations Calculus and Differential Equations II General solution The general solution to Y 0 = M(t)Y + F (t) reads Y (t) = C1 Y1(t) + C2 Y2(t) + ··· + Cn Yn(t) + Yp(t); = U(t) C + Yp(t); where 0 Yp(t) is a particular solution to Y = M(t)Y + F (t).
    [Show full text]
  • SUPPLEMENT on EIGENVALUES and EIGENVECTORS We Give
    SUPPLEMENT ON EIGENVALUES AND EIGENVECTORS We give some extra material on repeated eigenvalues and complex eigenvalues. 1. REPEATED EIGENVALUES AND GENERALIZED EIGENVECTORS For repeated eigenvalues, it is not always the case that there are enough eigenvectors. Let A be an n × n real matrix, with characteristic polynomial m1 mk pA(λ) = (λ1 − λ) ··· (λk − λ) with λ j 6= λ` for j 6= `. Use the following notation for the eigenspace, E(λ j ) = {v : (A − λ j I)v = 0 }. We also define the generalized eigenspace for the eigenvalue λ j by gen m j E (λ j ) = {w : (A − λ j I) w = 0 }, where m j is the multiplicity of the eigenvalue. A vector in E(λ j ) is called a generalized eigenvector. The following is a extension of theorem 7 in the book. 0 m1 mk Theorem (7 ). Let A be an n × n matrix with characteristic polynomial pA(λ) = (λ1 − λ) ··· (λk − λ) , where λ j 6= λ` for j 6= `. Then, the following hold. gen (a) dim(E(λ j )) ≤ m j and dim(E (λ j )) = m j for 1 ≤ j ≤ k. If λ j is complex, then these dimensions are as subspaces of Cn. gen n (b) If B j is a basis for E (λ j ) for 1 ≤ j ≤ k, then B1 ∪ · · · ∪ Bk is a basis of C , i.e., there is always a basis of generalized eigenvectors for all the eigenvalues. If the eigenvalues are all real all the vectors are real, then this gives a basis of Rn. (c) Assume A is a real matrix and all its eigenvalues are real.
    [Show full text]
  • Math 2280 - Lecture 23
    Math 2280 - Lecture 23 Dylan Zwick Fall 2013 In our last lecture we dealt with solutions to the system: ′ x = Ax where A is an n × n matrix with n distinct eigenvalues. As promised, today we will deal with the question of what happens if we have less than n distinct eigenvalues, which is what happens if any of the roots of the characteristic polynomial are repeated. This lecture corresponds with section 5.4 of the textbook, and the as- signed problems from that section are: Section 5.4 - 1, 8, 15, 25, 33 The Case of an Order 2 Root Let’s start with the case an an order 2 root.1 So, our eigenvalue equation has a repeated root, λ, of multiplicity 2. There are two ways this can go. The first possibility is that we have two distinct (linearly independent) eigenvectors associated with the eigen- value λ. In this case, all is good, and we just use these two eigenvectors to create two distinct solutions. 1Admittedly, not one of Sherlock Holmes’s more popular mysteries. 1 Example - Find a general solution to the system: 9 4 0 ′ x = −6 −1 0 x 6 4 3 Solution - The characteristic equation of the matrix A is: |A − λI| = (5 − λ)(3 − λ)2. So, A has the distinct eigenvalue λ1 = 5 and the repeated eigenvalue λ2 =3 of multiplicity 2. For the eigenvalue λ1 =5 the eigenvector equation is: 4 4 0 a 0 (A − 5I)v = −6 −6 0 b = 0 6 4 −2 c 0 which has as an eigenvector 1 v1 = −1 .
    [Show full text]
  • Chapter 2: Linear Algebra User's Manual
    Preprint typeset in JHEP style - HYPER VERSION Chapter 2: Linear Algebra User's Manual Gregory W. Moore Abstract: An overview of some of the finer points of linear algebra usually omitted in physics courses. May 3, 2021 -TOC- Contents 1. Introduction 5 2. Basic Definitions Of Algebraic Structures: Rings, Fields, Modules, Vec- tor Spaces, And Algebras 6 2.1 Rings 6 2.2 Fields 7 2.2.1 Finite Fields 8 2.3 Modules 8 2.4 Vector Spaces 9 2.5 Algebras 10 3. Linear Transformations 14 4. Basis And Dimension 16 4.1 Linear Independence 16 4.2 Free Modules 16 4.3 Vector Spaces 17 4.4 Linear Operators And Matrices 20 4.5 Determinant And Trace 23 5. New Vector Spaces from Old Ones 24 5.1 Direct sum 24 5.2 Quotient Space 28 5.3 Tensor Product 30 5.4 Dual Space 34 6. Tensor spaces 38 6.1 Totally Symmetric And Antisymmetric Tensors 39 6.2 Algebraic structures associated with tensors 44 6.2.1 An Approach To Noncommutative Geometry 47 7. Kernel, Image, and Cokernel 47 7.1 The index of a linear operator 50 8. A Taste of Homological Algebra 51 8.1 The Euler-Poincar´eprinciple 54 8.2 Chain maps and chain homotopies 55 8.3 Exact sequences of complexes 56 8.4 Left- and right-exactness 56 { 1 { 9. Relations Between Real, Complex, And Quaternionic Vector Spaces 59 9.1 Complex structure on a real vector space 59 9.2 Real Structure On A Complex Vector Space 64 9.2.1 Complex Conjugate Of A Complex Vector Space 66 9.2.2 Complexification 67 9.3 The Quaternions 69 9.4 Quaternionic Structure On A Real Vector Space 79 9.5 Quaternionic Structure On Complex Vector Space 79 9.5.1 Complex Structure On Quaternionic Vector Space 81 9.5.2 Summary 81 9.6 Spaces Of Real, Complex, Quaternionic Structures 81 10.
    [Show full text]
  • Eigenvalues and Eigenvectors MAT 67L, Laboratory III
    Eigenvalues and Eigenvectors MAT 67L, Laboratory III Contents Instructions (1) Read this document. (2) The questions labeled \Experiments" are not graded, and should not be turned in. They are designed for you to get more practice with MATLAB before you start working on the programming problems, and they reinforce mathematical ideas. (3) A subset of the questions labeled \Problems" are graded. You need to turn in MATLAB M-files for each problem via Smartsite. You must read the \Getting started guide" to learn what file names you must use. Incorrect naming of your files will result in zero credit. Every problem should be placed is its own M-file. (4) Don't forget to have fun! Eigenvalues One of the best ways to study a linear transformation f : V −! V is to find its eigenvalues and eigenvectors or in other words solve the equation f(v) = λv ; v 6= 0 : In this MATLAB exercise we will lead you through some of the neat things you can to with eigenvalues and eigenvectors. First however you need to teach MATLAB to compute eigenvectors and eigenvalues. Lets briefly recall the steps you would have to perform by hand: As an example lets take the matrix of a linear transformation f : R3 ! R3 to be (in the canonical basis) 01 2 31 M := @2 4 5A : 3 5 6 The steps to compute eigenvalues and eigenvectors are (1) Calculate the characteristic polynomial P (λ) = det(M − λI) : (2) Compute the roots λi of P (λ). These are the eigenvalues. (3) For each of the eigenvalues λi calculate ker(M − λiI) : The vectors of any basis for for ker(M − λiI) are the eigenvectors corresponding to λi.
    [Show full text]
  • Eigenvalues and Eigenvectors
    Eigenvalues and eigenvectors Definition: For a vector space V over a field K and a linear map f : V → V , the eigenvalue of f is any λ ∈ K for which exists a vector u ∈ V \ 0 such that f (u) = λu. The eigenvector corresponding to an eigenvalue λ is any vector u such that f (u) = λu. If V is of finite dimension n, then f can be represented n×n by the matrix A = [f ]XX ∈ K w.r.t. some basis X of V . n This way we get eigenvalues λ ∈ K and eigenvectors x ∈ K of matrices — these shall satisfy Ax = λx. The collection of all eigenvalues of a matrix is its spectrum. Examples — a linear map in the plane R2 The axis symmetry by the axis of the 2nd and 4th quadrant x x 1 2 0 −1 [f ] = KK −1 0 T λ1 = 1 x1 = c · (−1, 1) T λ2 = −1 x2 = c · (1, 1) The rotation by the right angle 0 1 [f ] = KK −1 0 No real eigenvalues nor eigenvectors exist. The projection onto the first coordinate x 1 1 0 [f ] = KK 0 0 x2 T λ1 = 0 x1 = c · (0, 1) T λ2 = 1 x2 = c · (1, 0) Scaling by the factor2 f (u) 2 0 [f ] = u KK 0 2 λ1 = 2 Every vector is an eigenvector. A linear map given by a matrix x1 f (u) 1 0 [f ]KK = u 1 1 T λ1 = 1 x1 = c · (0, 1) Eigenvectors and eigenvalues of a diagonal matrix D The equation d1,1 0 ..
    [Show full text]
  • CLUSTER MONOMIALS ARE DUAL CANONICAL Contents 1. Introduction 1 2. the Quantum Group 3 3. Bases of Canonical Type 4 4. Generalis
    CLUSTER MONOMIALS ARE DUAL CANONICAL PETER J MCNAMARA Abstract. Kang, Kashiwara, Kim and Oh have proved that cluster monomials lie in the dual canonical basis, under a symmetric type assumiption. This involves constructing a monoidal categorification of a quantum cluster algebra using representations of KLR alge- bras. We use a folding technique to generalise their results to all Lie types. Contents 1. Introduction 1 2. The quantum group 3 3. Bases of canonical type 4 4. Generalised minors 6 5. KLR algebras with automorphism 7 6. The Grothendieck group construction 9 7. Induction, restriction and duality 9 8. Cuspidal modules 10 9. The quantum unipotent ring and its categorification 12 10. R-matrices 13 11. Reduction modulo p 14 12. Quantum cluster algebras 16 13. The initial quiver 17 14. Seeds with automorphism 18 15. The initial seed 19 16. Cluster mutation 23 17. Decategorification 24 18. Conclusion 27 References 28 1. Introduction Let G be a Kac-Moody group, w an element of its Weyl group. Then asssociated to w and G there is a unipotent subgroup N(w), whose Lie algebra is spanned by the positive roots α such that wα is negative. Its coordinate ring C[N(w)] has a natural structure of a cluster algebra [GLS11]. This story generalises to the quantum setting [GLS13a, GY1], where the Date: August 25, 2020. 1 2 PETER J MCNAMARA quantised coordinate ring Aq(n(w)) has a quantum cluster algebra structure. In this paper, we work with the quantum version. However, for this introduction, we shall continue with the classical story.
    [Show full text]
  • Topology and Bifurcations in Hamiltonian Coupled Cell Systems
    To appear in Dynamical Systems: An International Journal Vol. 00, No. 00, Month 20XX, 1–22 Topology and Bifurcations in Hamiltonian Coupled Cell Systems a b c B.S. Chan and P.L. Buono and A. Palacios ∗ aDepartment of Mathematics,San Diego State University, San Diego, CA 92182; bFaculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St N, Oshawa, ON L1H 7K4, Canada; cDepartment of Mathematics,San Diego State University, San Diego, CA 92182 (v5.0 released February 2015) The coupled cell formalism is a systematic way to represent and study coupled nonlinear differential equations using directed graphs. In this work, we focus on coupled cell systems in which individual cells are also Hamiltonian. We show that some coupled cell systems do not admit Hamiltonian vector fields because the associated directed graphs are incompatible. In broad terms, we prove that only sys- tems with bidirectionally coupled digraphs can be Hamiltonian. Aside from the topological criteria, we also study the linear theory of regular Hamiltonian coupled cell systems, i.e., systems with only one type of node and one type of coupling. We show that the eigenspace at a codimension one bifurcation from a synchronous equilibrium of a regular Hamiltonian network can be expressed in terms of the eigenspaces of the adjacency matrix of the associated directed graph. We then prove results on steady-state bifurca- tions and a version of the Hamiltonian Hopf theorem. Keywords: Hamiltonian systems; coupled cells; bifurcations; nonlinear oscillators 37C80; 37G40; 34C14; 37K05 1. Introduction The study of coupled systems of differential equations, also known as coupled cell systems, received much attention recently with various theories and approaches being developed con- currently [1–5].
    [Show full text]
  • Math 4571 – Lecture 25
    Math 4571 { Lecture 25 Math 4571 (Advanced Linear Algebra) Lecture #25 Generalized Eigenvectors: Jordan-Block Matrices and the Jordan Canonical Form Generalized Eigenvectors Generalized Eigenspaces and the Spectral Decomposition This material represents x4.3.1 from the course notes. Math 4571 { Lecture 25 Jordan Canonical Form, I In the last lecture, we discussed diagonalizability and showed that there exist matrices that are not conjugate to any diagonal matrix. For computational purposes, however, we might still like to know what the simplest form to which a non-diagonalizable matrix is similar. The answer is given by what is called the Jordan canonical form, which we now describe. Important Note: The proofs of the results in this lecture are fairly technical, and it is NOT necessary to follow all of the details. The important part is to understand what the theorems say. Math 4571 { Lecture 25 Jordan Canonical Form, II Definition The n × n Jordan block with eigenvalue λ is the n × n matrix J having λs on the diagonal, 1s directly above the diagonal, and zeroes elsewhere. Here are the general Jordan block matrices of sizes 2, 3, 4, and 5: 2 λ 1 0 0 0 3 2 λ 1 0 0 3 2 λ 1 0 3 0 λ 1 0 0 λ 1 0 λ 1 0 6 7 , 0 λ 1 , 6 7, 6 0 0 λ 1 0 7. 0 λ 4 5 6 0 0 λ 1 7 6 7 0 0 λ 4 5 6 0 0 0 λ 1 7 0 0 0 λ 4 5 0 0 0 0 λ Math 4571 { Lecture 25 Jordan Canonical Form, III Definition A matrix is in Jordan canonical form if it is a block-diagonal matrix 2 3 J1 6 J2 7 6 7, where each J ; ··· ; J is a Jordan block 6 .
    [Show full text]
  • Modules and Matrices
    Chapter I Modules and matrices Apart from the general reference given in the Introduction, for this Chapter we refer in particular to [8] and [20]. Let R be a ring with 1 6= 0. We assume most definitions and basic notions concerning left and right modules over R and recall just a few facts. If M is a left R-module, then for every m 2 M the set Ann (m) := fr 2 R j rm = 0M g T is a left ideal of R. Moreover Ann (M) = m2M Ann (m) is an ideal of R. The module M is torsion free if Ann (m) = f0g for all non-zero m 2 M. The regular module RR is the additive group (R; +) considered as a left R-module with respect to the ring product. The submodules of RR are precisely the left ideals of R. A finitely generated R-module is free if it is isomorphic to the direct sum of n copies of RR, for some natural number n. Namely if it is isomorphic to the module n (0.1) (RR) := RR ⊕ · · · ⊕R R | {z } n times in which the operations are performed component-wise. If R is commutative, then n ∼ m (RR) = (RR) only if n = m. So, in the commutative case, the invariant n is called n n the rank of (RR) . Note that (RR) is torsion free if and only if R has no zero-divisors. The aim of this Chapter is to determine the structure of finitely generated modules over a principal ideal domain (which are a generalization of finite dimensional vector spaces) and to describe some applications.
    [Show full text]