Dsm Super Vector Space of Refined Labels

Total Page:16

File Type:pdf, Size:1020Kb

Dsm Super Vector Space of Refined Labels W. B. Vasantha Kandasamy Florentin Smarandache ZIP PUBLISHING Ohio 2011 This book can be ordered from: Zip Publishing 1313 Chesapeake Ave. Columbus, Ohio 43212, USA Toll Free: (614) 485-0721 E-mail: [email protected] Website: www.zippublishing.com Copyright 2011 by Zip Publishing and the Authors Peer reviewers: Prof. Catalin Barbu, V. Alecsandri National College, Mathematics Department, Bacau, Romania Prof. Zhang Wenpeng, Department of Mathematics, Northwest University, Xi’an, Shaanxi, P.R.China. Prof. Mihàly Bencze, Department of Mathematics Áprily Lajos College, Bra2ov, Romania Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm ISBN-13: 978-1-59973-167-4 EAN: 9781599731674 Printed in the United States of America 2 5 7 1.1 Supermatrices and their Properties 7 1.2 Refined Labels and Ordinary Labels and their Properties 30 37 65 101 3 165 245 247 289 293 297 4 In this book authors for the first time introduce the notion of supermatrices of refined labels. Authors prove super row matrix of refined labels form a group under addition. However super row matrix of refined labels do not form a group under product; it only forms a semigroup under multiplication. In this book super column matrix of refined labels and m × n matrix of refined labels are introduced and studied. We mainly study this to introduce to super vector space of refined labels using matrices. We in this book introduce the notion of semifield of refined labels using which we define for the first time the notion of supersemivector spaces of refined labels. Several interesting properties in this direction are defined and derived. 5 We suggest over hundred problems some of which are simple some at research level and some difficult. We give some applications but we are sure in due course when these new notions become popular among researchers they will find lots of applications. This book has five chapters. First chapter is introductory in nature, second chapter introduces super matrices of refined labels and algebraic structures on these supermatrices of refined labels. All possible operations are on these supermatrices of refined labels is discussed in chapter three. Forth chapter introduces the notion of supermatrix of refined label vector spaces. Super matrix of refined labels of semivector spaces is introduced and studied and analysed in chapter five. Chapter six suggests the probable applications of these new structures. The final chapter suggests over hundred problems. We also thank Dr. K.Kandasamy for proof reading and being extremely supportive. 6 This chapter has two sections. In section one we introduce the notion of super matrices and illustrate them by some examples. Using these super matrices super matrix labels are constructed in later chapters. Section two recalls the notion of ordinary labels, refined labels and partially ordered labels and illustrate them with examples. These concepts are essential to make this book a self contained one. For more refer [47-8]. !"#$! %!# We call the usual matrix A = (aij) where aij ∈ R or Q or Z or Zn as a simple matrix. A simple matrix can be a square matrix like F 3021V G W G −−47 80W A = G 0219− W G W HG 201/40XW or a rectangular matrix like 7 F 8071 7 3V G W G−258 0 9 5W G W B = G 014− 3 0 7W G W G−720 5 2 0W HG 101− 2 1 8XW or a row matrix like T = (9, 2 , -7, 3, -5, − 7 , 8, 0, 1, 2) or a column matrix like F 2 V G W G 0 W G W G 7 W G −8 W P = G W . G 3 W G 2 W G W G 51W G W H 9 X So one can define a super matrix as a matrix whose elements are submatrices. For instance FaaV G 11 12 W A = Gaa21 22 W G W Haa31 32 X where FV90 F 378V F84− V GW G− W G W a11 = GW12, a12 = G 10 9W , a21 = G45W , HXGW57− HG 27− 6XW HG12XW FV93 F920V GW− G W GW12 F12 3V G012W GWG W G W a31 = 37− , a22 = 45 0 and a32 = 304 GWG W G W GW−90 HG08− 1XW G057W GW G W HX08 H800X 8 are submatrices. So submatrices are associated with a super matrix [47]. The height of a super matrix is the number of rows of submatrices in it and the width of a super matrix is the number of columns of submatrices in it [47]. We obtain super matrix from a simple matrix. This process of constructing super matrix from a simple matrix will be known as the partitioning. A simple matrix is partitioned by dividing or separating the simple matrix of a specified row and specified column. When division is carried out only between the columns then those matrices are called as super row vectors; when only rows are partitioned in simple matrices we call those simple matrices as super column vectors. We will first illustrate this situation by some simple examples. Example 1.1.1: Let FV07578423012 GW A = GW23034567890 HXGW51311121314 be a 3 × 11 simple matrix. The super matrix or the super row vector is obtained by partitioning between the columns. FV07578423012 GW A1 = GW23034567890 HXGW51311121314 is a super row vector. FV07578423012 GW A2 = GW23034567890 HXGW51311121314 is a super row vector. We can get several super row vectors from one matrix A. Example 1.1.2: Let V = (1 2 3 4 5 6 7 8 9 1 0 9 4 7 2 4 3) be a simple row vector we get a super row vector V1 = (1 2 3 | 4 5 6 | 7 8 9 1 0 | 9 4 7 | 2 4 3) and many more super row vectors can be found by partitioning V differently. 9 Example 1.1.3: Let F301V G W G057W G123W G W V = G457W G890W G W G107W G W H014X be a simple matrix. We get the super column vector by partitioning in between the columns as follows: FV301 F301V GW G W GW057 G057W GW123 G123W GW G W V1 = GW457 and V2 = G457W GW 890 G890W GW G W GW107 G107W GW G W HX014 H014X are super column vectors. Example 1.1.4: Let F1V G W G2W G3W G W G4W G5W X = G W G6W G W G7W G8W G W G9W HG0XW be a simple matrix. 10 F1V G W G2W G3W G W G4W G5W X′ = G W G6W G W G7W G8W G W G9W HG0XW is a super column vector. We can get several such super column vectors using X. Example 1.1.5: Let us consider the simple matrix; F01 2 3 4 5V G W 6 7 8 9 10 11 P = G W , G14−− 8 4 7 3W G W H25 1− 5 8 2X we get the super matrix by partitioning P as follows: F01 2 3 4 5V G W G6 7 8 9 10 11W P1 = G14−− 8 4 7 3W G W H25 1− 5 8 2X is a super matrix with 6 submatrices. FV012 F3V F 45V a1 = GW, a2 = G W , a3 = G W , HX678 H9X H10 11X FV14− 8 F−4V F73V a4 = GW, a5 = G W and a6 = G W . HX25 1 H−5X H82X FV aaa123 Thus P1 = GW. Clearly P1 is a 4 × 6 matrix. HXaaa456 11 Example 1.1.6: Let F3631V G W 1382− V = G W G2493W G W H7144− X be a super matrix. FaaV V = G 12W Haa34X where a1, a2, a3 and a4 are submatrices with FV36 F31V F24V F93V a1 = GW, a2 = G W , a3 = G W and a4 = G W . HX13− H82X H71− X H44X We can also have the notion of super identity matrix as follows. Let FI V G t1 W G I0 W S = t2 G W G W G 0IW H tr X where I are identity matrices of order ti × ti where 1 < i < r. ti We will just illustrate this situation by some examples. Consider FVFVFV1000 000 GWGWGW GWGWGW0100 000 GWGWGW0010 000 GWGWGWFI0V P = GWHXHX0001 000 = G 4 W GWH 0I3 X GWFVFV0000 100 GWGW GW0000 010 GWGWGW HXGWHXHXGWGW0000 001 is a identity super diagonal matrix. 12 Consider FVFVF10 000 VFV 00 GWGWG WGW GWHXH01 000 XHX 00 GW FVF00 100 VFV 00 FI00V GWGWG WGWG 2 W GW S = GWG00 010 WGW 00 = G 0I3 0W GWGWG WGWG W GWHXH00 001 XHX 00 H 00I2 X GWFVF00 000 VFV 10 GWGWG WGW HXGWHXH00 000 XHX 01 is the super diagonal identity matrix [47]. We now proceed onto recall the notion of general diagonal super matrices. Let FV30 0 00 0 GW GW170000 GW890000 GWFm0V S = GW12 0 00 0 = G 1 W H 0mX GW34 0 00 0 2 GW GW00 4 53 2 GW HX00−− 107 4 where FV30 GW 17 GW F V GW 4532 m1 = 89 amd m2 = G W , GW H−−107 4X GW12 HXGW34 S is a general diagonal super matrix. Take FV3457840000 GW GW1240310000 GW0102050000 Fk0V K = GW = G 1 W GW0000009620 H 0k2 X GW0000000412 GW HXGW0000005781 13 is a general diagonal super matrix. Also take F1000V G W G1000W G0000W G W G0100W G0100W G W G0010W V = G W G0010W G0010W G W G0010W G0001W G W G0001W HG0001XW is again a general diagonal super matrix. Now [47] defines also the concept of partial triangular matrix as a super matrix. Consider FV6214621 GW GW0789034 S = = [M1 M2] GW0014405 GW HX0003789 is a upper partial triangular super matrix.
Recommended publications
  • An Introduction to Operad Theory
    AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification.
    [Show full text]
  • On Supermatrix Operator Semigroups 1. Introduction
    Quasigroups and Related Systems 7 (2000), 71 − 88 On supermatrix operator semigroups Steven Duplij Abstract One-parameter semigroups of antitriangle idempotent su- permatrices and corresponding superoperator semigroups are introduced and investigated. It is shown that t-linear idempo- tent superoperators and exponential superoperators are mutu- ally dual in some sense, and the rst give additional to expo- nential dierent solution to the initial Cauchy problem. The corresponding functional equation and analog of resolvent are found for them. Dierential and functional equations for idem- potent (super)operators are derived for their general t power- type dependence. 1. Introduction Operator semigroups [1] play an important role in mathematical physics [2, 3, 4] viewed as a general theory of evolution systems [5, 6, 7]. Its development covers many new elds [8, 9, 10, 11], but one of vital for modern theoretical physics directions supersymmetry and related mathematical structures was not considered before in application to operator semigroup theory. The main dierence between previous considerations is the fact that among building blocks (e.g. elements of corresponding matrices) there exist noninvertible objects (divisors 2000 Mathematics Subject Classication: 25A50, 81Q60, 81T60 Keywords: Cauchy problem, idempotence, semigroup, supermatrix, superspace 72 S. Duplij of zero and nilpotents) which by themselves can form another semi- group. Therefore, we have to take that into account and investigate it properly, which can be called a semigroup × semigroup method. Here we study continuous supermatrix representations of idempo- tent operator semigroups rstly introduced in [12, 13] for bands. Usu- ally matrix semigroups are dened over a eld K [14] (on some non- supersymmetric generalizations of K-representations see [15, 16]).
    [Show full text]
  • Howe Pairs, Supersymmetry, and Ratios of Random Characteristic
    HOWE PAIRS, SUPERSYMMETRY, AND RATIOS OF RANDOM CHARACTERISTIC POLYNOMIALS FOR THE UNITARY GROUPS UN by J.B. Conrey, D.W. Farmer & M.R. Zirnbauer Abstract. — For the classical compact Lie groups K UN the autocorrelation functions of ratios of characteristic polynomials (z,w) Det(z≡ k)/Det(w k) are studied with k K as random variable. Basic to our treatment7→ is a property− shared− by the spinor repre- sentation∈ of the spin group with the Shale-Weil representation of the metaplectic group: in both cases the character is the analytic square root of a determinant or the reciprocal thereof. By combining this fact with Howe’s theory of supersymmetric dual pairs (g,K), we express the K-Haar average product of p ratios of characteristic polynomials and q conjugate ratios as a character χ which is associated with an irreducible representation of χ the Lie superalgebra g = gln n for n = p+q. The primitive character is shown to extend | to an analytic radial section of a real supermanifold related to gln n , and is computed by | invoking Berezin’s description of the radial parts of Laplace-Casimir operators for gln n . The final result for χ looks like a natural transcription of the Weyl character formula| to the context of highest-weight representations of Lie supergroups. While several other works have recently reproduced our results in the stable range N max(p,q), the present approach covers the full range of matrix dimensions N N. ≥To make this paper accessible to the non-expert reader, we have included a chapter∈ containing the required background material from superanalysis.
    [Show full text]
  • Equivariant De Rham Cohomology and Gauged Field Theories
    Equivariant de Rham cohomology and gauged field theories August 15, 2013 Contents 1 Introduction 2 1.1 Differential forms and de Rham cohomology . .2 1.2 A commercial for supermanifolds . .3 1.3 Topological field theories . .5 2 Super vector spaces, super algebras and super Lie algebras 11 2.1 Super algebras . 12 2.2 Super Lie algebra . 14 3 A categorical Digression 15 3.1 Monoidal categories . 15 3.2 Symmetric monoidal categories . 17 4 Supermanifolds 19 4.1 Definition and examples of supermanifolds . 19 4.2 Super Lie groups and their Lie algebras . 23 4.3 Determining maps from a supermanifold to Rpjq ................ 26 5 Mapping supermanifolds and the functor of points formalism 31 5.1 Internal hom objects . 32 5.2 The functor of points formalism . 34 5.3 The supermanifold of endomorphisms of R0j1 .................. 36 5.4 Vector bundles on supermanifolds . 37 5.5 The supermanifold of maps R0j1 ! X ...................... 41 5.6 The algebra of functions on a generalized supermanifold . 43 1 1 INTRODUCTION 2 6 Gauged field theories and equivariant de Rham cohomology 47 6.1 Equivariant cohomology . 47 6.2 Differential forms on G-manifolds. 49 6.3 The Weil algebra . 53 6.4 A geometric interpretation of the Weil algebra . 57 1 Introduction 1.1 Differential forms and de Rham cohomology Let X be a smooth manifold of dimension n. We recall that Ωk(X) := C1(X; ΛkT ∗X) is the vector space of differential k-forms on X. What is the available structure on differential forms? 1. There is the wedge product Ωk(M) ⊗ Ω`(M) −!^ Ωk+`(X) induced by a vector bundle homomorphism ΛkT ∗X ⊗ Λ`T ∗X −! Λk+`T ∗X ∗ Ln k This gives Ω (X) := k=0 Ω (X) the structure of a Z-graded algebra.
    [Show full text]
  • Dissertation Superrings and Supergroups
    DISSERTATION Titel der Dissertation Superrings and Supergroups Verfasser Dr. Dennis Bouke Westra zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr.rer.nat.) Wien, Oktober 2009 Studienkennzahl lt. Studienblatt: A 091 405 Studienrichtung lt. Studienblatt: Mathematik Betreuer: Univ.-Prof. Dr. Peter Michor Contents 1 Introduction 1 1.1 Anexample....................................... .. 1 1.2 Motivation ...................................... ... 1 1.3 Plan............................................ 2 1.4 Notationandconventions . ....... 2 2 Super vector spaces 5 2.1 Supervectorspaces............................... ...... 5 2.2 Liesuperalgebras................................ ...... 7 3 Basics of superrings and supermodules 11 3.1 Superringsandsuperalgebras . ......... 11 3.2 Supermodules.................................... .... 15 3.3 Noetheriansuperrings . ....... 17 3.4 Artiniansuperrings. .. .. .. .. .. .. .. .. .. .. .. .. .. ....... 20 3.5 Splitsuperrings................................. ...... 22 3.6 Grassmannenvelopes.. .. .. .. .. .. .. .. .. .. .. .. .. ...... 23 3.7 Freemodulesandsupermatrices . ........ 24 4 Primes and primaries 29 4.1 Propertiesofprimeideals . ........ 29 4.2 Primary ideals and primary decompositions . ............ 35 4.3 Primarydecompositions . ....... 36 5 Localization and completion 39 5.1 Localization.................................... ..... 39 5.2 Application to Artinian superrings . ........... 45 5.3 Geometricsuperalgebras. ........ 46 5.4 Superschemes...................................
    [Show full text]
  • Super Fuzzy Matrices and Super Fuzzy Models for Social Scientists
    SUPER FUZZY MATRICES AND SUPER FUZZY MODELS FOR SOCIAL SCIENTISTS W. B. Vasantha Kandasamy e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv www.vasantha.net Florentin Smarandache e-mail: [email protected] K. Amal e-mail: [email protected] INFOLEARNQUEST Ann Arbor 2008 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. Zeeb Road P.O. Box 1346, Ann Arbor MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/ Peer reviewers: Dr. S. Osman, Menofia University, Shebin Elkom, Egypt Prof. Valentin Boju, Ph.D., Officer of the Order “Cultural Merit” Category — “Scientific Research” MontrealTech — Institut de Techologie de Montreal Director, MontrealTech Press, P.O. Box 78574 Station Wilderton, Montreal, Quebec, H3S2W9, Canada Prof. Mircea Eugen Selariu, Polytech University of Timisoara, Romania. Copyright 2008 by InfoLearnQuest and authors Cover Design and Layout by Kama Kandasamy Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm ISBN-10: 1-59973-027-8 ISBN-13: 978-1-59973-027-1 EAN: 9781599730271 Standard Address Number: 297-5092 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One BASIC CONCEPTS 7 1.1 Supermatrices 7 1.2 Introduction of Fuzzy Matrices 65 Chapter Two FUZZY SUPERMATRICES AND THEIR PROPERTIES 75 2.1 Fuzzy Supermatrices and their Properties 75 2.2 Pseudo Symmetric Supermatrices 117 2.3 Special Operations on Fuzzy Super Special Row and Column Matrix 140 Chapter Three INTRODUCTION TO NEW FUZZY SUPER MODELS 167 3.1 New Super Fuzzy Relational Maps (SFRM) Model 167 3.2 New Fuzzy Super Bidirectional Associative Memories (BAM) model 176 3.3 Description of Super Fuzzy Associative Memories 188 3 3.4 Illustration of Super Fuzzy Models 199 3.5 Super FCM Models 236 FURTHER READING 247 INDEX 275 ABOUT THE AUTHORS 279 4 PREFACE The concept of supermatrix for social scientists was first introduced by Paul Horst.
    [Show full text]
  • Simple Weight Q2(ℂ)-Supermodules
    U.U.D.M. Project Report 2009:12 Simple weight q2( )-supermodules Ekaterina Orekhova ℂ Examensarbete i matematik, 30 hp Handledare och examinator: Volodymyr Mazorchuk Juni 2009 Department of Mathematics Uppsala University Simple weight q2(C)-supermodules Ekaterina Orekhova June 6, 2009 1 Abstract The first part of this paper gives the definition and basic properties of the queer Lie superalgebra q2(C). This is followed by a complete classification of simple h-supermodules, which leads to a classification of all simple high- est and lowest weight q2(C)-supermodules. The paper also describes the structure of all Verma supermodules for q2(C) and gives a classification of finite-dimensional q2(C)-supermodules. 2 Contents 1 Introduction 4 1.1 General definitions . 4 1.2 The queer Lie superalgebra q2(C)................ 5 2 Classification of simple h-supermodules 6 3 Properties of weight q-supermodules 11 4 Universal enveloping algebra U(q) 13 5 Simple highest weight q-supermodules 15 5.1 Definition and properties of Verma supermodules . 15 5.2 Structure of typical Verma supermodules . 27 5.3 Structure of atypical Verma supermodules . 28 6 Finite-Dimensional simple weight q-supermodules 31 7 Simple lowest weight q-supermodules 31 3 1 Introduction Significant study of the characters and blocks of the category O of the queer Lie superalgebra qn(C) has been done by Brundan [Br], Frisk [Fr], Penkov [Pe], Penkov and Serganova [PS1], and Sergeev [Se1]. This paper focuses on the case n = 2 and gives explicit formulas, diagrams, and classification results for simple lowest and highest weight q2(C) supermodules.
    [Show full text]
  • Bases of Infinite-Dimensional Representations Of
    BASES OF INFINITE-DIMENSIONAL REPRESENTATIONS OF ORTHOSYMPLECTIC LIE SUPERALGEBRAS by DWIGHT ANDERSON WILLIAMS II Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON May 2020 Copyright c by Dwight Anderson Williams II 2020 All Rights Reserved ACKNOWLEDGEMENTS God is the only mathematician who should say that the proof is trivial. Thank you God for showing me well-timed hints and a few nearly-complete solutions. \The beginning of the beginning." Thank you Dimitar Grantcharov for advising me, for allowing your great sense of humor, kindness, brilliance, respect, and mathe- matical excellence to easily surpass your great height{it is an honor to look up to you and to look forward towards continued collaboration. Work done by committee Thank you to my committe members (alphabetically listed by surname): Edray Goins, David Jorgensen, Christopher Kribs, Barbara Shipman, and Michaela Vancliff. April 30, 2020 iii ABSTRACT BASES OF INFINITE-DIMENSIONAL REPRESENTATIONS OF ORTHOSYMPLECTIC LIE SUPERALGEBRAS Dwight Anderson Williams II, Ph.D. The University of Texas at Arlington, 2020 Supervising Professor: Dimitar Grantcharov We provide explicit bases of representations of the Lie superalgebra osp(1j2n) obtained by taking tensor products of infinite-dimensional representation and the standard representation. This infinite-dimensional representation is the space of polynomials C[x1; : : : ; xn]. Also, we provide a new differential operator realization of osp(1j2n) in terms of differential operators of n commuting variables x1; : : : ; xn and 2n anti-commuting variables ξ1; : : : ; ξ2n.
    [Show full text]
  • Chapter 2: Linear Algebra User's Manual
    Preprint typeset in JHEP style - HYPER VERSION Chapter 2: Linear Algebra User's Manual Gregory W. Moore Abstract: An overview of some of the finer points of linear algebra usually omitted in physics courses. May 3, 2021 -TOC- Contents 1. Introduction 5 2. Basic Definitions Of Algebraic Structures: Rings, Fields, Modules, Vec- tor Spaces, And Algebras 6 2.1 Rings 6 2.2 Fields 7 2.2.1 Finite Fields 8 2.3 Modules 8 2.4 Vector Spaces 9 2.5 Algebras 10 3. Linear Transformations 14 4. Basis And Dimension 16 4.1 Linear Independence 16 4.2 Free Modules 16 4.3 Vector Spaces 17 4.4 Linear Operators And Matrices 20 4.5 Determinant And Trace 23 5. New Vector Spaces from Old Ones 24 5.1 Direct sum 24 5.2 Quotient Space 28 5.3 Tensor Product 30 5.4 Dual Space 34 6. Tensor spaces 38 6.1 Totally Symmetric And Antisymmetric Tensors 39 6.2 Algebraic structures associated with tensors 44 6.2.1 An Approach To Noncommutative Geometry 47 7. Kernel, Image, and Cokernel 47 7.1 The index of a linear operator 50 8. A Taste of Homological Algebra 51 8.1 The Euler-Poincar´eprinciple 54 8.2 Chain maps and chain homotopies 55 8.3 Exact sequences of complexes 56 8.4 Left- and right-exactness 56 { 1 { 9. Relations Between Real, Complex, And Quaternionic Vector Spaces 59 9.1 Complex structure on a real vector space 59 9.2 Real Structure On A Complex Vector Space 64 9.2.1 Complex Conjugate Of A Complex Vector Space 66 9.2.2 Complexification 67 9.3 The Quaternions 69 9.4 Quaternionic Structure On A Real Vector Space 79 9.5 Quaternionic Structure On Complex Vector Space 79 9.5.1 Complex Structure On Quaternionic Vector Space 81 9.5.2 Summary 81 9.6 Spaces Of Real, Complex, Quaternionic Structures 81 10.
    [Show full text]
  • Matrix Computations in Linear Superalgebra Institute De Znvestigaciones En Matemhticas Aplicadas Y Sistemus Universidad Nacionul
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Matrix Computations in Linear Superalgebra Oscar Adolf0 Sanchez Valenzuela* Institute de Znvestigaciones en Matemhticas Aplicadas y Sistemus Universidad Nacionul Authwmu de M&co Apdo, Postal 20-726; Admon. No. 20 Deleg. Alvaro Obreg6n 01000 M&ico D.F., M&co Submitted by Marvin D. Marcus ABSTRACT The notions of supervector space, superalgebra, supermodule, and finite dimen- sional free super-module over a supercommutative superalgebra are reviewed. Then, a functorial correspondence is established between (free) supermodule morphisms and matrices with coefficients in the corresponding supercommutative superalgebra. It is shown that functoriality requires the rule for matrix multiplication to be different from the usual one. It has the advantage, however, of making the analogues of the nongraded formulas retain their familiar form (the chain rule is but one example of this). INTRODUCTION This paper is intended to serve as reference for definitions and conven- tions behind our work in super-manifolds: [6], [7], and [8]. More important perhaps, is the fact that we show here how computations have to be carried out in a consistent way within the category of supermodules over a super- commutative superalgebra-a point that has not been stressed in the litera- ture so far., To begin with, we shall adhere to the standard usage of the prefix super by letting it stand for Z,-graded, as in [l]. Thus, we shall review the notions *Current address: Centro de Investigacibn en Matemiticas, CIMAT, Apartado Postal 402, C.P.
    [Show full text]
  • Lectures on Super Analysis
    Lectures on Super Analysis —– Why necessary and What’s that? Towards a new approach to a system of PDEs arXiv:1504.03049v4 [math-ph] 15 Dec 2015 e-Version1.5 December 16, 2015 By Atsushi INOUE NOTICE: COMMENCEMENT OF A CLASS i Notice: Commencement of a class Syllabus Analysis on superspace —– a construction of non-commutative analysis 3 October 2008 – 30 January 2009, 10.40-12.10, H114B at TITECH, Tokyo, A. Inoue Roughly speaking, RA(=real analysis) means to study properties of (smooth) functions defined on real space, and CA(=complex analysis) stands for studying properties of (holomorphic) functions defined on spaces with complex structure. On the other hand, we may extend the differentiable calculus to functions having definition domain in Banach space, for example, S. Lang “Differentiable Manifolds” or J.A. Dieudonn´e“Trea- tise on Analysis”. But it is impossible in general to extend differentiable calculus to those defined on infinite dimensional Fr´echet space, because the implicit function theorem doesn’t hold on such generally given Fr´echet space. Then, if the ground ring (like R or C) is replaced by non-commutative one, what type of analysis we may develop under the condition that newly developed analysis should be applied to systems of PDE or RMT(=Random Matrix Theory). In this lectures, we prepare as a “ground ring”, Fr´echet-Grassmann algebra having count- ably many Grassmann generators and we define so-called superspace over such algebra. On such superspace, we take a space of super-smooth functions as the main objects to study. This procedure is necessary not only to associate a Hamilton flow for a given 2d 2d system × of PDE which supports to resolve Feynman’s murmur, but also to make rigorous Efetov’s result in RMT.
    [Show full text]
  • The General Linear Supergroup and Its Hopf Superalgebra of Regular Functions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Algebra 254 (2002) 44–83 www.academicpress.com The general linear supergroup and its Hopf superalgebra of regular functions M. Scheunert a and R.B. Zhang b,∗ a Physikalisches Institut der Universität Bonn, Nussallee 12, D-53115 Bonn, Germany b School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia Received 28 September 2001 Communicated by Susan Montgomery Abstract The structure of the Hopf superalgebra B of regular functions on the general linear supergroup is developed, and applied to study the representation theory of the supergroup. It is shown that the general linear supergroup can be reconstructed from B in a way reminiscent of the Tannaka–Krein theory. A Borel–Weil type realization is also obtained for the irreducible integrable representations. As a side result on the structure of B, Schur superalgebras are introduced and are shown to be semi-simple over the complex field, with the simple ideals determined explicitly. 2002 Elsevier Science (USA). All rights reserved. 1. Introduction We study the general linear supergroup from a Hopf algebraic point of view [16,17,24]. Our main motivation is from quantum supergroups, where the prime object of interest is the Hopf superalgebra of functions on a quantum supergroup. However, such a Hopf superalgebra is not supercommutative, and is much more difficult to study compared to its classical counterpart. A good understanding * Corresponding author. E-mail addresses: [email protected] (M. Scheunert), [email protected] (R.B.
    [Show full text]