Cluster of Excellence the Future Ocean 2Nd Annual Report

Total Page:16

File Type:pdf, Size:1020Kb

Cluster of Excellence the Future Ocean 2Nd Annual Report Cluster of Excellence The Future Ocean 2nd Annual Report - 2007 Produced and printed by: Cluster of Excellence "The Future Ocean" Christian-Albrechts-Universität zu Kiel Christian-Albrechts-Platz 4 24118 Kiel GERMANY Phone: +49 - (0)431 880-3030 Fax: +49 - (0)431 880-2539 E-Mail: [email protected] Web: www.ozean-der-zukunft.de Cluster of Excellence The Future Ocean 2nd Annual Report 2007 Content 00 Preface 1 10 Introduction to the Cluster of Excellence 2 a0 Overview and Goals 2 b0 Structural Concept and Strategies 2 c0 Scientific Concept and Strategy 4 d0 Organization 5 e0 Junior Research Groups 7 f0 Funding Pathways 8 20 Speaker's Report 10 30 Impact on University Activities 12 a0 Introduction 12 b0 Defining a Profile 12 c0 Management Improvements 13 d0 Innovation in Education 13 40 Central Services 15 a0 Introduction 15 b0 Office 15 c0 Budget Report 16 d0 Recruiting Junior Professors 17 e0 Public Outreach 18 f0 Integrated School of Ocean Sciences (ISOS) 22 g0 Transfer to Application 25 50 Research Themes and Platforms 27 a0 Research Theme A: The Ocean in the Greenhouse World 27 b0 Research Theme B: Marine Resources and Risks 31 c0 Research Platforms 36 60 Working Panels 39 a0 Family and Employment 39 b0 Quality Management 40 c0 Data Management 41 Appendix 42 A0 Research Theme A: Greenhouse Oceans 42 Research Topic A1: Ocean Acidification 42 Research Topic A2: Seafloor Warming 47 Research Topic A3: Oceanic CO2 Uptake 49 Research Topic A4: Ocean Circulation and the Hydrological Cycle 52 Research Topic A5: CO2 Sequestration 54 Research Topic A6: Sea Surface Chemistry 55 Research Topic A7: Valuing the Ocean 58 B0 Research Themes B: Resources and Risks 60 Research Topic B1: Living Resources and Overfishing 60 Research Topic B2: Marine Medicine: Interactions between Complex Barriers and Microbiota in the Ocean 62 Research Topic B3: Seafloor Resources 66 Research Topic B4: Submarine Hazards 69 Research Topic B5: Sea-Level Rise and Coasts at Risk 73 Research Topic B6: Law of the Sea and Marine Resources 75 C0 Research Platforms 79 Research Platform P1: Numerical Simulation and Data Management 79 Research Platform P2: Isotope and Tracer Analysis 81 Research Platform P3: Molecular Technology 89 Research Platform P4: Ocean Observatories 92 D0 Cluster Proposals in 2006 96 E0 Cluster Proposals in 2007 109 F0 References 129 G0 Other Activities 146 10 Introduction to the Cluster of Excellence00 Preface 00 Preface 2007 was the first complete year for the Cluster of Excellence “The Future Ocean” after the successful launch in November 2006. In 2007 the activities focused on the achievement of the scientific and structural goals. New structures were established, and most of the fourteen scientific working groups and the cluster office started their work. To improve research of the Cluster of Excellence, the research platforms were initially supported through a competitive proposal process for interdisciplinary projects. Twenty-nine projects were selected and funded for a maximum of two years. The first results of these projects are documented in the appendix of this report. To support marine science in Kiel the Cluster of Excellence encourages researchers to apply for initial “seed money” as a nucleus to start research projects subsequently finded by third parties. This funding pathway paved ground to submit a proposal for the Collaborative Research Centre (SFB) 754 “Climate- Biogeochemistry Interactions in the Tropical Ocean” to the German Science Foundation (DFG). The proposal was successful and a new SFB will start working in in Kiel in Summer 2008. The administrative infrastructure of the Cluster of Excellence was established as well, and groups responsible for public outreach, financial administration, and Transfer to Application have been set up. Also in early 2007 the positions for the leaders of the Junior Research Groups were advertised. Most of the positions could be filled by Fall 2007. The first draft reports of these groups presenting their exciting new research topics are documented in this report. The Integrated School of Ocean Sciences (ISOS) began to offer structured training courses for graduates as a “virtual” graduate school. The successful launch and the establishment of the main structures of the Cluster of Excellence within this short time frame was only possible through the remarkable joint initiative of the university and the participating institutions. Most of the truly innovative ideas could be brought to life by the extremely motivated proponents and members of the Cluster of Excellence, promoting marine sciences and related aspects not only to strictly marine disciplines, but also to economics, law or medicine. On top of that, our comrades from the Muthesius Academy of Fine Arts and Design visualized our ambitious project in an uniquely attractive way to the public through an extraordinary exhibition. We are hence looking forward to the next years of productive joint work with the Cluster of Excellence. We hope you will enjoy reading our Annual Report 2007. Klaus Wallmann Martin Visbeck (Speaker 2006-Nov 2007) (Speaker since Nov 2007) Annual Report 2007 - Cluster of Excellence "The Future Ocean" - 1 10 Introduction to the Cluster of Excellence 10 Introduction to the Cluster of 2) Provide the scientific basis to develop, Excellence implement and assess sound global and regional ocean management options; a0 Overview and Goals 3) Build our capacity to reliably predict the risks associated with ocean change and natural The ocean hosts our planet’s largest ecosystem, hazards; helps regulate the composition of the atmosphere 4) Explore new marine resources and develop and global climate, and provides mankind with strategies for their sustainable use. essential living and non-living resources. Coastal regions are home to the majority of the world’s This is achieved by a multidisciplinary research population and the open seas are key to global strategy on the pathways, impacts and feedbacks trade and security and a source of major natural of ocean change and their interaction with society hazards. In short, the global ocean is vital for in terms of ocean resources, services and risks. human welfare now and in the future. But mankind is altering the oceans in both direct and indirect b0 Structural Concept and Strategies ways and on a global scale. The alteration started Rather than forming a separate research unit, the with fishing which has already drastically changed Cluster of Excellence is fully integrated into the the global marine ecosystem. Human impact now university and functions as a virtual institute to extends from regional changes, such as alter- strengthen multidisciplinary cooperation between ation of coastal and deep sea habitats, to global several university faculties and research insti- scale impact on marine life, ocean circulation tutes of CAU and the participating institutions, the and carbon cycling through emission of CO2 and Leibniz Institute of Marine Sciences IFM-GEOMAR, other pollutants. The motivation for the Cluster the Institute for the World Economy (IfW), and of Excellence “Future Ocean” is the recognition of the Muthesius School of Fine Arts. It augments, mankind’s increasing dependency on the ocean focuses and enhances marine-oriented research in the context of our increasing power to alter and education in Schleswig-Holstein and provides it. These two factors imply a need to understand additional interfaces to the general public, stake- our environment in order to be able to predict holders, non-governmental and scientific organi- and manage. They also imply a need to educate, zations as well as marine-oriented industry. A in order to make the next generation aware of strategic instrument of the Cluster of Excellence the need for responsible and sustainable use of is the establishment of dedicated Junior Research the ocean and ensure it is prepared to adapt to Groups (JRGs) in key interdisciplinary research the changes that we have already set in motion. areas (A1 - B6 in Fig. 1-1). The Cluster of Excellence “Future Ocean” at the The JRGs augment the expertise provided by Christian-Albrechts-University in Kiel (CAU) has the well established research groups of the four major goals: proponents. The group leaders are endowed 1) Improve our understanding of ocean changes with tenure-track positions which will be trans- in response to human activities; ferred to permanent positions (W2/W3) based on a review of merit. The Cluster of Excellence 2 - Annual Report 2007 - Cluster of Excellence "The Future Ocean" 10 Introduction to the Cluster of Excellence Greenhouse Resources Ocean and Risks A1: B1: Ocean Acidification Fisheries and Overfishing A2: Seafloor Warming B2: Marine Medicine A3: B3: Oceanic CO2-Uptake Seafloor Resources A4: Ocean Circulation Integrated B4: School of Submarine A5: Ocean Sciences Hazards CO2 Sequestration Public Outreach B5: A6: Sea Level Rise and Sea Surface Transfer to Coasts at Risk Chemistry Application A7: B6: Valuing the Ocean Law of the Sea Research Platforms P1: P2: P3: P4: Numerical Tracer Molecular Ocean Simulation Analysis Technology Observatories Figure 1-1. Structure of the Cluster of Excellence "Future Ocean" consisting of the research themes Greenhouse Ocean (A, green) and Resources and Risks (B, red), central services (white) and the infrastructure platforms (P, dark blue). provides the JRGs with resources and personnel candidates from all disciplines represented in as well as scientific support through the estab- the Cluster and of curricula
Recommended publications
  • Namely, Aspartokinase and Aspartate 3-Semialdehyde Dehydrogenase) Are Not Subject to Feedback Inhibition Control by the End Product Methionine
    REGULATION OF HOMOSERINE BIOSYNTHESIS BY L-CYSTEINE, A TERMINA L METABOLITE OF A LINKED PA THWA Y* By PRASANTA DATTA DEPARTMENT OF BIOLOGICAL CHEMISTRY, UNIVERSITY OF MICHIGAN, ANN ARBOR Communicated by Martin D. Kamen, June 23, 1967 In bacteria, the amino acid homoserine is a key branch-point intermediate in the synthesis of several amino acids of the aspartic pathway.' On the one hand, homoserine is converted to threonine (and thus to isoleucine), and through a separate sequence of reactions is transformed to methionine.1 In the latter se- quence, a succinylated product of homoserine is condensed with cysteine to pro- duce cystathionine,2-5 a precursor of methionine. Recent studies (see refs. 6 and 7 for up-to-date reviews on the subject) with several microorganisms have revealed that the synthesis of homoserine is regulated by various combinations of repression and/or feedback inhibition controls of early biosynthetic enzymes of the aspartic pathway by several end-product metabolites. One of these enzymes, homoserine dehydrogenase, catalyzes the pyridine nucleotide-linked reduction of aspartate j3-semialdehyde to homoserine. In the various bacteria that have been examined, this dehydrogenase as well as the two earlier enzymes of the path- way (namely, aspartokinase and aspartate 3-semialdehyde dehydrogenase) are not subject to feedback inhibition control by the end product methionine. This report describes the results of experiments on the control of activity of several bacterial homoserine dehydrogenases by L-cysteine, a terminal metabolite of a linked or connecting pathway, required for the synthesis of cystathionine.2-5 The findings suggest that the size of the homoserine pool in bacterial cells must depend, at least in part, on complex interdependent regulatory interactions of both cysteine and threonine on homoserine dehydrogenase.
    [Show full text]
  • Joseph M. Jez • Department of Biology • Washington University in St
    Joseph M. Jez • Department of Biology • Washington University in St. Louis Joseph M. Jez Professor and Howard Hughes Medical Institute Professor Department of Biology, Washington University in St. Louis One Brookings Drive, Campus Box 1137, St. Louis, MO 63130-4899 Phone: 314-935-3376; Email: [email protected] –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– EDUCATION University of Pennsylvania, Philadelphia, PA Ph.D. Biochemistry & Molecular Biophysics, 1998 Thesis: Steroid Recognition and Engineering of Catalysis in Mammalian Aldo-Keto Reductases Research Advisor: Prof. Trevor M. Penning Penn State University, University Park, PA B.S. Biochemistry (with Honors and English minor), 1992 Research Advisor: Prof. Gregory K. Farber PROFESSIONAL EXPERIENCE Washington University in St. Louis, St. Louis, MO Professor, Department of Biology (2015-current) Co-Director, Plant and Microbial Biosciences Program, Division of Biology & Biomedical Sciences (2013-current) Associate Professor, Department of Biology (2011-2015) Assistant Professor, Department of Biology (2008-2011) Honorary Assistant Professor, Department of Biology (2006-2008) Donald Danforth Plant Science Center, St. Louis, MO Assistant Member & Principal Investigator (2002-2010) Kosan Biosciences, Hayward, CA Scientist, New Technology Group (2001-2002) Supervisor: Dr. Daniel V. Santi The Salk Institute for Biological Studies, La Jolla, CA NIH-NRSA Postdoctoral Research Fellow, Structural Biology Laboratory (1998-2001) Project: Structure, Mechanism,
    [Show full text]
  • Construction of a Synthetic Metabolic Pathway for the Production of 2,4
    Construction of a synthetic metabolic pathway for the production of 2,4-dihydroxybutyric acid from homoserine Thomas Walther, Florence Calvayrac, Yoann Malbert, Ceren Alkim, Clémentine Dressaire, Hélène Cordier, Jean Marie François To cite this version: Thomas Walther, Florence Calvayrac, Yoann Malbert, Ceren Alkim, Clémentine Dressaire, et al.. Construction of a synthetic metabolic pathway for the production of 2,4-dihydroxybutyric acid from homoserine. Metabolic Engineering, Elsevier, 2018, 10.1016/j.ymben.2017.12.005. hal-01886438 HAL Id: hal-01886438 https://hal.archives-ouvertes.fr/hal-01886438 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Author’s Accepted Manuscript Construction of a synthetic metabolic pathway for the production of 2,4-dihydroxybutyric acid from homoserine Thomas Walther, Florence Calvayrac, Yoann Malbert, Ceren Alkim, Clémentine Dressaire, Hélène Cordier, Jean Marie François www.elsevier.com/locate/ymben PII: S1096-7176(17)30350-6
    [Show full text]
  • Identification of Six Novel Allosteric Effectors of Arabidopsis Thaliana Aspartate Kinase-Homoserine Dehydrogenase
    Identification of six novel allosteric effectors of Arabidopsis thaliana Aspartate kinase-Homoserine dehydrogenase. Physiological context sets the specificity Gilles Curien, Stéphane Ravanel, Mylène Robert, Renaud Dumas To cite this version: Gilles Curien, Stéphane Ravanel, Mylène Robert, Renaud Dumas. Identification of six novel allosteric effectors of Arabidopsis thaliana Aspartate kinase-Homoserine dehydrogenase. Physiological context sets the specificity. Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2005, 280 (50), pp.41178-41183. 10.1074/jbc.M509324200. hal-00016689 HAL Id: hal-00016689 https://hal.archives-ouvertes.fr/hal-00016689 Submitted on 31 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 280, NO. 50, pp. 41178–41183, December 16, 2005 © 2005 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. Identification of Six Novel Allosteric Effectors of Arabidopsis thaliana Aspartate Kinase-Homoserine Dehydrogenase
    [Show full text]
  • Genome-Scale Metabolic Network Analysis and Drug Targeting of Multi-Drug Resistant Pathogen Acinetobacter Baumannii AYE
    Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) for Molecular BioSystems Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE Hyun Uk Kim, Tae Yong Kim and Sang Yup Lee* E-mail: [email protected] Supplementary Table 1. Metabolic reactions of AbyMBEL891 with information on their genes and enzymes. Supplementary Table 2. Metabolites participating in reactions of AbyMBEL891. Supplementary Table 3. Biomass composition of Acinetobacter baumannii. Supplementary Table 4. List of 246 essential reactions predicted under minimal medium with succinate as a sole carbon source. Supplementary Table 5. List of 681 reactions considered for comparison of their essentiality in AbyMBEL891 with those from Acinetobacter baylyi ADP1. Supplementary Table 6. List of 162 essential reactions predicted under arbitrary complex medium. Supplementary Table 7. List of 211 essential metabolites predicted under arbitrary complex medium. AbyMBEL891.sbml Genome-scale metabolic model of Acinetobacter baumannii AYE, AbyMBEL891, is available as a separate file in the format of Systems Biology Markup Language (SBML) version 2. Supplementary Table 1. Metabolic reactions of AbyMBEL891 with information on their genes and enzymes. Highlighed (yellow) reactions indicate that they are not assigned with genes. No. Metabolism EC Number ORF Reaction Enzyme R001 Glycolysis/ Gluconeogenesis 5.1.3.3 ABAYE2829
    [Show full text]
  • Canada Archives Canada Published Heritage Direction Du Branch Patrimoine De I'edition
    STUDIES ON THE ROLES AND REGULATION OF TWO GLYOXYLATE REDUCTASES IN PLANTS A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by WENDY LYNNE ALLAN In partial fulfilment of requirements for the degree of Doctor of Philosophy December, 2008 © Wendy Lynne Allan, 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-50115-3 Our file Notre reference ISBN: 978-0-494-50115-3 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • (1-MCP) Treated Tomatoes During Pre-Climacteric Ripening Suggests Shared Regulation of Methionine Biosynthesis, Ethylene Production and Respiration
    agronomy Article Gene Expression in 1-Methylcyclopropene (1-MCP) Treated Tomatoes during Pre-Climacteric Ripening Suggests Shared Regulation of Methionine Biosynthesis, Ethylene Production and Respiration Dan Gamrasni 1,2,*, Ester Feldmesser 3, Ruth Ben-Arie 1, Amir Raz 1,2, Amit Tabatznik Asiag 1,2, Michal Glikman 1,2, Asaph Aharoni 3 and Martin Goldway 1,2,* 1 MIGAL–Galilee Research Institute, Kiryat Shmona 11016, Israel; [email protected] (R.B.-A.); [email protected] (A.R.); [email protected] (A.T.A.); [email protected] (M.G.) 2 Department of Biotechnology, Faculty of Life Sciences, Tel-Hai College, Upper Galilee 12210, Israel 3 Weizmann Institute of Science, Rehovot 761000, Israel; [email protected] (E.F.); [email protected] (A.A.) * Correspondence: [email protected] (D.G.); [email protected] (M.G.); Tel.: +972-469-53597 (M.G.) Received: 5 October 2020; Accepted: 27 October 2020; Published: 29 October 2020 Abstract: The physiology of fruit ripening is defined as either ‘climacteric’ or ‘non-climacteric’. In climacteric fruit respiration during ripening increases until it reaches a peak, which is accompanied by an increase in autocatalytic ethylene production, whereas the respiration of non-climacteric fruit does not increase and they have no requirement for ethylene to complete their ripening. In an attempt to gain further insight into the involvement of autocatalytic ethylene production with the climacteric rise in respiration, tomato fruit were harvested at three defined stages of maturity prior to the climacteric peak (mature green, breaker, and early orange) and immediately exposed to the gaseous molecule 1-methylcyclopropene (1-MCP).
    [Show full text]
  • Inhibition of Homoserine Dehydrogenase by Formation of A
    www.nature.com/scientificreports OPEN Inhibition of homoserine dehydrogenase by formation of a cysteine-NAD covalent complex Received: 30 October 2017 Kohei Ogata1, Yui Yajima2, Sanenori Nakamura3, Ryosuke Kaneko1, Masaru Goto1, Accepted: 27 March 2018 Toshihisa Ohshima4 & Kazuaki Yoshimune2,3 Published: xx xx xxxx Homoserine dehydrogenase (EC 1.1.1.3, HSD) is an important regulatory enzyme in the aspartate pathway, which mediates synthesis of methionine, threonine and isoleucine from aspartate. Here, HSD from the hyperthermophilic archaeon Sulfolobus tokodaii (StHSD) was found to be inhibited by cysteine, which acted as a competitive inhibitor of homoserine with a Ki of 11 μM and uncompetitive an inhibitor of NAD and NADP with Ki’s of 0.55 and 1.2 mM, respectively. Initial velocity and product (NADH) inhibition analyses of homoserine oxidation indicated that StHSD frst binds NAD and then homoserine through a sequentially ordered mechanism. This suggests that feedback inhibition of StHSD by cysteine occurs through the formation of an enzyme-NAD-cysteine complex. Structural analysis of StHSD complexed with cysteine and NAD revealed that cysteine situates within the homoserine binding site. The distance between the sulfur atom of cysteine and the C4 atom of the nicotinamide ring was approximately 1.9 Å, close enough to form a covalent bond. The UV absorption- diference spectrum of StHSD with and without cysteine in the presence of NAD, exhibited a peak at 325 nm, which also suggests formation of a covalent bond between cysteine and the nicotinamide ring. Among the various amino acid metabolic pathways found in plants and most bacterial strains, the aspartate path- way is pivotal because it is responsible for the production of multiple amino acids, including lysine, threonine, methionine, and isoleucine1.
    [Show full text]
  • Homoserine Dehydrogenase
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 11, pp. 4862-4866, November 1977 Biochemistry Homoserine dehydrogenase: Spontaneous reactivation by dissociation of p-mercuribenzoate from an inactive enzyme-p-mercuribenzoate complex (regulatory enzyme/conformational change/sulfhydryl modification) CAROL CHERKIS EPSTEIN* AND PRASANTA DATTAt Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan 48109 Communicated by J. L. Oncley, August 11, 1977 ABSTRACT Incubation of Rhodospirillum rubrum ho- mechanism-dissociation of PMB from an "active-site" -SH moserine dehydrogenase (L-homoserine:NAD+ oxidoreductase, group-and that the rate of reactivation is influenced by the EC 1.1.1.3) with p-mercuribenzoate (PMB) in the presence of various conformational states of the protein. 0.2 M KCI and 2 mM L-threonine resulted in complete loss of enzyme activity. Upon removal of excess PMB, KCI, and L- threonine, a time-dependent recovery of enzyme activity was MATERIALS AND METHODS observed in 25 mM phosphate/i mM EDTA buffer, pH 7.5. Materials. NADP', Tris (Trizma base, highest purity), and Circular dichroism studies indicated that the transition from dithiothreitol (DTT) were from Sigma Chemical Co. 5,5'- inactive to reactivated form of the enzyme was accompanied by a conformational change in the protein. Experiments with Dithiobis(2-nitrobenzoate) (DTNB) was purchased from Cal- [14C]PMB revealed loss of enzyme-bound radioactivity during biochem, and PMB was from Schwarz/Mann. [14C]PMB (10.1 reactivation. Increase in ionic strength of the phosphate buffer mCi/mmol) was purchased from ICN Radiochemicals D)ivision; and/or addition of L-threonine, leading to enzyme aggregation, [14C]toluene standard (4.24 X 105 dpm/ml) and Omnifluor decreased the rate of enzyme reactivation; aggregated enzyme were from New England Nuclear.
    [Show full text]
  • Construction of a Synthetic Pathway for the Production of 1,3-Propanediol from Glucose Received: 4 February 2019 Cláudio J
    www.nature.com/scientificreports OPEN Construction of a synthetic pathway for the production of 1,3-propanediol from glucose Received: 4 February 2019 Cláudio J. R. Frazão1, Débora Trichez1, Hélène Serrano-Bataille1, Adilia Dagkesamanskaia1, Accepted: 25 July 2019 Christopher M. Topham2, Thomas Walther1,3,4 & Jean Marie François 1,3 Published: xx xx xxxx In this work, we describe the construction of a synthetic metabolic pathway enabling direct biosynthesis of 1,3-propanediol (PDO) from glucose via the Krebs cycle intermediate malate. This non-natural pathway extends a previously published synthetic pathway for the synthesis of (L)-2,4- dihydroxybutyrate (L-DHB) from malate by three additional reaction steps catalyzed respectively, by a DHB dehydrogenase, a 2-keto-4-hydroxybutyrate (OHB) dehydrogenase and a PDO oxidoreductase. Screening and structure-guided protein engineering provided a (L)-DHB dehydrogenase from the membrane-associated (L)-lactate dehydrogenase of E. coli and OHB decarboxylase variants derived from the branched-chain keto-acid decarboxylase encoded by kdcA from Lactococcus lactis or pyruvate decarboxylase from Zymomonas mobilis. The simultaneous overexpression of the genes encoding these enzymes together with the endogenous ydhD-encoded aldehyde reductase enabled PDO biosynthesis from (L)-DHB. While the simultaneous expression of the six enzymatic activities in a single engineered E. coli strain resulted in a low production of 0.1 mM PDO from 110 mM glucose, a 40-fold increased PDO titer was obtained by co-cultivation of an E. coli strain expressing the malate-DHB pathway with another strain harboring the DHB-to-PDO pathway. A central goal of the bioeconomy consists in reducing our dependence on petroleum by focusing on the devel- opment of efcient, sustainable and eco-friendly processes for production of bio-based chemicals and fuels1,2.
    [Show full text]
  • Practical Enzymology
    [Downloaded free from http://www.jnsbm.org on Wednesday, October 11, 2017, IP: 130.209.115.202] Letters to Editor need for a practical manual for enzymology. The second Methodological chapter comprises a very useful and well‑written piece of essential knowledge under the title “General aspects of enzyme accuracy and firm analysis”; a must‑read condensed version of the theoretical basis of enzymology, accompanied by amazing figures interpretation of and very useful tables summarizing the basis that anyone involved in enzyme analysis should know. The third chapter enzymatic analysis: is an extended assay‑describing collection (entitled “Enzyme assays”) that provides a beautifully organized pattern of The usefulness of methodological approaches to a significant number of enzyme assays, overviewed in Table 1. An interesting Bisswanger’s “Practical Table 1: Overview of the enzymes for which the Enzymology” activity determining assays by spectroscopic or other methods are included in Bisswanger’s Sir, second edition of “Practical Enzymology”.[7] Despite the enormous technological and scientific progress Enzyme’s name; abbreviation (s)* EC number sM oM that biomedical sciences have witnessed over the last Alcohol dehydrogenase; ADH 1.1.1.1 [++] - decades, the automation of the majority of laboratory Alcohol dehydrogenase (NADP+) 1.1.1.2 [++]# - techniques used for the conduction of routine assays Homoserine dehydrogenase; AK-HDH 1.1.1.3 [+] - for industrial, academic, and clinical purposes and the I commercialization of a significant number of diagnostic Shikimate dehydrogenase 1.1.1.25 [+] - L-Lactate dehydrogenase; LDH 1.1.1.27 [+++] - tests into commercially‑available kits, a significant Malate dehydrogenase; MDH 1.1.1.37 [+] - percentage of the basic biomedical research output is Malate dehydrogenase 1.1.1.38 [+] - still set up and conducted in a non‑automatic, analytical (oxaloacetate-decarboxylating) (NAD+) [1,2] Malate dehydrogenase 1.1.1.39 [+] - bench‑based biochemical manner.
    [Show full text]
  • A Dissertation Entitled Development of Selective Inhibitors Against
    A Dissertation entitled Development of Selective Inhibitors against Enzymes Involved in the Aspartate Biosynthetic Pathway for Antifungal Drug Development By Gopal P. Dahal Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry ________________________________________ Dr. Ronald E. Viola, Committee Chair ________________________________________ Dr. Donald Ronning, Committee Member ________________________________________ Dr. Jianglong Zhu, Committee Member ________________________________________ Dr. Viranga Tillekeratne, Committee Member ________________________________________ Dr. Amanda C. Bryant-Friedrich, Dean College of Graduate Studies The University of Toledo August 2018 © Copyright by Gopal P. Dahal, 2018 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Development of Selective Inhibitors against Enzymes Involved in the Aspartate Biosynthetic Pathway for Antifungal Drug Development by Gopal P. Dahal Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry The University of Toledo August 2018 Aspartate semialdehyde dehydrogenase (ASADH) functions at a critical junction in the aspartate biosynthetic pathway and represents a validated target for antimicrobial drug design. This enzyme catalyzes the NADPH-dependent reductive dephosphorylation of β-aspartyl phosphate to produce the key intermediate aspartate semialdehyde. Production of this intermediate represents the first committed step for the biosynthesis of several essential amino acids in fungi and in bacteria. The absence of this enzyme in humans and other mammals will allow the selective targeting of any ASADH inhibitors against pathogenic microorganisms. We have accumulated significant structural and mechanistic information about the bacterial ASADHs, but have only limited knowledge of their fungal counterparts.
    [Show full text]