THYROID and PARATHYROID SURGERY Valery F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
When Is It Minimally Invasive?
ORIGINAL ARTICLE Incision Length for Standard Thyroidectomy and Parathyroidectomy When Is It Minimally Invasive? Laurent Brunaud, MD; Rasa Zarnegar, MD; Nobuyuki Wada, MD; Philip Ituarte, PhD; Orlo H. Clark, MD; Quan-Yang Duh, MD Hypothesis: Current techniques for open conven- parathyroidectomy (PϽ.001). It was 4.1 cm for bilateral tional thyroidectomy or parathyroidectomy have evolved parathyroid exploration, but was reduced to 3.2 and 2.8 to enable a shorter incision (main proposition), and the cm for unilateral (PϽ.001) and focal (PϽ.001) explora- length of the incision is influenced by objective factors. tions, respectively. By multiple regression analysis, thy- roid specimen volume and patient body mass index were Design: Case series. independent predictors of incision length in thyroidec- tomy. Extent of exploration and resident training level Setting: University referral center. were independent predictors of incision length in parathyroidectomy. Patients and Intervention: Retrospective study of the most recent 200 primary consecutive routine thyroid and Conclusions: Current techniques for open conven- parathyroid operations (excluding neck dissections). tional thyroidectomy or parathyroidectomy have evolved to enable a shorter incision. Thyroid volume, patient body Main Outcome Measures: The length of incision was mass index, extent of the planned parathyroid explora- routinely measured with a ruler before the incision. tion, and the resident clinical training stage are impor- Univariate and multivariate analysis was performed to dis- tant variables for incision length in open operation and tinguish variables affecting length of incision. should be taken into account when minimally invasive thyroidectomy and parathyroidectomy are evaluated. Results: Mean length of the incision was 5.5 cm for to- tal thyroidectomy, 4.6 cm for lobectomy, and 3.5 cm for Arch Surg. -
Inadvertent Parathyroidectomy During Thyroid Surgery for Papillary Thyroid Carcinoma and Postoperative Hypocalcemia
ORIGINAL J Korean Thyroid Assoc ARTICLE Vol. 5, No. 1, May 2012 Inadvertent Parathyroidectomy during Thyroid Surgery for Papillary Thyroid Carcinoma and Postoperative Hypocalcemia Dongbin Ahn, MD1, Jin Ho Sohn, MD, PhD1, Jae Hyug Kim, MD1, Ji Young Park, MD2 and Junesik Park, MD, PhD3 Departments of Otolaryngology-Head and Neck Surgery1, Pathology2, School of Medicine, Kyungpook National University, Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Catholic University of Daegu3, Daegu, Korea Background and Objectives: The aim of this article is to report our experience of inadvertent parathyroidectomy during thyroid surgery and to analyze its associated factors and clinical implications. In addition, we attempted to determined causative factors that result in permanent hypocalcemia after thyroid surgery. Materials and Methods: We performed a retrospective review of 500 patients who underwent thyroid surgery for the treatment of papillary thyroid carcinoma from 2004 to 2008. Results: Inadvertent parathyroidectomy was identified in 7.4% of patients and only 1 parathyroid gland was inadvertently removed in most cases. The incidence of inadvertent parathyroidectomy was not associated with gender, age, type of surgical procedure, tumor size, coexisting Hashimoto’s thyroiditis (HT), extra-thyroidal extension (ETE), lymph node (LN) metastasis, and surgeon’s experience. Nor was inadvertent parathyroidectomy associated with permanent postoperative hypocalcemia. Although operating time >120 min, ETE, and total thyroidectomy (TT) with central neck dissection (CND) were found to be related to permanent hypocalcemia on univariate analysis, tumor size ≥1 cm and surgeon’s experience ≤5 years was statistically associated with permanent hypocalcemia on both univariate and multivariate analyses. Conclusion: Although inadvertent parathyroidectomy is not an uncommon complication of thyroid surgery, it appears to have only modest clinical implications. -
Thyroid Gland Parathyroid Glands
Human Physiology Course Thyroid Gland Parathyroid Glands Assoc. Prof. Mária Pallayová, MD, PhD [email protected] Department of Human Physiology, UPJŠ LF April 13, 2020 (10th week – Summer Semester 2019/2020) Hormones and Functions Thyroid gland Parathyroids Thymus Adrenal glands Endocrine pancreas Ovaries, Testes Pineal Pituitary Hypothalamus-Pituitary Axis GIT, adipose tissue, brain, heart, kidney, ... Hormones and Functions Thyroid gland Parathyroids Thymus Adrenal glands Endocrine pancreas Ovaries, Testes Pineal Pituitary Hypothalamus-Pituitary Axis GIT, adipose tissue, brain, heart, kidney, ... Lecture Outline Functional anatomy of the thyroid gland Synthesis, secretion, and metabolism of the thyroid hormones The mechanism of thyroid action Role of the thyroid hormones in development, growth, and metabolism Thyroid hormone deficiency and excess in adults Physiology of the parathyroids Functional Anatomy of the Thyroid Gland two lobes + isthmus (just below the cricoid cartilage) attached to the trachea by connective tissue A normal THGL in a healthy adult weighs about 15-20 g. Functional Anatomy of the Thyroid Gland arterial blood supply: from a superior and an inferior thyroid a., which arise from the external carotid and subclavian a., respectively. venous blood supply: a series of thyroid veins drain into the ext. jugular and innominate vv. ( a rich blood supply to the thyroid gland w/ a higher rate of blood flow per gram than even that of the kidneys). innervation: adrenergic innervation from the cervical ganglia; cholinergic innervation from the n. vagus (regulation of vasomotor function to increase the delivery of TSH, iodide, and metabolic substrates to the THGL). Functional Anatomy of the Thyroid Gland The colloid (a thick, gel-like substance) is a solution composed primarily of thyroglobulin (10-25% the high viscosity), a large protein that is a storage form of the thyroid hormones. -
Beyond the Fixed Setpoint of the Hypothalamus–Pituitary–Thyroid Axis
E Fliers and others Hypothalamus–pituitary– 171:5 R197–R208 Review thyroid axis MECHANISMS IN ENDOCRINOLOGY Beyond the fixed setpoint of the hypothalamus–pituitary–thyroid axis Eric Fliers1, Andries Kalsbeek1,2 and Anita Boelen1 Correspondence should be addressed 1Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, 1105 AZ to E Fliers Amsterdam, The Netherlands and 2Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Email Amsterdam, The Netherlands e.fl[email protected] Abstract The hypothalamus–pituitary–thyroid (HPT) axis represents a classical example of an endocrine feedback loop. This review discusses dynamic changes in HPT axis setpoint regulation, identifying their molecular and cellular determinants, and speculates about their functional role. Hypothalamic thyrotropin-releasing hormone neurons were identified as key components of thyroid hormone (TH) setpoint regulation already in the 1980s, and this was followed by the demonstration of a pivotal role for the thyroid hormone receptor beta in negative feedback of TH on the hypothalamic and pituitary level. Gradually, the concept emerged of the HPT axis setpoint as a fixed entity, aiming at a particular TH serum concentration. However, TH serum concentrations appear to be variable and highly responsive to physiological and pathophysiological environmental factors, including the availability or absence of food, inflammation and clock time. During food deprivation and inflammation, TH serum concentrations decrease without a concomitant rise in serum TSH, reflecting a deviation from negative feedback regulation in the HPT axis. Surprisingly, TH action in peripheral organs in these conditions cannot be simply predicted by decreased serum TH concentrations. Instead, diverse environmental stimuli have differential effects on local TH metabolism, e.g. -
Postoperative Calcium Requirements in 6000 Patients Undergoing
Postoperative Calcium Requirements in 6,000 Patients Undergoing Outpatient Parathyroidectomy: Easily Avoiding Symptomatic Hypocalcemia Marie Vasher, MD, Arnold Goodman, MD, FACS, Douglas Politz, MD, FACS, FACE, James Norman, MD, FACS, FACE BACKGROUND: To determine the amount and duration of supplemental oral calcium for patients with varying clinical presentations discharged immediately after surgery for primary hyperparathyroidism. STUDY DESIGN: A 4-year, prospective, single-institution study of 6,000 patients undergoing parathyroidectomy for primary hyperparathyroidism and discharged within 2.5 hours. Based on our previous studies, patients are started on a sliding scale of oral calcium determined by a number of preoperative measures (ie, serum calcium, body weight, osteoporosis) beginning 3 hours post- operation and decreasing to a maintenance dose by week 3. Patients reported all hypocalcemia symptoms daily for 2 weeks. RESULTS: Seven parameters were found to have a substantial impact on the amount of calcium required to prevent symptomatic hypocalcemia: preoperative serum calcium Ͼ12 mg/dL, Ͼ13 mg/dL, and Ͼ13.5 mg/dL, bone density T score less than Ϫ3, morbid obesity, removal of Ͼ1 parathyroid, and manipulation/biopsy of all remaining glands (all p Ͻ 0.05). Each independent variable increased the daily calcium required by 315 mg/day. Using our scaled protocol, Ͻ8% of patients showed symptoms of hypocalcemia, nearly all of whom were successfully self-treated with additional oral calcium. Only 6 patients (0.1%) required a visit to the emergency room for IV calcium, all occurring on postoperative day 3 or later. CONCLUSION: After outpatient parathyroidectomy, a specific calcium protocol has been verified that elimi- nates development of symptomatic hypocalcemia in Ͼ92% of patients, identifies patients at high risk for hypocalcemia, and allows self-medication with confidence in a predictable fashion for those patients in whom symptoms develop. -
Radioguided Surgery of Primary Hyperparathyroidism Using the Low
Radioguided Surgery of Primary Hyperparathyroidism Using the Low-Dose 99mTc- Sestamibi Protocol: Multiinstitutional Experience from the Italian Study Group on Radioguided Surgery and Immunoscintigraphy (GISCRIS) Domenico Rubello, MD1; Maria Rosa Pelizzo, MD2; Giuseppe Boni, MD3; Riccardo Schiavo, MD4; Luca Vaggelli, MD5; Giuseppe Villa, MD6; Sergio Sandrucci, MD7; Andrea Piotto, MD2; Gianpiero Manca, MD3; Pierluigi Marini, MD8; and Giuliano Mariani, MD3 1Nuclear Medicine Service, “S. Maria della Misericordia” Hospital, Rovigo, Italy; 2Department of Surgery, University of Padua Medical School, Padua, Italy; 3Regional Center of Nuclear Medicine, University of Pisa Medical School, Pisa, Italy; 4Nuclear Medicine Service, “S. Camillo-Forlanini” Hospital, Rome, Italy; 5Nuclear Medicine Service, “Careggi” University Hospital, Florence, Italy; 6Nuclear Medicine Service, “S. Martino” University Hospital, Genoa, Italy; 7Department of Surgery, University of Turin Medical School, Turin, Italy; and 8Division of Surgery, “S. Camillo-Forlanini” Hospital, Rome, Italy (11%) of transient postoperative hypocalcemia. The probe was 99m This study evaluated the accuracy of 99mTc-sestamibi scintigra- of little help in patients with concomitant Tc-sestamibi–avid phy and neck ultrasonography in patients with primary hyper- thyroid nodules and not helpful at all in patients with negative parathyroidism (PHPT) and the role of intraoperative hand-held scan findings preoperatively. IQPTH measurement helped to ␥-probes in minimally invasive radioguided surgery (MIRS) of disclose some cases of multigland parathyroid disease. Con- patients with a high likelihood of a solitary parathyroid adenoma clusion: 99mTc-Sestamibi scintigraphy, especially if combined (PA). The study was undertaken under the aegis of the Italian with neck ultrasonography, is highly accurate in selecting PHPT Study Group on Radioguided Surgery and Immunoscintigraphy candidates for MIRS. -
Study Guide Medical Terminology by Thea Liza Batan About the Author
Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails proficiencyincommunicatingwithhealthcareprofessionalssuchasphysicians,nurses, or dentists. -
Minimally Invasive Parathyroidectomy Versus Bilateral Neck Exploration for Primary Hyperparathyroidism
Minimally Invasive Parathyroidectomy Versus Bilateral Neck Exploration for Primary Hyperparathyroidism Amanda M. Laird, MD*, Steven K. Libutti, MD KEYWORDS Primary hyperparathyroidism Parathyroidectomy Intraoperative parathyroid hormone Surgery Minimally invasive parathyroidectomy KEY POINTS The gold-standard surgical management of primary hyperparathyroidism (10HPT) is cer- vical exploration and identification of all 4 parathyroid glands. Imaging techniques, including ultrasound, sestamibi scans, and 4D-CT scans, have made identification of single parathyroid adenomas possible. Intraoperative parathyroid hormone (PTH) monitoring is a method to confirm biochemical cure before a patient leaves the operating room. There is some debate surrounding optimal surgical management of 10HPT because cure rates between minimally invasive parathyroidectomy (MIP) and bilateral neck exploration (BNE) are equivalent. Advantages of MIP include reduced operative time, reduced recovery time, less postop- erative pain, and lower complication rate with respect to injury to parathyroid glands and recurrent laryngeal nerves. INTRODUCTION 10HPT is a common disease, with a prevalence as high as 3%.1 Many advances in the surgical management of 10HPT have been made since the first parathyroidectomy was performed by Felix Mandl in 1925.2 Traditional surgical management consists of identification of all 4 parathyroid glands through a transverse cervical incision.3 Bet- ter understanding of the disease, interest in the practice of endocrine neck surgery, The authors have nothing to disclose. Montefiore Medical Center/Albert Einstein College of Medicine, Greene Medical Arts Pavilion, 3400 Bainbridge Avenue, 4th Floor, Bronx, NY 10467, USA * Corresponding author. E-mail address: [email protected] Surg Oncol Clin N Am 25 (2016) 103–118 http://dx.doi.org/10.1016/j.soc.2015.08.012 surgonc.theclinics.com 1055-3207/16/$ – see front matter Ó 2016 Elsevier Inc. -
HP Layout 1-21-04 to Print
Winter 2004 Department of Surgery healthpoints NewYork-Presbyterian ALL THE POSSIBILITIES OF MODERN MEDICINEE DIABETES Knowledge is Power ALSO IN THIS ISSUE: in a Complex Disease Approximately 17 million people in the United States have the disease. While an estimated 11.1 million have been diagnosed, 5.9 million people remain unaware that POSITRON EMISSION they have the condition. It is the fifth leading cause of death by disease in the U.S.— TOMOGRAPHY (PET) contributing to the deaths of more than 210,000 Americans each year. And its origin Approved for the Fight remains a mystery. Against Thyroid Cancer Diabetes is a complex disease which results from the body’s inability to create or page 2 properly use insulin. A hormone produced by the pancreas, insulin helps the body convert sugar, starches, and other food into energy. If the body doesn’t make enough insulin or if the insulin doesn’t work the way it should, glucose (sugar) cannot enter into the body’s cells. Instead, ISLET CELL glucose remains in the TRANSPLANTATION bloodstream, raising the The Search for a Cure blood sugar level and for Type 1 Diabetes ultimately causing page 7 diabetes. The signs of diabetes are often subtle, which can make detection of the disease a greater AIDING THE HEART challenge. Some Medicare Approves common symptoms LVADs as Destination include excessive thirst, Diabetes strikes people of all ages, races, and genders. Therapy frequent urination, page 8 unusual weight loss, increased fatigue, slow wound healing, extreme hunger, and blurry vision. However, individuals who experience none of these signs may still have diabetes. -
The Fine Structure of the Parathyroid Gland*
The Fine Structure of the Parathyroid Gland* BY JERRY STEVEN TRIER, M.D. (From the Department of Anatomy, University of Washington School of Medicine, Seattle) PLATES 3 TO 10 (Received for publication, July 29, 1957) ABSTRACT The fine structure of the parathyroid of the macaque is described, and is cor- related with classical parathyroid cytology as seen in the light microscope. The two parenchymal cell types, the chief cells and the oxyphil cells, have been recognized in electron mierographs. The chief cells contain within their cyto- plasm mitochondria, endoplasmic reticulum, and Golgi bodies similar to those found in other endocrine tissues as well as frequent PAS-positive granules. The juxtanuclear body of the light microscopists is identified with stacks of parallel lamellar elements of the endoplasmic rcticulum of the ergastoplasmic or granular type. Oxyphll cells are characterized by juxtanuclear bodies and by numerous mito- chondria found throughout their cytoplasm. Puzzling lamellar whorls are described in the cytoplasm of some oxyphil cells. The endothelium of parathyroid capillaries is extremely thin in some areas and contains numerous fenestrations as well as an extensive system of vesicles. The possible significance of these structures is discussed. The connective tissue elements found in the perivascular spaces of macaque parathyroid are described. INTRODUCTION Other contributions to the present concepts con cerning the human parathyroid can be found in the It is the purpose of the present paper to report some observations on the fine structure of the reports of Bergstrand (7), Morgan (34), Pappen- parathyroid gland employing the electron micro- heimer and Wilens (45), Castleman and Mallory (10), and Gilmour (20). -
Advances in Risk-Oriented Surgery for Multiple Endocrine Neoplasia Type 2
25 2 Endocrine-Related A Machens et al. Advances in risk-oriented 25:2 T41–T52 Cancer surgery for MEN2 THEMATIC REVIEW Advances in risk-oriented surgery for multiple endocrine neoplasia type 2 Andreas Machens1 and Henning Dralle2 1Department of General, Visceral and Vascular Surgery, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany 2Department of General, Visceral and Transplantation Surgery, Section of Endocrine Surgery, University of Duisburg-Essen, Essen, Germany Correspondence should be addressed to A Machens: [email protected] This paper is part of a thematic review section on 25 Years of RET and MEN2. The guest editors for this section were Lois Mulligan and Frank Weber. Abstract Genetic association studies hinge on definite clinical case definitions of the disease of Key Words interest. This is why more penetrant mutations were overrepresented in early multiple f biochemical screening endocrine neoplasia type 2 (MEN2) studies, whereas less penetrant mutations went f DNA-based screening underrepresented. Enrichment of genetic association studies with advanced disease f RET proto-oncogene may produce a flawed understanding of disease evolution, precipitating far-reaching f gene test surgical strategies like bilateral total adrenalectomy and 4-gland parathyroidectomy in f gene carrier MEN2. The insight into the natural course of the disease gleaned over the past 25 years f multiple endocrine caused a paradigm shift in MEN2: from the removal of target organs at the expense of neoplasia type 2A greater operative -
Thyroid and Polycystic Ovary Syndrome
S Gabersˇcˇek and others Thyroid and PCOS 172:1 R9–R21 Review MECHANISMS IN ENDOCRINOLOGY Thyroid and polycystic ovary syndrome Simona Gabersˇcˇek1,2, Katja Zaletel1, Verena Schwetz3, Thomas Pieber3, Barbara Obermayer-Pietsch3 and Elisabeth Lerchbaum3 Correspondence should be addressed to 1Department of Nuclear Medicine, University Medical Centre Ljubljana, Zalosˇka 7, 1525 Ljubljana, Slovenia, B Obermayer-Pietsch 2Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1104 Ljubljana, Slovenia and 3Division of Endocrinology Email and Metabolism, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, barbara.obermayer@ 8036 Graz, Austria medunigraz.at Abstract Thyroid disorders, especially Hashimoto’s thyroiditis (HT), and polycystic ovary syndrome (PCOS) are closely associated, based on a number of studies showing a significantly higher prevalence of HT in women with PCOS than in controls. However, the mechanisms of this association are not as clear. Certainly, genetic susceptibility contributes an important part to the development of HT and PCOS. However, a common genetic background has not yet been established. Polymorphisms of the PCOS-related gene for fibrillin 3 (FBN3) could be involved in the pathogenesis of HT and PCOS. Fibrillins influence the activity of transforming growth factor beta (TGFb). Multifunctional TGFb is also a key regulator of immune tolerance by stimulating regulatory T cells (Tregs), which are known to inhibit excessive immune response. With lower TGFb and Treg levels, the autoimmune processes, well known in HT and assumed in PCOS, might develop. In fact, lower levels of TGFb1 were found in HT as well as in PCOS women carrying allele 8 of D19S884 in the FBN3 gene.