22-Cardiovascular-2018.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

22-Cardiovascular-2018.Pdf Introduction The slides for this lab are located in the “Cardiovascular System” folder on the Virtual Microscope. The cardiovascular system includes the heart and vessels that carry blood to and from it. You will learn about blood and hematopoiesis in a subsequent lab. Learning objectives and activities Using the Virtual Slidebox: A Examine the features and organization of the heart: o Demonstrate the layers of the heart wall in histological sections. o Locate the major structural components of each layer of the heart wall. o Demonstrate evidence of the presence of the heart’s conducting system. o Identify a heart valve and describe its intrinsic histological organization. B Analyze the histological organization and structure of blood vessels: o Demonstrate the structural components of the three tunics that form the wall of a blood vessel. o Use the appearance of vessel ultra-structure to classify and distinguish between different types of blood vessels in the body. C Complete the self-quiz to test your understanding and master your learning. Examine the features and organization of the heart. Examine Slide 1 to demonstrate the layers of the heart wall in histological sections. Match the following statements with the corresponding regionsin the photograph of the gross heart wall and then locate each region in the histological heart wall seen in Slide 1 (31) using the virtual microscope. ? ? ? ? ? ? A. Endocardium The thin, inner lining of the heart wall. It does not contain any large vessels or nerve bundles. B. Myocardium The thick, muscular component of the heart wall. The muscle of the inner aspect is frequently thrown into ridges (trabeculae carnae and papillary muscles) that project into the lumen. C. Epicardium The outer most layer of the heart wall. It contains fat, nerve bundles and large vessels. Use Slide 1 (31) to locate the major structural components of each layer of the heart wall. i) Endocardium This inner layer of the heart wall: a. Endothelium A simple squamous epithelium lining the lumen of the heart. Find endothelium in You will see later that the endothelium is continuous with the Slide 1a (31) endothelium of the tunica intima in blood vessels. b. Subendothelium and Subendocardium The subendothelium lies between the endothelium and Find the myocardium and is composed of loose irregular (areolar) subendothelium/sube connective tissue and may contain small vessels. The ndocardium in subendocardium is not normally visible unless it contains Slide 1b (31) components of the heart’s conducting system (Purkinje fibers) or blood such as during a subendocardial hemorrhage. ii) Myocardium The muscular layer of the heart wall. In Foundations you learned how to recognize cardiac muscle as compared to smooth and skeletal muscle in both longitudinal and transverse section. Review this now: c. Myocardium in longitudinal section Outline a number of typical cardiomyocytes and confirm: - centrally located nuclei - cytoplasm packed full of actin and myosin organized into Examine regions of sarcomeres (striations) myocardium (long - branching of individual cells section) in - intercalated disks that form communicating junctions Slide 1c (31) between cells - numerous capillaries containing erythrocytes between cells d. Myocardium in transverse section Confirm these features of cardiac muscle in cross section: Examine regions of - the long cells appear rounder or more oval in shape myocardium (cross - striations are not visible because they run perpendicular to section) in the plain of the section. Slide 1d (31) - only a few cells have had their nuclei sectioned - when sectioned the nucleus does not occupy the entire cell iii) Epicardium The outermost layer of the heart wall. It is composed of the visceral layer of serous pericardium which is continuous with parietal layer of serous pericardium (adheres to fibrous pericardium). Note that the parietal serous and fibrous pericardium are absent because the pericardial sac was removed during preparation. Observe the following layers of the epicardium: e. Visceral serous mesothelium Find the visceral A simple squamous epithelium lining the outer wall of the heart. serous mesothelium in These cells are responsible for secretion of pericardial fluid into Slide 1e (31) the pericardial space. f. Adipose layer A layer of fat between myocardium and the mesothelium. Note Find the adipose layer that embedded within this fatty layer are small blood vessels. of the epicardium in These are components of the coronary-cardiac circulation. Slide 1f (31) iv) Purkinje fibers Use Slide 2 (32) to demonstrate evidence of the presence of the heart’s conducting system These are modified cardiac muscle cells locted within the subendocardium that form part of the conducting system of the heart. The fibers transmit electrical impulses from the Bundles of His in the septum to the apex and lateral walls of the ventricles resulting in the coordinated contraction of the ventricles. Note that the cells are larger than regular cardiomyocytes and appear paler due to an increase in glycogen within the cells and reduced volume of more peripherally located actin and myosin in the cells. v) Heart valves Examine Slide 3 (29) to identify a heart valve and describe its intrinsic histological organization Valves are avascular and composed of two types of connective tissue: a. Fibrosa Identify this dense irregular connective tissue core that blends with the connective tissue of the fibrous skeleton of the heart. b. Spongiosa arterialis (semilunar) or Spongiosa auricularis (AV) Find the fibrosa, Identify this thin area of loose irregular connective tissue located spongiosa and beneath the endothelium on the blood vessel side of a semilunar ventricularis of the valve or atrial side of an AV valve. It infers plasticity and flexibility aortic semilunar valve to the valve cusps. in Slide 3a-c (29) c. Ventricularis Identify this area which has a distinct region of dense irregular connective tissue beneath the endothelium on the ventricular side of a valve. It contains many elastic fibers. Also in Slide 3 (29) try to identify the aorta and the following features of the heart wall. d. Aorta The aorta has features common to the structure of a large elastic Find the aorta in artery (see later). Note that it is cut in longitudinal section here. Slide 3d (29) e and f. Myocardium and fibrous skeleton In addition to the cardiac muscle cells, notice the abundance of Find the myocardium dense irregular connective tissue in this region. This constitutes in Slide 3e (29) part of the fibrous skeleton of the heart. The collagen fibers you can see are invested in the adjacent myocardium and are Find the fibrous continuous with the core of the valve to support it. skeleton in Slide 3f (29) g. Endocardium Note that the endocardium is continuous with the outer layer of the heart valve cusp although it is given a different name in these Find endocardium in regions (see above). Slide 3g (29) Analyze the histological organization and structure of blood vessels Use Slide 4 (or the image below) to demonstrate the components of the 3 tunics that form the wall of a blood vessel All blood vessels have the same structural organization. They all contain a lumen and their walls are composed of series of structural components organized into three layers or ‘tunics’: 1. Tunica intima 1a Endothelium 1b Subendothelium 3a 3b 1c Internal elastic lamina 2a 2. Tunica media 2b 2a Smooth muscle 2b External elastic lamina 1a 1b 1c 3. Tunica adventitia 3a Dense irregular CT 3b Vaso vasorum Nervi vasorum It is important to be able to know the components of each of these regions in a vessel because variations in composition and size can be used to identify and classify different sizes of vessels. Before examining any slides, familiarize yourself with this diagram (shown on Slide 4) by identifying the tunics and their subcomponents. Examine Slide 5 (28), Slide 6 (27), Slide 7 (54), Slide 8 (79), Slide 9 (18) and Slide 10 (30) and use the appearance of vessel ultra-structure to classify and distinguish between different types of blood vessels in the body. i. Elastic Artery (Aorta) Examine Slide 5 (28) and identify the three tunics and their components in an elastic artery. a. Tunica intima An inner simple squamous endothelium and a relatively thick subendothelium that is continuous with the endocardium you saw in the heart earlier. The internal elastic lamina is the first layer of elastin seen (and often the thickest). b. Tunica media Elastic arteries have a characteristically thick and prominent tunica media. It is composed of smooth muscle cells arranged in multiple layers that are separated by distinctive elastin fibers. c. Tunica adventitia The outermost connective tissue coat of the vessel. It is characterized by dense irregular collagen fibers within which are embedded numerous small blood vessels (vaso vasorum) and nerves (nervi vasorum). ii. Distributing/Muscular Artery Examine Slide 6 (27) and identify the three tunics and their components in a muscular artery. In this slide, the artery is located within a neurovascular bundle, which contains nerves, fat, connective tissue and other small blood vessels. a. Tunica intima Identify the endothelium, its thin subendothelium and the prominent internal elastic lamina. The internal elastic lamina is the key feature for identifying muscular arteries. b. Tunica media Identify the smooth muscle cells of the tunica media. Elastin fibers in the tunica media are barely visible but there is often a prominent external elastic lamina. c. Tunica adventitia Identify the extent of the tunica adventitia in this artery. Do not confuse it with the surrounding fat and connective tissue of the neurovascular bundle with which it blends. iii. Arteriole and Venule Examine Slide 7 (54) and find arterioles and venules in the wall of the esophagus. Blood supply to the esophagus is via branches of the esophageal arteries (muscular arteries) located within the wall of the organ.
Recommended publications
  • Chapter 20 *Lecture Powerpoint the Circulatory System: Blood Vessels and Circulation
    Chapter 20 *Lecture PowerPoint The Circulatory System: Blood Vessels and Circulation *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • The route taken by the blood after it leaves the heart was a point of much confusion for many centuries – Chinese emperor Huang Ti (2697–2597 BC) believed that blood flowed in a complete circuit around the body and back to the heart – Roman physician Galen (129–c. 199) thought blood flowed back and forth like air; the liver created blood out of nutrients and organs consumed it – English physician William Harvey (1578–1657) did experimentation on circulation in snakes; birth of experimental physiology – After microscope was invented, blood and capillaries were discovered by van Leeuwenhoek and Malpighi 20-2 General Anatomy of the Blood Vessels • Expected Learning Outcomes – Describe the structure of a blood vessel. – Describe the different types of arteries, capillaries, and veins. – Trace the general route usually taken by the blood from the heart and back again. – Describe some variations on this route. 20-3 General Anatomy of the Blood Vessels Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Capillaries Artery: Tunica interna Tunica media Tunica externa Nerve Vein Figure 20.1a (a) 1 mm © The McGraw-Hill Companies, Inc./Dennis Strete, photographer • Arteries carry blood away from heart • Veins
    [Show full text]
  • Lecture 7 - Pectoral Region & Axilla
    ANATOMY TEAM Lecture 7 - pectoral region & Axilla تنوٌه: هذا العمل ﻻ ٌعتبر مصدر أساسً للمذاكره وإنما هو للمراجعه فقط ، وﻻ ٌوجد أي اختﻻف بٌن سﻻٌد اﻻوﻻد والبنات Identify and describe the muscles of the pectoral region Origin Insertion Nerve Action supply Pectoralis Clavicular head Lateral lip of Medial & lateral Adduction and Sternocostal head pectoral nerves medial rotation of major bicipital groove the arm #Clavicular head helps in flexion of arm (shoulder) Pectoralis minor From 3rd ,4th, & 5th Coracoid process Medial Depression of the shoulder ribs close to their pectoral nerve costal cartilages Draw the ribs upward and outwards during deep inspiration st Subclavius From 1 rib at Subclavian groove Nerve to Fixes the its costal in the middle 1/3 subclavius clavicle cartilage of the inferior from upper during surface of clavicle trunk of movement of brachial plexus shoulder joint Serratus anterior Draws the Upper eight anterior aspect of Long thoracic scapula forward in ribs the medial border nerve boxing, and inferior angle Or bell nerve of scapula (protrusion) From C5,6,7 Rotates # root scapula outwards in raising the arm above 90 degree Serratus anterior Subclavius Pectoralis minor Pectoralis major General Notes : Mastectomy = surgical removing of the breast Axilla= arm pit -protrosion =protraction=forward But retraction=backward =making winging of the scapula All Plexus from ventral remai We naming the cords ( latral,posterior,medial)according to axillary artery Only trunk gives branching is: upper trunk (superior) # Clavipectoral
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Arteries.Pdf
    Arteries Although blood vessels differ in size, distribution, and function, structurally they share many common features. As in the heart, the walls of blood vessels consist of three major coats or tunics. Differences in the appearance and functions of the various parts of the circulatory system are reflected by structural changes in these tunics or by reduction and even omission of some of the layers. From the lumen outward, the wall of a blood vessel consists of a tunica intima, tunica media, and tunica adventitia. The tunica intima corresponds to and is continuous with the endocardium of the heart. It consists of an endothelium of flattened squamous cells resting on a basal lamina and is supported by a subendothelial connective tissue. The tunica media is the equivalent of the myocardium of the heart and is the layer most variable both in size and structure. Depending on the function of the vessel, this layer contains variable amounts of smooth muscle and elastic tissue. The tunica adventitia also varies in thickness in different parts of the vascular circuit. It consists mainly of collagenous connective tissue and corresponds to the epicardium of the heart, but it lacks mesothelial cells. As arteries course away from the heart they undergo successive divisions to provide numerous branches whose calibers progressively decrease. The changes in size and the corresponding changes in structure of the vessel wall are continuous, but three classes of arteries can be distinguished: large elastic or conducting arteries, medium-sized muscular or distributing arteries, and small arteries and arterioles. A characteristic feature of the entire arterial side of the blood vasculature system is the prominence of smooth muscle in the tunica media.
    [Show full text]
  • 27 Lymph Vascular System
    Lymph Vascular System The lymph vascular system consists of endothelial-lined tubes that recover intercellular (tissue) fluid not picked up by the blood vascular system and returns it to the blood. The fluid (lymph) carried by the lymphatics is a blood filtrate formed as fluid crosses the blood capillaries into the tissues. Unlike the blood vascular system, lymph flow is unidirectional - from tissues to the union of the lymphatic and blood vascular systems at the base of the neck. The lymphatic vascular system begins in the tissues as blindly ending capillaries that drain into larger collecting vessels and then into two main lymphatic trunks. Lymph nodes occur along the course of the vessels and filter the lymph. Lymphatics are present in most tissues but are absent from bone marrow, the central nervous system, coats of the eye, internal ear, and fetal placenta. Lymph Capillaries Lymph capillaries are thin-walled, blind tubes that branch and anastomose freely to form a rich network in organs and tissues. They are wider and more irregular than blood capillaries. The wall of a lymph capillary consists only of a thin continuous endothelium and a discontinuous basal lamina that is present only in patches or may even be absent. Adjacent endothelial cells may overlap, but junctional complexes are few and clefts occur between the cells. Externally, the endothelium is surrounded by a small amount of collagenous connective tissue. Fine filaments run perpendicularly from the collagen bundles and attach to the outer surfaces of the endothelium as anchoring filaments that maintain the patency of the vessel. Collecting Lymph Vessels Collecting lymph vessels differ from lymph capillaries in size and the thickness of their walls.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Regulatory Roles of Endothelial Cells in Cancer
    REGULATORY ROLES OF ENDOTHELIAL CELLS IN CANCER MASSACHUSETTS INSTIilr By OF TECHNOLOGY Joseph W. Franses JUN 0 8 2011 B.S. Chemical Engineering, B.S. Chemistry Purdue University, 2005 LIBRARIES SUBMITTED TO THE HARVARD-M.I.T. DIVISION OF HEALTH SCIENCES AND TECHNOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOMEDICAL ENGINEERING ARCHW AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY MAY 2011 @ Massachusetts Institute of Technology All riahts reserved Signature of Author Hara-Mi i ULivision oT Health Sciences and Technology May 16, 2011 Certified by: Elazer R. Edelman, M.D.-Ph.D. Thomas D. and Virginia W. Cabot Professor of Health Sciences and Technology, M.I.T. Thesis Supervisor Accepted by: Ram Sasisekharan, Ph.D. Edward Hood Taplin Professor of Health Sciences and Technology and Biological Engineering, M.I.T. Director, Harvard-M.I.T. Division of Health Sciences and Technology REGULATORY ROLES OF ENDOTHELIAL CELLS IN CANCER By Joseph W. Franses Submitted to the Harvard-M.I.T. Division of Health Sciences and Technology on May 16, 2011 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biomedical Engineering Advisor: Elazer R. Edelman, Thomas and Virginia Cabot Professor of Health Sciences and Technology, M.I.T. Thesis committee chair: David A. Housman, Ludwig Professor of Biology, M.I.T. Thesis committee: 1. Sangeeta N. Bhatia, Professor of Health Sciences and Technology and Professor of Electrical Engineering and Computer Science, M.I.T. 2. David T. Scadden, Gerald and Darlene Jordan Professor of Medicine, Harvard University Abstract This thesis describes the biochemical regulatory impact of endothelial cells, the cells that line all blood vessels, in cancer.
    [Show full text]
  • Clinical Anatomy of the Lower Extremity
    Государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации Department of Operative Surgery and Topographic Anatomy Clinical anatomy of the lower extremity Teaching aid Иркутск ИГМУ 2016 УДК [617.58 + 611.728](075.8) ББК 54.578.4я73. К 49 Recommended by faculty methodological council of medical department of SBEI HE ISMU The Ministry of Health of The Russian Federation as a training manual for independent work of foreign students from medical faculty, faculty of pediatrics, faculty of dentistry, protocol № 01.02.2016. Authors: G.I. Songolov - associate professor, Head of Department of Operative Surgery and Topographic Anatomy, PhD, MD SBEI HE ISMU The Ministry of Health of The Russian Federation. O. P.Galeeva - associate professor of Department of Operative Surgery and Topographic Anatomy, MD, PhD SBEI HE ISMU The Ministry of Health of The Russian Federation. A.A. Yudin - assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU The Ministry of Health of The Russian Federation. S. N. Redkov – assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU THE Ministry of Health of The Russian Federation. Reviewers: E.V. Gvildis - head of department of foreign languages with the course of the Latin and Russian as foreign languages of SBEI HE ISMU The Ministry of Health of The Russian Federation, PhD, L.V. Sorokina - associate Professor of Department of Anesthesiology and Reanimation at ISMU, PhD, MD Songolov G.I K49 Clinical anatomy of lower extremity: teaching aid / Songolov G.I, Galeeva O.P, Redkov S.N, Yudin, A.A.; State budget educational institution of higher education of the Ministry of Health and Social Development of the Russian Federation; "Irkutsk State Medical University" of the Ministry of Health and Social Development of the Russian Federation Irkutsk ISMU, 2016, 45 p.
    [Show full text]
  • Robust Internal Elastic Lamina Fenestration in Skeletal Muscle Arteries
    Robust Internal Elastic Lamina Fenestration in Skeletal Muscle Arteries Brett S. Kirby1., Allison Bruhl1., Michelle N. Sullivan1, Michael Francis3, Frank A. Dinenno1,2, Scott Earley1* 1 Department of Biomedical Sciences, Vascular Physiology Research Group, Colorado State University, Fort Collins, Colorado, United States of America, 2 Department of Health and Exercise Science, Human Cardiovascular Physiology Laboratory, Colorado State University, Fort Collins, Colorado, United States of America, 3 Department of Physiology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America Abstract Holes within the internal elastic lamina (IEL) of blood vessels are sites of fenestration allowing for passage of diffusible vasoactive substances and interface of endothelial cell membrane projections with underlying vascular smooth muscle. Endothelial projections are sites of dynamic Ca2+ events leading to endothelium dependent hyperpolarization (EDH)- mediated relaxations and the activity of these events increase as vessel diameter decreases. We tested the hypothesis that IEL fenestration is greater in distal vs. proximal arteries in skeletal muscle, and is unlike other vascular beds (mesentery). We also determined ion channel protein composition within the endothelium of intramuscular and non-intramuscular skeletal muscle arteries. Popliteal arteries, subsequent gastrocnemius feed arteries, and first and second order intramuscular arterioles from rat hindlimb were isolated, cut longitudinally, fixed, and imaged using confocal microscopy. Quantitative analysis revealed a significantly larger total fenestration area in second and first order arterioles vs. feed and popliteal arteries (58% and 16% vs. 5% and 3%; N = 10 images/artery), due to a noticeably greater average size of holes (9.5 and 3.9 mm2 vs 1.5 and 1.9 mm2).
    [Show full text]
  • Anatomy and Blood Supply of the Urethra and Penis J
    3 Anatomy and Blood Supply of the Urethra and Penis J. K.M. Quartey 3.1 Structure of the Penis – 12 3.2 Deep Fascia (Buck’s) – 12 3.3 Subcutaneous Tissue (Dartos Fascia) – 13 3.4 Skin – 13 3.5 Urethra – 13 3.6 Superficial Arterial Supply – 13 3.7 Superficial Venous Drainage – 14 3.8 Planes of Cleavage – 14 3.9 Deep Arterial System – 15 3.10 Intermediate Venous System – 16 3.11 Deep Venous System – 17 References – 17 12 Chapter 3 · Anatomy and Blood Supply of the Urethra and Penis 3.1 Structure of the Penis surface of the urogenital diaphragm. This is the fixed part of the penis, and is known as the root of the penis. The The penis is made up of three cylindrical erectile bodies. urethra runs in the dorsal part of the bulb and makes The pendulous anterior portion hangs from the lower an almost right-angled bend to pass superiorly through anterior surface of the symphysis pubis. The two dor- the urogenital diaphragm to become the membranous solateral corpora cavernosa are fused together, with an urethra. 3 incomplete septum dividing them. The third and smaller corpus spongiosum lies in the ventral groove between the corpora cavernosa, and is traversed by the centrally 3.2 Deep Fascia (Buck’s) placed urethra. Its distal end is expanded into a conical glans, which is folded dorsally and proximally to cover the The deep fascia penis (Buck’s) binds the three bodies toge- ends of the corpora cavernosa and ends in a prominent ther in the pendulous portion of the penis, splitting ven- ridge, the corona.
    [Show full text]
  • Blood Vessels
    Elastic artery Venules. Muscular (distributing) Small veins (medium-sized) artery Medium- Arterioles sized veins Large veins General Structure of Blood Vessels - The wall of blood vessel is formed of three concentric layers: Tunica intima (interna) Tunica media Tunica adventitia (externa) Tunica Intima Single layer of flattened Subendothelial layer made Beneath the subendothelial endothelial cells (resting on up of loose connective layer is an internal elastic the basal lamina) lining the tissue. May have few lamina, composed of elastin lumen of the vessel longitudinally arranged (fenestrated elastic sheet), smooth muscle fibers separating the tunica intima from the tunica media Tunica Media Composed of smooth Large muscular arteries have external elastic lamina, muscles, some elastic fibers, separating the tunica media from the tunica adventitia. type III collagen (reticular Capillaries and postcapillary venules do not have a tunica fibers) and type I collagen. media, however, pericytes replace the tunica media. Tunica Adventitia - Composed of connective . Vasa vasorum: “Outermost layer” tissue containing types I & III NN..BB. collagen, fibroblasts and are small arterioles in tunica adventitia longitudinal elastic fibers and the outer part of tunica media. - Blends into the surrounding They are more prevalent in the connective tissue. walls of veins than arteries – why? Venous blood contains less oxygen and nutrients than arterial blood. ELASTIC ARTERIES T. Adventitia T. Intima T. Media Much thinner than T.M Fenestrated elastic loose C.T *Endothelium. membranes (sheets) (lamellae) In between, there are: 1. Smooth muscle cells: Subendothelial C.T. * less abundant & secrete Contains vasa all other components in T.M. vasorum → send 2. Collagen fibers (type I branches to the collagen).
    [Show full text]
  • Site-Dependent and Interindividual Variations In
    Muraoka et al. BMC Urology (2015) 15:42 DOI 10.1186/s12894-015-0034-5 RESEARCH ARTICLE Open Access Site-dependent and interindividual variations in Denonvilliers’ fascia: a histological study using donated elderly male cadavers Kuniyasu Muraoka1, Nobuyuki Hinata2, Shuichi Morizane1, Masashi Honda1, Takehiro Sejima1, Gen Murakami3, Ashutosh K Tewari4 and Atsushi Takenaka1* Abstract Background: Site-dependent and interindividual histological differences in Denonvilliers’ fascia (DF) are not well understood. This study aimed to examine site-dependent and interindividual differences in DF and to determine whether changes in the current approach to radical prostatectomy are warranted in light of these histological findings. Methods: Twenty-five donated male cadavers (age range, 72–95 years) were examined. These cadavers had been donated to Sapporo Medical University for research and education on human anatomy. Their use for research was approved by the university ethics committee. Horizontal sections (15 cadavers) or sagittal sections (10 cadavers) were prepared at intervals of 2–5 mm for hematoxylin and eosin staining. Elastic–Masson staining and immunohistochemical staining were also performed, using mouse monoclonal anti-human alpha-smooth muscle actin to stain connective tissues and mouse monoclonal anti-human S100 protein to stain nerves. Results: We observed that DF consisted of disorderly, loose connective tissue and structures resembling “leaves”, which were interlacing and adjacent to each other, actually representing elastic or smooth
    [Show full text]