AANEM Glossary of Terms in Neuromuscular and Electrodiagnostic Medicine

Total Page:16

File Type:pdf, Size:1020Kb

AANEM Glossary of Terms in Neuromuscular and Electrodiagnostic Medicine AANEM Glossary of Terms in Neuromuscular and Electrodiagnostic Medicine Compiled by the AANEM Nomenclature Committee Third Edition © AANEM 2015 Muscle & Nerve Supplement 2015 S1 Foreword The field of neuromuscular and electrodiagnostic medicine requires a universal language to communicate effectively. This glossary is the cumulative effort of many individuals over the past several decades. With added knowledge gained through research and innovation, the need to update the extensive list will continue to occur periodically. The original glossary was produced in 1980 with updates in 1987 and 2001. Since the last glossary, the American Association of Electrodiagnostic Medicine (AAEM) has changed its name to the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM). Electrodiagnostic testing of muscle and nerve function has been enhanced by the addition of neuromuscular ultrasound imaging. Expanding research in this area has prompted the introduction of basic terms regarding ultrasound technology to this glossary. The number of articles with ultrasound in the title in Muscle and Nerve online was only 3 articles in the first six months of 2003 and expanded to 24 articles in a similar timeframe in 2013. Over 50 new terms have been added regarding ultrasound to this glossary with 7 original ultrasound images for illustration. The International Anatomical Terminology text entitled Terminologia Anatomica in 1998 introduced new anatomy terms that are gradually making their way into usage. Examples include the peroneal nerve also known as the fibular nerve and the peroneus brevis and longus muscles also known as the fibularis brevis and longus muscles. The fibular nerve is now added to this glossary. There were only a few terms deleted. The goal of providing educational outreach will be enhanced by adding the glossary to the AANEM website, (www.aanem.org). The 2012-2013 AANEM Professional Practice Committee members who served as the Nomenclature Committee responsible for updating the glossary are acknowledged here: Mary K. Kneiser, MD, Chair Andrea J. Boon, MD Andrew David Brown, MD Lisa D. Hobson-Webb, MD Benn E. Smith, MD William J. Litchy, MD Yuebing Li, MD, PhD Michael Lenihan, MD V. Brandon Thompson, MD Lisa D. Hobson-Webb, MD and Andrea J. Boon, MD provided ultrasound terms and illustrations to introduce basic concepts in neuromuscular ultrasound imaging. A picture is worth a thousand words, especially for a glossary. Francis O. Walker, MD and Michael S. Cartwright, MD, MS provided technical expertise with an additional review of the newly added neuromuscular ultrasound terms. John C. Kincaid, MD provided a final review of the updates to electrodiagnostic medicine terms. Elizabeth A. Conlin, BSEE, ME provided technical support. Thank you to our families for their support allowing the committee members to spend so much time and so many days, nights, and weekends making sure this task was completed. S2 AANEM Glossary of Terms in Neuromuscular & Electrodiagnostic Medicine © 2015 AANEM Table of Contents AANEM Glossary of Terms in Neuromuscular and Electrodiagnostic Medicine SECTION I: ALPHABETIC LIST OF TERMS WITH DEFINITIONS ................................................................... S5 SECTION II: ILLUSTRATIONS OF SELECTED WAVEFORMS ........................................................................ S33 COMPOUND SENSORY NERVE ACTION POTENTIAL ................................................................................ S34 SHORT-LATENCY SOMATOSENSORY EVOKED POTENTIAL (SSEP) MEDIAN NERVE ...................... S34 SHORT-LATENCY SOMATOSENSORY EVOKED POTENTIAL (SSEP) COMMON FIBULAR NERVE . S35 SHORT-LATENCY SOMATOSENSORY EVOKED POTENTIAL (SSEP) POSTERIOR TIBIAL NERVE .. S35 VISUAL EVOKED POTENTIAL (VEP) ............................................................................................................. S36 BRAINSTEM AUDITORY EVOKED POTENTIAL (BAEP) ............................................................................ S36 M WAVE .............................................................................................................................................................. S37 F WAVE ................................................................................................................................................................ S37 H WAVE ............................................................................................................................................................... S38 A WAVE ............................................................................................................................................................... S39 T WAVE ................................................................................................................................................................ S40 BLINK RESPONSES ............................................................................................................................................ S40 REPETITIVE NERVE STIMULATION NORMAL RESPONSE ....................................................................... S41 REPETITIVE NERVE STIMULATION DECREMENTING RESPONSE........................................................ S41 REPETITIVE NERVE STIMULATION INCREMENTING RESPONSE .......................................................... S42 REPETITIVE NERVE STIMULATION NORMAL (N), MYASTENIA GRAVIS (MG), LAMBERT-EATON MYASTHENIC SYNDROME (LEMS) ............................................................................................................... S42 REPETITIVE NERVE STIMULATION PSEUDOFACILITATION .................................................................. S42 INSERTION ACTIVITY ...................................................................................................................................... S43 END-PLATE ACTIVITY ..................................................................................................................................... S44 FIBRILLATION POTENTIAL ............................................................................................................................. S44 POSITIVE SHARP WAVE .................................................................................................................................. S45 MYOTONIC DISCHARGE .................................................................................................................................. S45 COMPLEX REPETITIVE DISCHARGE ............................................................................................................. S46 FASCICULATION POTENTIAL ........................................................................................................................ S46 MYOKYMIC DISCHARGE ................................................................................................................................. S47 NEUROMYOTONIC DISCHARGE .................................................................................................................... S47 CRAMP DISCHARGE ......................................................................................................................................... S48 Muscle & Nerve Supplement 2015 S3 MOTOR UNIT ACTION POTENTIALS ............................................................................................................ S48 SATELLITE POTENTIAL ................................................................................................................................... S49 RECRUITMENT PATTERN/INTERFERENCE PATTERN .............................................................................. S49 SINGLE FIBER ELECTROMYOGRAPH .......................................................................................................... S50 MACROELECTROMYOGRAPHY (MACRO-EMG) ........................................................................................ S51 NEEDLE ELECTRODES ..................................................................................................................................... S52 FULL WAVE RECTIFIED EMG ........................................................................................................................ S52 SYMPATHETIC SKIN RESPONSE ................................................................................................................... S53 SECTION III: ILLUSTRATIONS OF SELECTED ULTRASOUND IMAGES .................................................... S54 SHORT AXIS ULTRASOUND VIEW ................................................................................................................ S55 LONG AXIS STANDARD ULTRASOUND VIEW ........................................................................................... S56 IN-PLANE NEEDLE APPROACH ..................................................................................................................... S57 REVERBERATION ARTIFACT (COMET TAIL) ............................................................................................. S58 ECHOGENICITY HYPERECHOIC/HYPOECHOIC COMPARISON .............................................................. S59 ULTRASOUND ARTIFACT ANISOTROPY ..................................................................................................... S60 ULTRASOUND MODES B MODE/M MODE ................................................................................................... S61 SECTION IV: ABBREVIATIONS .......................................................................................................................
Recommended publications
  • Long-Term Potentiation Differentially Affects Two Components of Synaptic
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 9346-9350, December 1988 Neurobiology Long-term potentiation differentially affects two components of synaptic responses in hippocampus (plasticity/N-methyl-D-aspartate/D-2-amino-5-phosphonovglerate/facilitation) DOMINIQUE MULLER*t AND GARY LYNCH Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92717 Communicated by Leon N Cooper, September 6, 1988 (receivedfor review June 20, 1988) ABSTRACT We have used low magnesium concentrations ing electrode was positioned in field CAlb between two and the specific antagonist D-2-amino-5-phosphonopentanoate stimulating electrodes placed in fields CAla and CAlc; this (D-AP5) to estimate the effects of long-term potentiation (LTP) allowed us to activate separate inputs to a common pool of on the N-methyl-D-aspartate (NMDA) and non-NMDA recep- target cells. Stimulation voltages were adjusted to produce tor-mediated components of postsynaptic responses. LTP in- field EPSPs of -1.5 mV and did not elicit population spikes duction resulted in a considerably larger potentiation of non- in any of the responses included for data analysis. NMDA as opposed to NMDA receptor-related currents. In- Paired-pulse facilitation was produced by applying two creasing the size of postsynaptic potentials with greater stimulation pulses separated by 30 or 50 ms to the same stimulation currents or with paired-pulse facilitation produced stimulating electrode and LTP was induced by patterned opposite effects; i.e., those aspects ofthe response dependent on burst stimulation-i.e., 10 bursts delivered at 5 Hz, each NMDA receptor's increased to a greater degree than did those burst being composed of four pulses at 100 Hz (see ref.
    [Show full text]
  • Research on Light and Sound
    Research on light and sound Welcome! I’ve spent the last five years reading all the available research on mind machines – and now I’ve pulled together the most accessible of this information as a way to encourage you to try this technology yourself. Mind machines are referred to in these reports in a number of ways: • BWS (Brainwave Synchronisers) • LS (light and sound devices) • AVS (audio visual stimulation) • Photic stimulation All refer to the same technology which is built into our range of mind machines. All our mind machines can generate all the frequencies mentioned in these reports. I’ve condensed some of the reports for readability – and because some of the data is repeated. For example I’ve taken out three paragraphs from the extract from Megabrain Power as the original full reports are included here. I’ve had the very good fortune to spend time with many of the people mentioned in these pages: Robert Austin, Tom Budzynski, Michael Hutchison, Julian Isaacs, Harold Russell and David Siever – all thorough and committed researchers at the cutting edge of peak performance technology. Have a great read. You don’t need to understand it all. I just hope you read enough to see for yourself that mind machines really do work, and you’re encouraged to try a unit in your own home, using our 100% money back satisfaction guarantee. Chris Payne, Managing Director, LifeTools Slow wave photic stimulation in the treatment of headache A Preliminary Report by Glen D Solomon, MD (printed in Headache, the official publication of the American Association for the Study of Headache, August 16, 1985) Acute muscle contraction headache Fifteen patients, 10 female and five male, aged 21 to 41 years (mean 33.4 years), were treated with slow wave photic stimulation.
    [Show full text]
  • New Observations Letters Familial Spinocerebellar Ataxia Type 2 Parkinsonism Presenting As Intractable Oromandibular Dystonia
    Freely available online New Observations Letters Familial Spinocerebellar Ataxia Type 2 Parkinsonism Presenting as Intractable Oromandibular Dystonia 1,2 2,3 1,3* Kyung Ah Woo , Jee-Young Lee & Beomseok Jeon 1 Department of Neurology, Seoul National University Hospital, Seoul, KR, 2 Department of Neurology, Seoul National University Boramae Hospital, Seoul, KR, 3 Seoul National University College of Medicine, Seoul, KR Keywords: Dystonia, spinocerebellar ataxia type 2, Parkinson’s disease Citation: Woo KA, Lee JY, Jeon B. Familial spinocerebellar ataxia type 2 parkinsonism presenting as intractable oromandibular dystonia. Tremor Other Hyperkinet Mov. 2019; 9. doi: 10.7916/D8087PB6 * To whom correspondence should be addressed. E-mail: [email protected] Editor: Elan D. Louis, Yale University, USA Received: October 20, 2018 Accepted: December 10, 2018 Published: February 21, 2019 Copyright: ’ 2019 Woo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution–Noncommercial–No Derivatives License, which permits the user to copy, distribute, and transmit the work provided that the original authors and source are credited; that no commercial use is made of the work; and that the work is not altered or transformed. Funding: None. Financial Disclosures: None. Conflicts of Interest: The authors report no conflict of interest. Ethics Statement: This study was reviewed by the authors’ institutional ethics committee and was considered exempted from further review. We have previously described a Korean family afflicted with reflex, mildly stooped posture, and parkinsonian gait. There was spinocerebellar ataxia type 2 (SCA2) parkinsonism in which genetic no sign of lower motor lesion, including weakness, muscle atrophy, analysis revealed CAG expansion of 40 repeats in the ATXN2 gene.1 or fasciculation.
    [Show full text]
  • A Revised Computational Neuroanatomy for Motor Control
    This is the author’s final version; this article has been accepted for publication in the Journal of Cognitive Neuroscience 1 A Revised Computational Neuroanatomy for Motor Control 2 Shlomi Haar1, Opher Donchin2,3 3 1. Department of BioEngineering, Imperial College London, UK 4 2. Department of Biomedical Engineering, Ben-Gurion University of the Negev, Israel 5 3. Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Israel 6 7 Corresponding author: Shlomi Haar ([email protected]) 8 Imperial College London, London, SW7 2AZ, UK 9 10 Acknowledgements: We would like to thank Ilan Dinstein, Liad Mudrik, Daniel Glaser, Alex Gail, and 11 Reza Shadmehr for helpful discussions about the manuscript. Shlomi Haar is supported by the Royal 12 Society – Kohn International Fellowship (NF170650). Work on this review was partially supported by 13 DFG grant TI-239/16-1. 14 15 Abstract 16 We discuss a new framework for understanding the structure of motor control. Our approach 17 integrates existing models of motor control with the reality of hierarchical cortical processing and the 18 parallel segregated loops that characterize cortical-subcortical connections. We also incorporate the recent 19 claim that cortex functions via predictive representation and optimal information utilization. Our 20 framework assumes each cortical area engaged in motor control generates a predictive model of a different 21 aspect of motor behavior. In maintaining these predictive models, each area interacts with a different part 22 of the cerebellum and basal ganglia. These subcortical areas are thus engaged in domain appropriate 23 system identification and optimization. This refocuses the question of division of function among different 24 cortical areas.
    [Show full text]
  • Cramp Fasciculation Syndrome: a Peripheral Nerve Hyperexcitability Disorder Bhojo A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eCommons@AKU Pakistan Journal of Neurological Sciences (PJNS) Volume 9 | Issue 3 Article 7 7-2014 Cramp fasciculation syndrome: a peripheral nerve hyperexcitability disorder Bhojo A. Khealani Aga Khan University Hospital, Follow this and additional works at: http://ecommons.aku.edu/pjns Part of the Neurology Commons Recommended Citation Khealani, Bhojo A. (2014) "Cramp fasciculation syndrome: a peripheral nerve hyperexcitability disorder," Pakistan Journal of Neurological Sciences (PJNS): Vol. 9: Iss. 3, Article 7. Available at: http://ecommons.aku.edu/pjns/vol9/iss3/7 CASE REPORT CRAMP FASCICULATION SYNDROME: A PERIPHERAL NERVE HYPEREXCITABILITY DISORDER Bhojo A. Khealani Assistant professor, Neurology section, Aga khan University, Karachi Correspondence to: Bhojo A Khealani, Department of Medicine (Neurology), Aga Khan University, Karachi. Email: [email protected] Date of submission: June 28, 2014, Date of revision: August 5, 2014, Date of acceptance:September 1, 2014 ABSTRACT Cramp fasciculation syndrome is mildest among all the peripheral nerve hyperexcitability disorders, which typically presents with cramps, body ache and fasciculations. The diagnosis is based on clinical grounds supported by electrodi- agnostic study. We report a case of young male with two months’ history of body ache, rippling, movements over calves and other body parts, and occasional cramps. His metabolic workup was suggestive of impaired fasting glucose, radio- logic work up (chest X-ray and ultrasound abdomen) was normal, and electrodiagnostic study was significant for fascicu- lation and myokymic discharges. He was started on pregablin and analgesics. To the best of our knowledge this is report first of cramp fasciculation syndrome from Pakistan.
    [Show full text]
  • Motor Control: a Sense of Movement
    RESEARCH HIGHLIGHTS MOTOR CONTROL A sense of movement Neuroscience textbooks tell us that with a shorter latency after S1 stimu- whisker protraction, and that M1retract the motor cortex controls move- lation than after M1 stimulation. only induces whisker retraction ment. But now, Carl Petersen and Thus, S1 and M1 are both involved in indirectly, through S1 activation. colleagues show that sensory cortex whisker motor and sensory process- By mapping the neural pathways may have an equally important role ing. The M1 area that induced C2 involved in C2 whisker retraction in motor control. retraction was termed M1retract; a and protraction, the authors found The authors showed that a single, more medial M1 region that induced that M1C2 and S1C2 have reciprocal brief deflection of the C2 whisker C2 protraction under microstimula- connections and project to adjacent induced activity in the correspond- tion was termed M1protract. regions in subcortical areas. In the ing barrel column of the primary The authors next investigated the brain stem, this includes the reticular somatosensory cortex (S1), followed functional relevance of this finding. formation as a projection area of M1, by a response in a small area in the By attaching metal particles to the C2 and the spinal trigeminal nuclei as primary motor cortex (M1). Direct whisker and applying a pulsed mag- a projection area of S1. Both areas microstimulation or optogenetic netic field, the authors could evoke project to the facial nucleus, which stimulation of either area induced C2 whisker deflections. The whisker contains whisker motor neurons. a brief retraction of the C2 whisker, retracted in response to this stimulus, Indeed, direct electrical stimula- and this response was abolished when tion of the reticular formation and S1 was inactivated — but not spinal trigeminal nuclei induced when M1 was inactivated — with whisker protraction and retraction, tetrodoxin (TTX).
    [Show full text]
  • Scalp Eczema Factsheet the Scalp Is an Area of the Body That Can Be Affected by Several Types of Eczema
    12 Scalp eczema factsheet The scalp is an area of the body that can be affected by several types of eczema. The scalp may be dry, itchy and scaly in a chronic phase and inflamed (red), weepy and painful in an acute (eczema flare) phase. Aside from eczema, there are a number of reasons why the scalp can become dry and itchy (e.g. psoriasis, fungal infection, ringworm, head lice etc.), so it is wise to get a firm diagnosis if there is uncertainty. Types of eczema • Hair clips and headgear – especially those containing that affect the scalp rubber or nickel. Seborrhoeic eczema (dermatitis) is one of the most See the NES booklet on Contact Dermatitis for more common types of eczema seen on the scalp and hairline. details. It can affect babies (cradle cap), children and adults. The Irritant contact dermatitis is a type of eczema that skin appears red and scaly and there is often dandruff as occurs when the skin’s surface is irritated by a substance well, which can vary in severity. There may also be a rash that causes the skin to become dry, red and itchy. on other parts of the face, such as around the eyebrows, For example, shampoos, mousses, hair gels, hair spray, eyelids and sides of the nose. Seborrhoeic eczema can perm solution and fragrance can all cause irritant contact become infected. See the NES factsheets on Adult dermatitis. See the NES booklet on Contact Dermatitis for Seborrhoeic Dermatitis and Infantile Seborrhoeic more details. Dermatitis and Cradle Cap for more details.
    [Show full text]
  • Neurophysiology of Frog Dorsal Root Afferent Fibers and Their Intraspinal Processes
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 1989 Neurophysiology of Frog Dorsal Root Afferent Fibers and Their Intraspinal Processes Nancy C. Tkacs Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Physiology Commons Recommended Citation Tkacs, Nancy C., "Neurophysiology of Frog Dorsal Root Afferent Fibers and Their Intraspinal Processes" (1989). Dissertations. 2652. https://ecommons.luc.edu/luc_diss/2652 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1989 Nancy C. Tkacs UBRA~Y·· NEUROPHYSIOLOGY OF FROG DORSAL ROOT AFFERENT FIBERS AND THEIR INTRASPINAL PROCESSES by Nancy C. Tkacs A Dissertation Submitted to the Faculty of the Graduate School of .Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy April 1989 DEDICATION To Bill, with deep love and gratitude ii ACKNOWLEDG.EMENTS I would like to thank the faculty of the Department of Physiology for the excellent training I have received. I am particularly grateful to Dr. James Filkins for supporting my dissertation research. My thanks also go to Dr. Charles Webber, Dr. David Euler, Dr. David Carpenter, and Dr. Sarah Shefner for serving on my dissertation committee. Their helpful suggestions added much to the research and the dissertation. My gratitude goes to several individuals who unselfishly shared their time, resources, and expertise.
    [Show full text]
  • Electrophysiologic Monitoring in Neurointensive Care
    Ovid: Electrophysiologic monitoring in neurointensive care. Main Search Page Ask A LibrarianDisplay Knowledge BaseHelpLogoff Full Text Save Article TextEmail Article TextPrint Preview Electrophysiologic monitoring in neurointensive care Procaccio, Francesco MD*†; Polo, Alberto MD*; Lanteri, Paola MD†; Sala, ISSN: Author(s): Francesco MD† 1070- 5295 Issue: Volume 7(2), April 2001, pp 74-80 Accession: Publication Type: [Neuroscience] 00075198- Publisher: © 2001 Lippincott Williams & Wilkins, Inc. 200104000- University and City Hospital Neuroanesthesia and Intensive Care, Department 00004 of Neurological Sciences and Vision, Divisions of *Neurology and Full †Neurosurgery, Verona, Italy. Institution(s): Text Correspondence to Francesco Procaccio, MD, Neuroanesthesia and Intensive (PDF) Care, University and City Hospital, Pz Stefani, 1, 37124 Verona, Italy; e-mail: 69 K [email protected] Email Jumpstart Table of Contents: Find ≪ Neurologic complications in intensive care. Citing ≫ Pediatric neurologic emergencies. Articles ≪ Abstract Table Links of Cumulative evidence of potential benefits of Contents Abstract electroencephalography (EEG) and evoked potentials in About Complete Reference the management of patients with acute cerebral this ExternalResolverBasic damage has been confirmed. Continuous EEG Journal Outline monitoring is the best method for detecting ≫ nonconvulsive seizures and is strongly recommended for the treatment of status epilepticus. Continuously displayed, ● Abstract validated quantitative EEG may facilitate early detection
    [Show full text]
  • Calf Stretching and Strengthening Exercises
    Julie Dass Injury Clinic 108 Milton Road Phone: 01234349464 Clapham Email: [email protected] Bedford MK416as Exercise plan: Patient: Date: Calf Stretches and Strengthening Mrs Julie Dass 31st Mar 2017 Exercises Eccentric calf strengthening exercise Stand with your toes on the edge of a step or a box. Hold onto something stable for support if required. We will assume the leg you are trying to strengthen is your left leg (the injured side). Lift your left leg off the step, and go onto your toes on your right leg. Now place your left foot beside the right, and place all your weight on your left leg. Drop your heels downwards below the level of the step. Use your right leg (non-injured leg) to lift yourself back to the start position. Make sure you keep your leg straight during the exercise. This exercise can help strengthen the calf muscle and may be useful for treating Achilles tendinopathy. Full squat single leg Stand on one leg, and bend your knee to the full squat (90 degrees) position. Make sure when you squat you keep the middle of your knee cap in line with the middle toes of your foot. Do not let your knee drift off to one side. Also keep your hips and pelvis level as you squat, so you go down in a straight line. Be careful not to slump forwards as you squat, maintain good posture. Always keep your foot flat on the ground, do not let your heel raise up. Video: http://youtu.be/afJNrDNonAc Full wall squat Open your legs slightly wider than shoulder width, stand with your back resting against a wall, and bend your knees to the full squat position (90 degrees).
    [Show full text]
  • Student Academic Learning Services Nervous System Quiz
    Student Academic Learning Services Page 1 of 8 Nervous System Quiz 1. The term central nervous system refers to the: A) autonomic and peripheral nervous systems B) brain, spinal cord, and cranial nerves C) brain and cranial nerves D) spinal cord and spinal nerves E) brain and spinal cord 2. The peripheral nervous system consists of: A) spinal nerves only B) the brain only C) cranial nerves only D) the brain and spinal cord E) the spinal and cranial nerves 3. Which of these cells are not a type of neuroglia found in the CNS: A) astrocytes B) microglia C) Schwann cells D) ependymal cells E) oligodendrocytes 4. The Schwann cells form a myelin sheath around the: A) dendrites B) cell body C) nucleus D) axon E) nodes of Ranvier 5. The neuron processes that normally receives incoming stimuli are called: A) axons B) dendrites C) neurolemmas D) Schwann cells E) satellite cells www.durhamcollege.ca/sals Student Services Building (SSB), Room 204 905.721.2000 ext. 2491 This document last updated: 7/29/2011 Student Academic Learning Services Page 2 of 8 6. Collections of nerve cell bodies inside the PNS are called: A) ganglia B) tracts C) nerves D) nuclei E) tracts or ganglia 7. Which of the following best describes the waxy-appearing material called myelin: A) an outermembrane on a neuroglial cell B) a lipid-protein (lipoprotein) cell membrane on the outside of axons C) a mass of white lipid material that surrounds the cell body of a neuron D) a mass of white lipid material that insulates the axon of a neuron E) a mass of white lipid material that surrounds the dendrites of a neuron 8.
    [Show full text]
  • Lecture 7 - Pectoral Region & Axilla
    ANATOMY TEAM Lecture 7 - pectoral region & Axilla تنوٌه: هذا العمل ﻻ ٌعتبر مصدر أساسً للمذاكره وإنما هو للمراجعه فقط ، وﻻ ٌوجد أي اختﻻف بٌن سﻻٌد اﻻوﻻد والبنات Identify and describe the muscles of the pectoral region Origin Insertion Nerve Action supply Pectoralis Clavicular head Lateral lip of Medial & lateral Adduction and Sternocostal head pectoral nerves medial rotation of major bicipital groove the arm #Clavicular head helps in flexion of arm (shoulder) Pectoralis minor From 3rd ,4th, & 5th Coracoid process Medial Depression of the shoulder ribs close to their pectoral nerve costal cartilages Draw the ribs upward and outwards during deep inspiration st Subclavius From 1 rib at Subclavian groove Nerve to Fixes the its costal in the middle 1/3 subclavius clavicle cartilage of the inferior from upper during surface of clavicle trunk of movement of brachial plexus shoulder joint Serratus anterior Draws the Upper eight anterior aspect of Long thoracic scapula forward in ribs the medial border nerve boxing, and inferior angle Or bell nerve of scapula (protrusion) From C5,6,7 Rotates # root scapula outwards in raising the arm above 90 degree Serratus anterior Subclavius Pectoralis minor Pectoralis major General Notes : Mastectomy = surgical removing of the breast Axilla= arm pit -protrosion =protraction=forward But retraction=backward =making winging of the scapula All Plexus from ventral remai We naming the cords ( latral,posterior,medial)according to axillary artery Only trunk gives branching is: upper trunk (superior) # Clavipectoral
    [Show full text]