Clinical Neurophysiology Board Review Q&A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oligodendrocytes in Development, Myelin Generation and Beyond
cells Review Oligodendrocytes in Development, Myelin Generation and Beyond Sarah Kuhn y, Laura Gritti y, Daniel Crooks and Yvonne Dombrowski * Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; [email protected] (S.K.); [email protected] (L.G.); [email protected] (D.C.) * Correspondence: [email protected]; Tel.: +0044-28-9097-6127 These authors contributed equally. y Received: 15 October 2019; Accepted: 7 November 2019; Published: 12 November 2019 Abstract: Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that are generated from oligodendrocyte progenitor cells (OPC). OPC are distributed throughout the CNS and represent a pool of migratory and proliferative adult progenitor cells that can differentiate into oligodendrocytes. The central function of oligodendrocytes is to generate myelin, which is an extended membrane from the cell that wraps tightly around axons. Due to this energy consuming process and the associated high metabolic turnover oligodendrocytes are vulnerable to cytotoxic and excitotoxic factors. Oligodendrocyte pathology is therefore evident in a range of disorders including multiple sclerosis, schizophrenia and Alzheimer’s disease. Deceased oligodendrocytes can be replenished from the adult OPC pool and lost myelin can be regenerated during remyelination, which can prevent axonal degeneration and can restore function. Cell population studies have recently identified novel immunomodulatory functions of oligodendrocytes, the implications of which, e.g., for diseases with primary oligodendrocyte pathology, are not yet clear. Here, we review the journey of oligodendrocytes from the embryonic stage to their role in homeostasis and their fate in disease. We will also discuss the most common models used to study oligodendrocytes and describe newly discovered functions of oligodendrocytes. -
The Peripheral Nerves: Update on Ultrasound and Magnetic Resonance Imaging I
The peripheral nerves: update on ultrasound and magnetic resonance imaging I. Möller1, M. Miguel2, D.A. Bong1, F. Zaottini3, C. Martinoli4 1Instituto Poal de Reumatologia, ABSTRACT of the nerve along its trajectory along University of Barcelona, Spain, The motor and sensory branches of with immediate one-to-one compari- and EULAR Working Group Anatomy the somatic peripheral nervous system son with the contralateral structures (6, for the Image; (PNS) can be visualised by different im- 7). In addition, US-guidance has led to 2Department of Pathology and Experimental Therapeutics, Human aging systems. This article focuses on the development of a variety of inter- Anatomy and Embryology Unit, imaging of peripheral nerves by mag- ventional procedures. The use of US is University of Barcelona, Spain; netic resonance imaging (MRI) and becoming widespread in providing ac- 3Department of Health Sciences, high-resolution ultrasound (US). The curate and safe regional anesthesia as DISSAL, University of Genoa; anatomic basis of the peripheral nerve well as focal and regional pain manage- 4 Department of Health Science, image, common pathologies and clini- ment. It has also becoming an increas- University of Genoa, Ospedale cal value of US and MRI imaging of pe- ingly important component of muscu- Policlinico San Martino, Genoa, Italy. ripheral nerves are reviewed. loskeletal specialties such as physical Ingrid Möller, MD medicine and rehabilitation and sports Maribel Miguel, MD David A. Bong, MD Introduction medicine. Federico Zaottini, MD Nerve pathology may be a cause of Carlo Martinoli, MD chronic pain and disability. The initial Anatomical considerations Please address correspondence to: diagnostic evaluation of the periph- The PNS includes spinal nerves that Dr David A. -
NF-Jb Signalling Requirement for Brain Myelin Formation Is Shown by Genotype/MRI Phenotype Correlations in Patients with Xq28 Duplications
European Journal of Human Genetics (2013) 21, 195–199 & 2013 Macmillan Publishers Limited All rights reserved 1018-4813/13 www.nature.com/ejhg ARTICLE NF-jB signalling requirement for brain myelin formation is shown by genotype/MRI phenotype correlations in patients with Xq28 duplications Orianne Philippe1, Marle`ne Rio1, Vale´rie Malan1, Hilde Van Esch2, Genevie`ve Baujat1, Nadia Bahi-Buisson3, Vassili Valayannopoulos4, Roseline Gesny1, Jean-Paul Bonnefont1, Arnold Munnich1,GuyFroyen5, Jeanne Amiel1, Nathalie Boddaert1,3 and Laurence Colleaux*,1 One of the key signals regulating peripheral myelin formation by Schwann cell is the activation of the transcription factor NF-jB. Yet, whether NF-jB exerts similar functions in central myelin formation by oligodendrocytes remains largely unknown. We previously reported white matter abnormalities with unusual discordance between T2 and FLAIR sequences in a patient with intellectual disability and defective NF-jB signalling. These observations prompted us to hypothesise that NF-jB signalling may have a role in the axon myelination process of central neurons. We report here on five male patients with Xq28 duplications encompassing MECP2, three of which presented white matter anomalies on brain MRI. Array-CGH and FISH analyses demonstrated that brain abnormalities correlate with additional copies of the IKBKG, a gene encoding a key regulator of NF-jB activation. Quantitative RT-PCR experiments and jB-responsive reporter gene assays provide evidence that IKBKG overexpression causes impaired NF-jB signalling in skin fibroblasts derived from patients with white matter anomalies. These data further support the role of NF-jB signalling in astroglial cells for normal myelin formation of the central nervous system. -
Integrating Brain-Based Psychoeducation Into Clinical Practice Raissa Miller Boise State University
Boise State University ScholarWorks Counselor Education Faculty Publications and Department of Counselor Education Presentations 4-1-2016 Neuroeducation: Integrating Brain-Based Psychoeducation into Clinical Practice Raissa Miller Boise State University This document was originally published in Journal of Mental Health Counseling by the American Mental Health Counselors Association. Copyright restrictions may apply. doi: 10.17744/mehc.38.2.02 Volume 38/Number 2/April 2016/Pages 103-1 IS/doi: 10. l7744/mehc.38.2.02 PRACTICE Neuroeducation: Integrating Brain- Based Psychoeducation into Clinical Practice Raissa M iller Boise State University Understanding and integrating neuroscience research into clinical practice represents a rapidly growing area in mental health. An expanding body of neuroscience literature increasingly informs clinical practice by validating theory, guiding clinical assessment and conceptualiza tion, directing effective interventions, and facilitating cross-disciplinary communication. Little attention, however, has been given to the use of neuroeducation with clients. In this article, the author provides mental health counselors with a definition of neuroeducation and a rationale for incorporating neuroeducation into clinical practice. The author identifies common neuro education topics and offers activity suggestions to illustrate their use in counseling. Finally, the author offers best practices for implementing neuroeducation, including attention to counselor competence, client readiness, and neuroscience of learning -
EMG (Electromyography) And/Or NCS (Nerve Conduction Studies)
Tempe ñ Phoenix ñ Gilbert ñ Scottsdale ñ Peoria ñ Show Low PHONE: (480) 962-0071 www.SonoranSpine.com ñ www.SpineResearch.org Patient Name: Date: Date of Birth: S O N O R A N S P I N E -- R E F E R E N C E Electromyography and Nerve Conduction Studies An electromyogram (EMG) measures the electrical The electrode will be moved a number of times to activity of muscles at rest and during contraction. record the activity in different areas of the muscle or in Nerve conduction studies (NCS) measure how well and different muscles. how fast the nerves can send electrical signals. Nerve conduction studies If you have leg pain or numbness, you may undergo Several electrodes are attached to your skin. Several these tests to determine how much your nerves are quick electrical pulses are given to the nerve, and the being affected. These tests check how well the spinal time it takes for the muscle to contract in response to nerves and the nerves in your arms and legs are the electrical pulse is recorded. The speed of the working and whether there is nerve irritation or response is called the conduction velocity. The same damage. They do not test for pain. nerves on the other side of the body may be studied for comparison. When the test is done, the electrodes Why It Is Done are removed. An EMG is done to determine muscle tissue or nerve damage. It can find the cause of weakness, paralysis, How It Feels or muscle twitching. -
Nerve Conduction Studies: Essentials and Pitfalls in Practice
NERVE CONDUCTION STUDIES: J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2005.069138 on 16 June 2005. Downloaded from ESSENTIALS AND PITFALLS IN PRACTICE A Mallik, A I Weir ii23 J Neurol Neurosurg Psychiatry 2005;76(Suppl II):ii23–ii31. doi: 10.1136/jnnp.2005.069138 neurologist has sent a patient for nerve conduction studies (NCS) and has received the report, but what does it mean? We hope to remove some of the mysteries that may Asurround NCS. The techniques and how they are affected by disease are described in general terms. These principles can be applied to specific conditions discussed elsewhere. We also discuss the numerous pitfalls that may be encountered with NCS. Understanding these basic concepts will allow you to get the most from your clinical neurophysiology department. NCS are only part of a complete peripheral neurophysiological examination (PNE) and are frequently accompanied by a needle electromyogram (EMG). The combination of both techniques and those detailed in other articles in this issue are often required for a complete diagnostic study. The process of choosing the appropriate tests is the responsibility of the clinical neurophysiologist (CN) and not the referring doctor and is planned as a dynamic series of steps designed to answer specific questions about nervous system function raised by the clinical picture. c ABBREVIATIONS Clinical neurophysiologists can employ a confusing number of terms and abbreviations. Box 1 lists the ones we use frequently. WHAT DO YOU TELL THE PATIENT ABOUT THE TESTS? NCS involve activating nerves electrically with small safe pulses over several points on the skin of copyright. -
Supplementation with Complex Milk Lipids During Brain Development Promotes Neuroplasticity Without Altering Myelination Or Vascular Density
food & nutrition æ research ORIGINAL ARTICLE Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density Rosamond B. Guillermo1,2, Panzao Yang1,2, Mark H. Vickers1, Paul McJarrow3 and Jian Guan1,2* 1Liggins Institute, The University of Auckland, Auckland, New Zealand; 2Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; 3Fonterra Research and Development Centre, Palmerston North, New Zealand Abstract Background: Supplementation with complex milk lipids (CML) during postnatal brain development has been shown to improve spatial reference learning in rats. Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design: The study used the brain tissues from the rats (male Wistar, 80 days of age) after supplementing with either CML or vehicle during postnatal day 10Á80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results: Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (pB0.01), but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (pB0.05), but did not alter glutamate receptors, myelination or vascular density. Conclusion: CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. -
Patient Education Electromyogram (EMG) Nerve Conduction Study
Patient Education Electromyogram (EMG) Nerve Conduction Study Explanation of Test Your doctor has ordered a test called an EMG. EMG stands for electromyogram which loosely translated means electrical testing of muscles, but it has come to mean electrical testing of nerves and muscles. A specialist, the electromyographer, who has specialized training in the field of electromyography, performs the EMG. EMG is an in-office procedure that does not require hospitalization. On average, an EMG takes anywhere between 30 minutes and 2 hours, depending on how extensive your test is ordered to be. It can be done at any time during the day and, with few exceptions, does not require any special preparation. Sometimes EMGs are thought to be a treatment of some sort, or a type of acupuncture. This is not true. An EMG is only a test, much like an EKG or an x-ray. EMGs are usually ordered when you are having problems with your muscles or nerves. EMG’s test the muscles and nerves of your arms and legs to identify problems. Weakness of your muscles or “fatigue” (tiredness) may indicate nerve or muscle disease and require an EMG. Usually combined with nerve conduction studies (NCS), EMG’s are the most important diagnostic tests for the evaluation of neuropathy and myopathy (nerve and muscle disease). These tests are performed on motor and sensory nerves, but only large myelinated fibers can be evaluated by nerve conduction studies. EMG’s help diagnose conditions such as in carpal tunnel syndrome, polyneuropathy (as seen with diabetes), nutritional deficiencies, autoimmune processes, or degradation of the myelin (a type of coating around the nerve axon which allows the electrical signal to travel faster), as seen in Guillan Barre´ Syndrome. -
M.Sc. Medical Physiology Will Be of Six Semesters Spread Over Three Years
KRISHNA INSTITUTE OF MEDICAL SCIENCES, “DEEMED TO BE UNIVERSITY”, KARAD. KRISHNA INSTITUTE OF MEDICAL SCIENCES PROGRAMME NAME: M. Sc. Medical Physiology. CHOICE BASED CREDIT SYSTEM (CBCS). PROGRAMME CODE: 1503 COURSE NAME: Paper I, II, III, and IV. COURSE CODE: 1503-11, 12, 13, 14. PREAMBLE: The aim of the course is to prepare PG students who shall 1) Teach and train future under-graduate & post-graduate medical students Human Physiology in Medical Colleges and Research Institutions. 2) Carry out & guide research & in academics, can go for higher qualifications like Ph.D. in Physiology & contribute to advancement of the subject. 3) Earn to placements in Medical teaching institute, research laboratories run by the government and the corporate sector & organize & manage administrative responsibilities for routine day to day departmental work. Objectives: At the end of course student should be able to achieve: A-Domain: 1) Cognitive domain: All the systems of the body should be studied with respect to: a) Historical aspect b) Evolution and development c) Comparative physiology d) Structure-gross and electron microscopic and functions at cellular level e) Qualitative and quantitative aspects. f) Regulating mechanisms g) Variations in physiological and pathological conditions h) Applied physiology i) Recent advances 2) Psychomotor domain: P.G. students should be able- a) To perform human and animal (mammalian, amphibian) experiments: Hematology, Experiments based on biophysical principles. b) To acquire history taking and clinical examination skills. 3) Affective domain a) The P.G. students should develop communication skills to interact with students, colleagues, superiors and other staff members. b) They should be able to work as a member of a team to carry out teaching as well as research activities c) They should have right attitude toward teaching profession B) Global Competencies & Employability: The student should get employment in the following branches related to the course and should acquire the competency for the same. -
Iron Deficiency Alters Auditory Recognition Memory in Newborn
0031-3998/04/5506-1034 PEDIATRIC RESEARCH Vol. 55, No. 6, 2004 Copyright © 2004 International Pediatric Research Foundation, Inc. Printed in U.S.A. Iron Deficiency Alters Auditory Recognition Memory in Newborn Infants of Diabetic Mothers ASHAJYOTHI M. SIDDAPPA, MICHAEL K. GEORGIEFF, SANDI WEWERKA, CATHY WORWA, CHARLES A. NELSON, AND RAYE-ANN DEREGNIER Division of Neonatology, Department of Pediatrics [A.M.S., M.K.G., C.A.N.], Institute of Child Development [M.K.G., S.W., C.A.N.], and Center for Neurobehavioral Development [M.K.G., S.W., C.A.N.], University of Minnesota, Minneapolis, MN 55455, U.S.A.; Division of Neonatology [C.W.], Children’s Hospital-St. Paul, St. Paul, MN 55102, U.S.A.; and Division of Neonatology, Department of Pediatrics [R.-A.d.R.], Northwestern University Feinberg School of Medicine & Children’s Memorial Hospital, Chicago, IL 60611, U.S.A. ABSTRACT Infants of diabetic mothers (IDMs) are at risk for perinatal voices compared with the mothers’ voices, whereas the BID brain iron deficiency that may target the developing hippocam- group did not. Higher cord ferritin concentrations were correlated pus. The objective of this study was to evaluate hippocampally with larger negative slow waves at the right temporal (T4) based recognition memory and infant development in IDMs with electrode site. At1yofage, motor development was slower in suspected brain iron deficiency (BID; cord ferritin Յ34 g/L) the BID group than in the BIS group. IDMs suspected to have compared with IDMs with sufficient brain iron stores (BIS; cord BID demonstrated impaired neonatal auditory recognition mem- ferritin Ͼ34 g/L) using event-related potentials (ERPs). -
EMG/Nerve Conduction Studies Electrodiagnostics
Will I experience pain? EMG/Nerve Conduction Studies This is the most common question. The nerve conduction study mimics the sensation of receiving a shock from Electrodiagnostics static electricity. The EMG resembles a sharp poke, followed by a deep muscle ache. The test can be About our physician uncomfortable at times but not unbearable. Some mild muscle soreness may persist for a short period of time. Matthew J. Smith, MD Dr. Smith received his EMG/NCS training during his Physical Medicine & Rehabilitation residency at What are the risks of this test? Stanford University and during his fellowship at the University of Michigan Electrodiagnostics Laboratory. He As with all medical procedures, there are risks. Anytime completed the American Association of Neuromuscular the skin is broken by a needle there is a risk of infection, & Electrodiagnostic Medicine’s accreditation process in pain at the site, swelling, bruising or bleeding. May 2001. The most serious risk of procedures in the upper back and chest is a pneumothorax (collapsed lung), which could lead to hospitalization and need for further treatment. Though rare, complications can occur and your doctor will address these prior to your procedure. Diagnosing the symptoms of: Numbness or tingling Pain Muscle weakness Low back pain Sciatica Carpal tunnel syndrome Radiculopathy www.universityorthopedics.com 401-402-1065 1598 South County Trail East Greenwich, RI 02818 What is an EMG/NCS? How long will the test take? How are the tests performed? EMG or electromyography is a study that examines the The test will take 30-45 minutes typically. Occasionally, the Needle EMG nerves and muscles of the body. -
Practice Parameter for Repetitive Nerve Stimulation and Single Fiber
PRACTICE PARAMETER FOR REPETITIVE NERVE STIMULATION AND SINGLE FIBER EMG EVALUATION OF ADULTS WITH SUSPECTED MYASTHENIA GRAVIS OR LAMBERT-EATON MYASTHENIC SYNDROME: SUMMARY STATEMENT American Association of Electrodiagnostic Medicine Developed by the AAEM Quality Assurance Committee (1997-2000): primary authors: Faye Y. Chiou- Tan, MD; Richard W. Tim, MD; and James M. Gilchrist, MD; chairs: Cheryl F. Weber, MD (1998), John R. Wilson, MD (1999-2000); committee members: Timothy J. Benstead, MD, FRCP (C), Arlene M. Braker, MD, James B. Caress, MD, Sudhansu Chokroverty, MD, FRCP, Earl R. Hackett, MD, Robert L. Harmon, MD, MS, Bernadette A. Hughes, MD, Milind J. Kothari, DO, Tim Lachman, MD, Richard I. Malamut, MD, Cristina M. Marciniak, MD, Robert G. Miller, MD, Kevin R. Nelson, MD, Richard K. Olney, MD, Atul T. Patel, MD, Caroline A. Quartly, MD, FRCP(C), and Karen S. Ryan, MD. Key words: Lambert-Eaton myasthenic syndrome; single fiber electromyography; myasthenia gravis; neuromuscular junction; repetitive nerve stimulation Correspondence to: American Association of Electrodiagnostic Medicine, 421 First Avenue SW, Suite 300 East, Rochester, MN 55902; e-mail: [email protected] 2 INTRODUCTION Myasthenia gravis is an autoimmune disorder that affects approximately 3 out of 10,000 people. Myasthenia gravis affects the neuromuscular junction (NMJ) and produces weakness of voluntary muscles. In some cases, it may be associated with tumors of the thymus (a tissue of the immune system). It also may be associated with thyrotoxicosis, rheumatoid arthritis, systemic lupus erythematosus, and other immune system disorders. In many cases, no other disorder is identified. Myasthenia gravis (MG) is most common in adult women.