The Roles of Lysosomal Exocytosis in Regulated Myelination
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spring 2013 Lecture 23
CHM333 LECTURES 23: 3/25/13 SPRING 2013 Professor Christine Hrycyna LIPIDS III EFFECT OF CHOLESTEROL ON MEMBRANES: - Bulky rigid molecule - Moderates fluidity of membranes – both increases and decreases o Cholesterol in membranes DECREASES fluidity because it is rigid o Prevents crystallization (making solid) of fatty acyl side chains by fitting between them. Disrupts close packing of fatty acyl chains. Therefore, INCREASED fluidity BIOLOGICAL MEMBRANES CONTAIN PROTEINS AS WELL AS LIPIDS: - Proteins are 20-80% of cell membrane - Rest is lipid or carbohydrate; supramolecular assembly of lipid, protein and carbohydrate - Proteins are also distributed asymmetrically - TWO classes of Membrane Proteins: o Integral Membrane Proteins o Peripheral Membrane Proteins 178 CHM333 LECTURES 23: 3/25/13 SPRING 2013 Professor Christine Hrycyna - INTEGRAL MEMBRANE PROTEINS o Located WITHIN the lipid bilayer o Usually span the bilayer one or more times – called transmembrane (TM) proteins o Hydrophobic amino acids interact with fatty acid chains in the hydrophobic core of the membrane o Can be removed from the membrane with detergents like SDS – need to disrupt the hydrophobic interactions § Membrane Disruption Animation: o http://www.youtube.com/watch?v=AHT37pvcjc0 o Function: § Transporters – moving molecules into or out of cells or cell membranes § Receptors – transmitting signals from outside of the cell to the inside - β Barrel Integral Membrane Proteins § Barrel-shaped membrane protein that is made up of antiparallel β-strands with hydrophilic (interior) and hydrophobic (facing lipid tails). § So far found only in outer membranes of Gram-negative bacteria, cell wall of Gram-positive bacteria, and outer membranes of mitochondria and chloroplasts. 179 CHM333 LECTURES 23: 3/25/13 SPRING 2013 Professor Christine Hrycyna - α-Helical Membrane Proteins - Can cross the membrane once or many times and have multiple transmembrane segments. -
Oligodendrocytes in Development, Myelin Generation and Beyond
cells Review Oligodendrocytes in Development, Myelin Generation and Beyond Sarah Kuhn y, Laura Gritti y, Daniel Crooks and Yvonne Dombrowski * Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; [email protected] (S.K.); [email protected] (L.G.); [email protected] (D.C.) * Correspondence: [email protected]; Tel.: +0044-28-9097-6127 These authors contributed equally. y Received: 15 October 2019; Accepted: 7 November 2019; Published: 12 November 2019 Abstract: Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that are generated from oligodendrocyte progenitor cells (OPC). OPC are distributed throughout the CNS and represent a pool of migratory and proliferative adult progenitor cells that can differentiate into oligodendrocytes. The central function of oligodendrocytes is to generate myelin, which is an extended membrane from the cell that wraps tightly around axons. Due to this energy consuming process and the associated high metabolic turnover oligodendrocytes are vulnerable to cytotoxic and excitotoxic factors. Oligodendrocyte pathology is therefore evident in a range of disorders including multiple sclerosis, schizophrenia and Alzheimer’s disease. Deceased oligodendrocytes can be replenished from the adult OPC pool and lost myelin can be regenerated during remyelination, which can prevent axonal degeneration and can restore function. Cell population studies have recently identified novel immunomodulatory functions of oligodendrocytes, the implications of which, e.g., for diseases with primary oligodendrocyte pathology, are not yet clear. Here, we review the journey of oligodendrocytes from the embryonic stage to their role in homeostasis and their fate in disease. We will also discuss the most common models used to study oligodendrocytes and describe newly discovered functions of oligodendrocytes. -
Glial Cell Development and Function in Zebrafish
Downloaded from http://cshperspectives.cshlp.org/ on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Glial Cell Development and Function in Zebrafish David A. Lyons1 and William S. Talbot2 1Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom 2Department of Developmental Biology, Stanford University, Stanford, California 94305 Correspondence: [email protected] The zebrafish is a premier vertebrate model system that offers many experimental advantages for in vivo imaging and genetic studies. This review provides an overview of glial cell types in the central and peripheral nervous system of zebrafish. We highlight some recent work that exploited the strengths of the zebrafish system to increase the understanding of the role of Gpr126 in Schwann cell myelination and illuminate the mechanisms controlling oligoden- drocyte development and myelination. We also summarize similarities and differences between zebrafish radial glia and mammalian astrocytes and consider the possibility that their distinct characteristics may represent extremes in a continuum of cell identity. Finally, we focus on the emergence of zebrafish as a model for elucidating the development and function of microglia. These recent studies have highlighted the power of the zebrafish system for analyzing important aspects of glial development and function. ollowing the pioneering work of George Ho and Kane 1990; Hatta et al. 1991; Grunwald FStreisinger in the early 1980s, the zebrafish and Eisen 2002), attracting many researchers -
Clinical Neurophysiology Board Review Q&A
Clinical Neurophysiology Board Review Board Clinical Neurophysiology Clinical Neurophysiology Board Review Q&A Clinical Puneet K. Gupta, MD, MSE • Pradeep N. Modur, MD, MS • Srikanth Muppidi, MD his high-yield, illustrated clinical neurophysiology board review is a comprehen- Neurophysiology sive resource for assessing and refining the knowledge tested on multiple board Texaminations. Written by authors who are collectively board certified in all of the areas covered, the book is a valuable study tool for candidates preparing for certifica- tion or recertification in clinical neurophysiology, neuromuscular medicine, epilepsy, Board Review sleep medicine, and neurology. Using structured question formats typically encountered on boards, this comprehensive review allows users to assess their knowledge in a wide range of topics, provides rationales for correct answers, and explains why the other choices are incorrect. A unique “Pearls” section at the end of the book allows for quick review of the most important concepts prior to exam day. Clinical Neurophysiology Board Review Q&A contains 801 questions with answers and detailed explanations. The book is divided into eight chapters covering anatomy Q and physiology, electronics and instrumentation, nerve conduction studies and EMG, & EEG, evoked potentials and intraoperative monitoring, sleep studies, ethics and safety, and advanced topics including QEEG, MEG, TES, autonomic testing, and more. A Liberal use of image-based questions illustrating the full spectrum of neurophysiologic & tests and findings build interpretive skills. Questions are randomized and include Q A both case-related questions in series and stand-alone items to familiarize candidates Gu with the question types and formats they will find on the exam. -
Calmodulin Complexation in Neurons and Brain Degeneration in Alzheimer’S Disease
International Journal of Molecular Sciences Review The Relevance of Amyloid β-Calmodulin Complexation in Neurons and Brain Degeneration in Alzheimer’s Disease Joana Poejo 1 , Jairo Salazar 1,2, Ana M. Mata 1,3 and Carlos Gutierrez-Merino 1,3,* 1 Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain; [email protected] (J.P.); [email protected] (J.S.); [email protected] (A.M.M.) 2 Departamento de Química, Universidad Nacional Autónoma de Nicaragua-León, León 21000, Nicaragua 3 Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain * Correspondence: [email protected] Abstract: Intraneuronal amyloid β (Aβ) oligomer accumulation precedes the appearance of amyloid plaques or neurofibrillary tangles and is neurotoxic. In Alzheimer’s disease (AD)-affected brains, intraneuronal Aβ oligomers can derive from Aβ peptide production within the neuron and, also, from vicinal neurons or reactive glial cells. Calcium homeostasis dysregulation and neuronal ex- citability alterations are widely accepted to play a key role in Aβ neurotoxicity in AD. However, the identification of primary Aβ-target proteins, in which functional impairment initiating cytosolic calcium homeostasis dysregulation and the critical point of no return are still pending issues. The micromolar concentration of calmodulin (CaM) in neurons and its high affinity for neurotoxic Aβ peptides (dissociation constant ≈ 1 nM) highlight a novel function of CaM, i.e., the buffering of free Aβ concentrations in the low nanomolar range. In turn, the concentration of Aβ-CaM complexes within neurons will increase as a function of time after the induction of Aβ production, and free Aβ Citation: Poejo, J.; Salazar, J.; Mata, will rise sharply when accumulated Aβ exceeds all available CaM. -
NF-Jb Signalling Requirement for Brain Myelin Formation Is Shown by Genotype/MRI Phenotype Correlations in Patients with Xq28 Duplications
European Journal of Human Genetics (2013) 21, 195–199 & 2013 Macmillan Publishers Limited All rights reserved 1018-4813/13 www.nature.com/ejhg ARTICLE NF-jB signalling requirement for brain myelin formation is shown by genotype/MRI phenotype correlations in patients with Xq28 duplications Orianne Philippe1, Marle`ne Rio1, Vale´rie Malan1, Hilde Van Esch2, Genevie`ve Baujat1, Nadia Bahi-Buisson3, Vassili Valayannopoulos4, Roseline Gesny1, Jean-Paul Bonnefont1, Arnold Munnich1,GuyFroyen5, Jeanne Amiel1, Nathalie Boddaert1,3 and Laurence Colleaux*,1 One of the key signals regulating peripheral myelin formation by Schwann cell is the activation of the transcription factor NF-jB. Yet, whether NF-jB exerts similar functions in central myelin formation by oligodendrocytes remains largely unknown. We previously reported white matter abnormalities with unusual discordance between T2 and FLAIR sequences in a patient with intellectual disability and defective NF-jB signalling. These observations prompted us to hypothesise that NF-jB signalling may have a role in the axon myelination process of central neurons. We report here on five male patients with Xq28 duplications encompassing MECP2, three of which presented white matter anomalies on brain MRI. Array-CGH and FISH analyses demonstrated that brain abnormalities correlate with additional copies of the IKBKG, a gene encoding a key regulator of NF-jB activation. Quantitative RT-PCR experiments and jB-responsive reporter gene assays provide evidence that IKBKG overexpression causes impaired NF-jB signalling in skin fibroblasts derived from patients with white matter anomalies. These data further support the role of NF-jB signalling in astroglial cells for normal myelin formation of the central nervous system. -
Integrating Brain-Based Psychoeducation Into Clinical Practice Raissa Miller Boise State University
Boise State University ScholarWorks Counselor Education Faculty Publications and Department of Counselor Education Presentations 4-1-2016 Neuroeducation: Integrating Brain-Based Psychoeducation into Clinical Practice Raissa Miller Boise State University This document was originally published in Journal of Mental Health Counseling by the American Mental Health Counselors Association. Copyright restrictions may apply. doi: 10.17744/mehc.38.2.02 Volume 38/Number 2/April 2016/Pages 103-1 IS/doi: 10. l7744/mehc.38.2.02 PRACTICE Neuroeducation: Integrating Brain- Based Psychoeducation into Clinical Practice Raissa M iller Boise State University Understanding and integrating neuroscience research into clinical practice represents a rapidly growing area in mental health. An expanding body of neuroscience literature increasingly informs clinical practice by validating theory, guiding clinical assessment and conceptualiza tion, directing effective interventions, and facilitating cross-disciplinary communication. Little attention, however, has been given to the use of neuroeducation with clients. In this article, the author provides mental health counselors with a definition of neuroeducation and a rationale for incorporating neuroeducation into clinical practice. The author identifies common neuro education topics and offers activity suggestions to illustrate their use in counseling. Finally, the author offers best practices for implementing neuroeducation, including attention to counselor competence, client readiness, and neuroscience of learning -
The Membrane
The Membrane Natalie Gugala1*, Stephana J Cherak1 and Raymond J Turner1 1Department of Biological Sciences, University of Calgary, Canada *Corresponding author: RJ Turner, Department of Biological Sciences, University of Calgary, Alberta, Canada, Tel: 1-403-220-4308; Fax: 1-403-289-9311; Email: [email protected] Published Date: February 10, 2016 ABSTRACT and continues to be studied. The biological membrane is comprised of numerous amphiphilic The characterization of the cell membrane has significantly extended over the past century lipids, sterols, proteins, carbohydrates, ions and water molecules that result in two asymmetric polar leaflets, in which the interior is hydrophobic due to the hydrocarbon tails of the lipids. generated a dynamic heterogonous image of the membrane that includes lateral domains and The extension of the Fluid Mosaic Model, first proposed by Singer and Nicolson in 1972, has clusters perpetrated by lipid-lipid, protein-lipid and protein-protein interactions. Proteins found within the membrane, which are generally characterized as either intrinsic or extrinsic, have an array of biological functions vital for cell activity. The primary role of the membrane, among many, is to provide a barrier that conveys both separation and protection, thus maintaining the integrity of the cell. However, depending on the permeability of the membrane several ions are able to move down their concentration gradients. In turn this generates a membrane potential difference between the cytosol, which is found to have an excess negative charge, and surrounding extracellular fluid. Across a biological cell membrane, several potentials can be found. These include the Nernst or equilibrium potential, in which there is no overall flow of a Basicparticular Biochemistry ion and | www.austinpublishinggroup.com/ebooks the Donnan potential, created by an unequal distribution of ions. -
Original Article Schistosoma Japonicum-Derived Peptide SJMHE1 Promotes Peripheral Nerve Repair Through a Macrophage-Dependent Mechanism
Am J Transl Res 2021;13(3):1290-1306 www.ajtr.org /ISSN:1943-8141/AJTR0118598 Original Article Schistosoma japonicum-derived peptide SJMHE1 promotes peripheral nerve repair through a macrophage-dependent mechanism Yongbin Ma1,2, Chuan Wei1, Xin Qi1, Yanan Pu1, Liyang Dong3, Lei Xu1, Sha Zhou1, Jifeng Zhu1, Xiaojun Chen1, Xuefeng Wang4, Chuan Su1 1State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing 211166, Jiangsu, P. R. China; 2Department of Neurology Laboratory, Jintan Hospital, Jiangsu University, Jintan, Changzhou 213200, Jiangsu, P. R. China; 3Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, P. R. China; 4Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, P. R. China Received July 21, 2020; Accepted December 11, 2020; Epub March 15, 2021; Published March 30, 2021 Abstract: Peripheral nerve injury, a disease that affects 1 million people worldwide every year, occurs when periph- eral nerves are destroyed by injury, systemic illness, infection, or an inherited disorder. Indeed, repair of damaged peripheral nerves is predominantly mediated by type 2 immune responses. Given that helminth parasites induce type 2 immune responses in hosts, we wondered whether helminths or helminth-derived molecules might have the potential to improve peripheral nerve repair. Here, we demonstrated that schistosome-derived SJMHE1 promoted peripheral myelin growth and functional regeneration via a macrophage-dependent mechanism and simultaneously increased the induction of M2 macrophages. Our findings highlight the therapeutic potential of schistosome-derived SJMHE1 for improving peripheral nerve repair. -
UC Riverside UC Riverside Electronic Theses and Dissertations
UC Riverside UC Riverside Electronic Theses and Dissertations Title Remote-Activated Electrical Stimulation via Piezoelectric Scaffold System for Functional Peripheral and Central Nerve Regeneration Permalink https://escholarship.org/uc/item/7hb5g2x7 Author Low, Karen Gail Publication Date 2017 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Remote-Activated Electrical Stimulation via Piezoelectric Scaffold System for Functional Nerve Regeneration A Dissertation submitted in partial satisfaction of the requirements of for the degree of Doctor of Philosophy in Bioengineering by Karen Gail Low December 2017 Dissertation Committee: Dr. Jin Nam, Chairperson Dr. Hyle B. Park Dr. Nosang V. Myung Copyright by Karen Gail Low 2017 The Dissertation of Karen Gail Low is approved: _____________________________________________ _____________________________________________ _____________________________________________ Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS First and foremost, I would like to express my deepest appreciation to my PhD advisor and mentor, Dr. Jin Nam. I came from a background with no research experience, therefore his guidance, motivation, and ambition for me to succeed helped developed me into the researcher I am today. And most of all, I am forever grateful for his patience with all my blood, sweat and tears that went into this 5 years. He once said, “it takes pressure to make a diamond.” His words of wisdom will continue to guide me through my career. I would also like to thank my collaborator, Dr. Nosang V. Myung. He gave me the opportunity to explore a field that was completely outside of my comfort zone of biology. -
Supplementation with Complex Milk Lipids During Brain Development Promotes Neuroplasticity Without Altering Myelination Or Vascular Density
food & nutrition æ research ORIGINAL ARTICLE Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density Rosamond B. Guillermo1,2, Panzao Yang1,2, Mark H. Vickers1, Paul McJarrow3 and Jian Guan1,2* 1Liggins Institute, The University of Auckland, Auckland, New Zealand; 2Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; 3Fonterra Research and Development Centre, Palmerston North, New Zealand Abstract Background: Supplementation with complex milk lipids (CML) during postnatal brain development has been shown to improve spatial reference learning in rats. Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design: The study used the brain tissues from the rats (male Wistar, 80 days of age) after supplementing with either CML or vehicle during postnatal day 10Á80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results: Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (pB0.01), but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (pB0.05), but did not alter glutamate receptors, myelination or vascular density. Conclusion: CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. -
Presynaptic Gabaergic Inhibition Regulated by BDNF Contributes to Neuropathic Pain Induction
ARTICLE Received 29 Apr 2014 | Accepted 22 Sep 2014 | Published 30 Oct 2014 DOI: 10.1038/ncomms6331 OPEN Presynaptic GABAergic inhibition regulated by BDNF contributes to neuropathic pain induction Jeremy Tsung-chieh Chen1, Da Guo1, Dario Campanelli1,2, Flavia Frattini1, Florian Mayer1, Luming Zhou3, Rohini Kuner4, Paul A. Heppenstall5, Marlies Knipper2 & Jing Hu1 The gate control theory proposes the importance of both pre- and post-synaptic inhibition in processing pain signal in the spinal cord. However, although postsynaptic disinhibition caused by brain-derived neurotrophic factor (BDNF) has been proved as a crucial mechanism underlying neuropathic pain, the function of presynaptic inhibition in acute and neuropathic pain remains elusive. Here we show that a transient shift in the reversal potential (EGABA) together with a decline in the conductance of presynaptic GABAA receptor result in a reduction of presynaptic inhibition after nerve injury. BDNF mimics, whereas blockade of BDNF signalling reverses, the alteration in GABAA receptor function and the neuropathic pain syndrome. Finally, genetic disruption of presynaptic inhibition leads to spontaneous development of behavioural hypersensitivity, which cannot be further sensitized by nerve lesions or BDNF. Our results reveal a novel effect of BDNF on presynaptic GABAergic inhibition after nerve injury and may represent new strategy for treating neuropathic pain. 1 Centre for Integrative Neuroscience, Otfried-Mueller-Strasse 25, 72076 Tu¨bingen, Germany. 2 Hearing Research Centre, Elfriede Aulhornstrasse 5, 72076 Tu¨bingen, Germany. 3 Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, 72076 Tu¨bingen, Germany. 4 Pharmacology Institute, University of Heidelberg, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany.