'TRAILING WHITE' LANTANA Lantana Montevidensis 'Alba

Total Page:16

File Type:pdf, Size:1020Kb

'TRAILING WHITE' LANTANA Lantana Montevidensis 'Alba ‘TRAILING WHITE’ LANTANA Lantana montevidensis 'Alba' Characteristics • Type: Perennial • Sun: Full sun • Native Range: Tropical South America • Water: Medium • Zone: 8 to 10 • Maintenance: Low • Height: 1 to 1.5 feet • Flower: Showy • Spread: 3 to 5 feet • Leaf: Fragrant • Bloom Time: June to frost • Attracts: Butterflies, Bees • Bloom Description: white • Texas Superstar® Culture Winter hardy to USDA Zones 8-10 where plants will thrive outdoors as sprawling, low-growing shrubs featuring continuous bloom throughout the year. Plants are easily grown in average, medium moisture, well-drained soils in full sun. Plants tolerate part shade, but best flowering is in full sun. Plants thrive in lean, sandy, slightly-dry soils. Container plants are less tolerant of dry soils than plants grown in the ground, and accordingly should be watered regularly and never allowed to dry out. Noteworthy Characteristics Lantana montevidensis, commonly called trailing lantana or weeping lantana, is native to tropical areas of South America. In frost free areas, it grows as a low, trailing, woody shrub to only 12-20" tall, but spreads by vine-like stems to 5' wide or more. It is typically grown as a dense ground cover. It features hairy, opposite, coarsely-toothed, ovate, dark green leaves (unpleasant aroma when bruised). Leaves can be a skin irritant. Clusters (to 1 1/2" across) of tiny lightly-fragrant white flowers held in a circular head about 1 and 1/2 inches wide with yellow throats bloom profusely throughout the year in frost free areas. Flowers are attractive to bees and butterflies. Problems No serious insect or disease problems. Powdery mildew may occur, particularly if plants are grown in less than full sun locations. Leaf spot and stem rot may also occur. Watch for whiteflies and spider mites, particularly on overwintering plants. Garden Uses Flowering, shrubby, low-maintenance ground cover for frost-free areas. Good for erosion control on banks or hillsides. Where not winter hardy, it serves as an excellent annual for bedding or ground cover. Cascading stems make this a superior selection for hanging baskets, containers or growing along the tops of walls. Courtesy of Missouri Botanical Garden Plant Finder .
Recommended publications
  • Biological Control of Lantana, Prickly Pear, and Hamakua Pamakani Inhawah: a Review and Update
    BIOLOGICAL CONTROL OF LANTANA, PRICKLY PEAR, AND HAMAKUA PAMAKANI INHAWAH: A REVIEW AND UPDATE Clifton J. Davis, Ernest Yoshioka, and Dina Kageler ABSTRACT The biological control of noxious weeds in Hawai`i has been carried on intermittently since 1902, when insects and diseases of lantana (Lantana camara) were sought in Mexico by the Territorial Board of Agriculture and Forestry (now Hawai`i Department of Agriculture). This approach was subsequently employed for the control of 20 other noxious weed pests between the 1940s and 1970s. Lantana was the first weed to be controlled by this method in the U.S. Results were very dramatic in some areas of the State, especially after later introductions by Hawai`ian and Australian entomologists resulted in heavy stress on lantana. In addition to lantana, excellent results have been obtained in the biological control of cacti (Opuntia spp.), and Hamakua pamakani (Ageratina riparia). Prior to the introduction of cactus insects in 1949, 66,000 a (26,400 ha) of Parker Ranch range lands on Hawai`i Island were infested with cacti. By 1965, 7,610 a (< 3,080 ha) remained infested, the result of three introduced insects and an accidentally introduced fungus disease; the red-fruited variety of cactus is particularly susceptible to the fungus. A spineless variety of the cactus occurs in the 'Ainahou-Poliokeawe Pali sector of Hawai`i Volcanoes National Park, and biocontrol efforts are in progress. With the introduction of insects from Mexico and a foliar fungus disease from Jamaica, Hamakua pamakani is under excellent control on many ranch as well as privately owned and government lands on Hawai`i Island.
    [Show full text]
  • Brief Review on Lantana Camera
    International Journal of Secondary Metabolite 2019, Vol. 6, No. 2, 205-210 https://dx.doi.org/10.21448/ijsm.577172 Published at http://ijate.net/index.php/ijsm http://dergipark.org.tr/ijsm Review Article Brief Review on Lantana camera Rohit Shankar Mane 1, Rachana Dattatray Nagarkar 2, Pragati Pramod Sonawane 3, Ankala Basappa Vedamurthy *,1 1 Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580003, India. 2 Sanjivani Arts, Commerce, Science College Kopargaon, Maharashtra 423603, India 3 Department of Microbiology, Access Health Care, Pune, Maharashtra, India. Abstract: Medicinal plants are widely spread in nature with their unique habitats ARTICLE HISTORY and effective medicinal properties. One of them plant is Lantana Camera. The L. Received: February 06, 2019 camera is well known invasive weed. Used to cure several diseases in Ayurvedic Accepted: June 09, 2019 preparations with different formulations. This plant has great ethnobotany and Pharmacology however it is lagging behind in the list of medicinal plants for their KEYWORDS applications in drug preparations due to mere research study and awareness. Therefore present review may help to reveal different aspects of L. camera with Lantana camera, their awareness in society. Ethnobotany, Pharmacology 1. INTRODUCTION The term "biodiversity hotspot" was coined by the British biologist Norman Myers in 1988. He described them as a biogeographic region by characterizing their exceptional levels of plant endemism and serious levels of habitat loss [1]. Further, in between 1989-1996, Conservation International (CI) adopted ‘Myers hotspots criteria’ and they made one organization for the reassessment of the hotspots concept and in 2005 they have published an revised title “Hotspots Revisited: Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions” [2].
    [Show full text]
  • (Verbenaceae) Using Multiple Loci
    bs_bs_banner Botanical Journal of the Linnean Society, 2013, 171, 103–119. With 5 figures Investigating the evolution of Lantaneae (Verbenaceae) using multiple loci PATRICIA LU-IRVING* and RICHARD G. OLMSTEAD Department of Biology, University of Washington, Seattle, Washington 98195, USA Received 3 February 2012; revised 29 June 2012; accepted for publication 23 August 2012 Lantaneae are an example of a taxonomically problematic, widespread and recently radiated Neotropical lineage. Taxonomy in Lantaneae is difficult because of complex, overlapping patterns of shifts in morphological traits among members; monophyly of the traditional genera cannot be assumed without additional information from molecular data. We took a multi-locus approach to infer phylogenetic relationships in Lantaneae, resolving major clades among a broad representative sample that covers the morphological, taxonomic and geographical diversity of this group. Data from multiple, independent loci reveal individual gene trees that are incongruent with one another, with varying degrees of support. Without reliable, applicable methods to determine the sources of such incongru- ence and to resolve it, we present the consensus between well-supported topologies among our data sets as the best estimate of Lantaneae phylogeny to date. According to this consensus tree, fleshy fruits in Lantaneae have been derived from dry fruits at least five times; taxonomic schemes separating genera based on fruit characteristics are artificial. Lantaneae have shifted into the Neotropics from the southern temperate subtropics and have colonized Africa in at least two separate long-distance dispersal events. This study provides a first pass at a broad Lantaneae phylogeny, but two important areas remain unresolved: the position of Acantholippia relative to Aloysia; and species-level relationships in the Lantana–Lippia clade.
    [Show full text]
  • Review of the Declaration of Lantana Species in New South Wales Review of the Declaration of Lantana Species in New South Wales
    NSW DPI Review of the declaration of Lantana species in New South Wales Review of the declaration of Lantana species in New South Wales New South Wales Department of Primary Industries Orange NSW 2800 Frontispiece. A flowering and fruiting branch of the common pink variety of Lantana camara, near Copmanhurst (NSW north coast, October 2005) (Source: S. Johnson, NSW DPI). © State of New South Wales through NSW Department of Primary Industries 2007. You may copy, distribute and otherwise freely deal with this publication for any purpose, provided that you attribute NSW Department of Primary Industries as the owner. ISBN 978 0 7347 1889 1 Disclaimer: The information contained in this publication is based on knowledge and understanding at the time of writing (December 2007). However, because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up to date and to check currency of the information with the appropriate officer of New South Wales Department of Primary Industries or the user’s independent adviser. Job number 7262 This document was prepared by Dr Stephen Johnson Weed Ecologist Weeds Unit Biosecurity, Compliance and Mine Safety Telephone: 02 6391 3146 Facsimile: 02 6391 3206 Locked Bag 21 ORANGE NSW 2800 Figure 1. White and purple flowering varieties of the ornamental Lantana montevidensis planted in a median strip, Griffith (south western NSW, September 2005) (Source: S. Johnson, NSW DPI). iv REVIEW OF THE DECLARATION OF LANTANA SPECIES IN NSW CONTENTS EXECUTIVE SUMMARY 1 SCOPE OF THIS REVIEW 3 REVIEW OF THE DECLARATION OF LANTANA SPECIES IN NSW 5 NOMENCLATURE 5 Lantana camara 5 Lantana montevidensis 5 SPECIES DESCRIPTIONS 5 Lantana camara 5 Lantana montevidensis 7 TAXONOMY 9 Family Verbenaceae 9 Lantana genus 9 The Lantana camara species aggregate 9 Varieties of L.
    [Show full text]
  • A Taxonomic Revision of Lantana Sect. Lantana (Verbenaceae) in the Greater Antilles
    Willdenowia 32 – 2002 285 ISIDRO E. MÉNDEZ SANTOS A taxonomic revision of Lantana sect. Lantana (Verbenaceae) in the Greater Antilles Abstract Méndez Santos, I. E.: A taxonomic revision of Lantana sect. Lantana (Verbenaceae) in the Greater Antilles. – Willdenowia 32: 285-301. 2002. – ISSN 0511-9618. The revision of Lantana sect. Lantana for the projects “Flora of the Republic of Cuba” and “Flora of the Greater Antilles” confirmed the presence of 10 species and 16 infraspecific taxa in the territory. Their diagnostic characters are specified, two new forms are described (L. camara f. caffertyi and L. flava f. sandersii), the rank of three taxa is modified, and eight new combinations are established. Introduction Lantana L. (Verbenaceae) comprises about 270 species and subspecific taxa, mostly native to tropical and subtropical America, many of which are broadly distributed all over the world as ornamentals or aggressive weeds of disturbed areas (Moldenke & Moldenke 1983). The study of this genus is complicated by the high number of described species, the wide anthropogenic distri- bution of several of them, the mixture of wild and subspontaneous or naturalised plants, as well as the pronounced variability in morphology, flower colour, etc. According to López-Palacios (1991) “... this complicated genus has made breaking their head to all who have worked with Verbenaceae, from Schauer to Moldenke ...”. The infrageneric system followed by Schauer (1847) and Briquet (1895, 1904) recognised five sections, among which Lantana sect. Lantana is regarded as seemingly monophyletic (Sanders 1987b) and characterised as follows: drupes black when mature, with but a single pyrene, two fertile and two sterile locules, and fistulose peduncles.
    [Show full text]
  • Lepidoptera: Pterophoridae) SHILAP Revista De Lepidopterología, Vol
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Agius, J. Lantanophaga pusillidactylus (Walker, 1864) new to the Maltese Islands (Lepidoptera: Pterophoridae) SHILAP Revista de Lepidopterología, vol. 45, núm. 178, junio, 2017, pp. 259-261 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45551614012 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative SHILAP Revta. lepid., 45 (178) junio 2017: 259-261 eISSN: 2340-4078 ISSN: 0300-5267 Lantanophaga pusillidactylus (Walker, 1864) new to the Maltese Islands (Lepidoptera: Pterophoridae) J. Agius Abstract Lantanophaga pusillidactylus (Walker, 1864) is reported for the first time from the Maltese Islands. The genus Lantanophaga Zimmerman, 1958 is also recorded here for the first time from the Maltese Islands. Distribution, habits of the adult and larval host plant are included. A Maltese name is proposed for this new record. KEY WORDS: Lepidoptera, Pterophoridae, Lantanophaga pusillidactylus , Malta. Lantanophaga pusillidactylus (Walker, 1864) nueva para Malta (Lepidoptera: Pterophoridae) Resumen Lantanophaga pusillidactylus (Walker, 1864) se cita por primera vez para Malta. El género Lantanophaga Zimmerman, 1958 se cita también por primera vez para Malta. Se incluyen datos sobre su distribución, hábitat del adulto y la planta nutricia de la larva. Se propone un nombre maltés para esta nueva cita. PALABRAS CLAVE: Lepidoptera, Pterophoridae, Lantanophaga pusillidactylus , Malta. Introduction In the family Pterophoridae, over a thousand species have been described worldwide with over half of these occurring within the Palaearctic region (HEPPNER, 1991).
    [Show full text]
  • Barrowhill, Otterpool and East Stour River)
    Folkestone and Hythe Birds Tetrad Guide: TR13 D (Barrowhill, Otterpool and East Stour River) The tetrad TR13 D is an area of mostly farmland with several small waterways, of which the East Stour River is the most significant, and there are four small lakes (though none are publically-accessible), the most northerly of which is mostly covered with Phragmites. Other features of interest include a belt of trees running across the northern limit of Lympne Old Airfield (in the extreme south edge of the tetrad), part of Harringe Brooks Wood (which has no public access), the disused (Otterpool) quarry workings and the westernmost extent of Folkestone Racecourse and. The northern half of the tetrad is crossed by the major transport links of the M20 and the railway, whilst the old Ashford Road (A20), runs more or less diagonally across. Looking south-west towards Burnbrae from the railway Whilst there are no sites of particular ornithological significance within the area it is not without interest. A variety of farmland birds breed, including Kestrel, Stock Dove, Sky Lark, Chiffchaff, Blackcap, Lesser Whitethroat, Yellowhammer, and possibly Buzzard, Yellow Wagtail and Meadow Pipit. Two rapidly declining species, Turtle Dove and Spotted Flycatcher, also probably bred during the 2007-11 Bird Atlas. The Phragmites at the most northerly lake support breeding Reed Warbler and Reed Bunting. In winter Fieldfare and Redwing may be found in the fields, whilst the streams have attracted Little Egret, Snipe and, Grey Wagtail, with Siskin and occasionally Lesser Redpoll in the alders along the East Stour River. Corn Bunting may be present if winter stubble is left and Red Kite, Peregrine, Merlin and Waxwing have also occurred.
    [Show full text]
  • List of Approved Plants
    APPENDIX "X" – PLANT LISTS Appendix "X" Contains Three (3) Plant Lists: X.1. List of Approved Indigenous Plants Allowed in any Landscape Zone. X.2. List of Approved Non-Indigenous Plants Allowed ONLY in the Private Zone or Semi-Private Zone. X.3. List of Prohibited Plants Prohibited for any location on a residential Lot. X.1. LIST OF APPROVED INDIGENOUS PLANTS. Approved Indigenous Plants may be used in any of the Landscape Zones on a residential lot. ONLY approved indigenous plants may be used in the Native Zone and the Revegetation Zone for those landscape areas located beyond the perimeter footprint of the home and site walls. The density, ratios, and mix of any added indigenous plant material should approximate those found in the general area of the native undisturbed desert. Refer to Section 8.4 and 8.5 of the Design Guidelines for an explanation and illustration of the Native Zone and the Revegetation Zone. For clarity, Approved Indigenous Plants are considered those plant species that are specifically indigenous and native to Desert Mountain. While there may be several other plants that are native to the upper Sonoran Desert, this list is specific to indigenous and native plants within Desert Mountain. X.1.1. Indigenous Trees: COMMON NAME BOTANICAL NAME Blue Palo Verde Parkinsonia florida Crucifixion Thorn Canotia holacantha Desert Hackberry Celtis pallida Desert Willow / Desert Catalpa Chilopsis linearis Foothills Palo Verde Parkinsonia microphylla Net Leaf Hackberry Celtis reticulata One-Seed Juniper Juniperus monosperma Velvet Mesquite / Native Mesquite Prosopis velutina (juliflora) X.1.2. Indigenous Shrubs: COMMON NAME BOTANICAL NAME Anderson Thornbush Lycium andersonii Barberry Berberis haematocarpa Bear Grass Nolina microcarpa Brittle Bush Encelia farinosa Page X - 1 Approved - February 24, 2020 Appendix X Landscape Guidelines Bursage + Ambrosia deltoidea + Canyon Ragweed Ambrosia ambrosioides Catclaw Acacia / Wait-a-Minute Bush Acacia greggii / Senegalia greggii Catclaw Mimosa Mimosa aculeaticarpa var.
    [Show full text]
  • FSC Nettlecombe Court Nature Review 2014
    FSC Nettlecombe Court Nature Review 2014 Compiled by: Sam Tuddenham Nettlecombe Court- Nature Review 2014 Introduction The purpose of this report is to review and share the number of different species that are present in the grounds of Nettlecombe Court. A significant proportion of this data has been generated by FSC course tutors and course attendees studying at Nettlecombe court on a variety of courses. Some of the data has been collected for the primary purpose of species monitoring for nationwide conservation charities e.g. The Big Butterfly Count and Bee Walk Survey Scheme. Other species have just been noted by members or staff when out in the grounds. These records are as accurate as possible however we accept that there may be species missing. Nettlecombe Court Nettlecombe Court Field Centre of the Field Studies Council sits just inside the eastern border of Exmoor national park, North-West of Taunton (Map 1). The house grid reference is 51o07’52.23”N, 32o05’8.65”W and this report only documents wildlife within the grounds of the house (see Map 2). The estate is around 60 hectares and there is a large variety of environment types: Dry semi- improved neutral grassland, bare ground, woodland (large, small, man –made and natural), bracken dominated hills, ornamental shrubs (lawns/ domestic gardens) and streams. These will all provide different habitats, enabling the rich diversity of wildlife found at Nettlecombe Court. Nettlecombe court has possessed a meteorological station for a number of years and so a summary of “MET” data has been included in this report.
    [Show full text]
  • VERBENACEAE by Pedro Acevedo-Rodríguez (Jul 2020)
    GUIDE TO THE GENERA OF LIANAS AND CLIMBING PLANTS IN THE NEOTROPICS VERBENACEAE By Pedro Acevedo-Rodríguez (Jul 2020) A pantropical family extending to warm temperate regions, of shrubs, trees, lianas and less often herbs, commonly aromatic; with 33 genera and about 910 species. Twining lianas are restricted to Petrea, while scrambling lianas or subshrubs are found in Citharexylum, Duranta, and Lantana. Verbenaceae are represented in the Neotropics by 24 genera and about 710 species, of which only 22 species are consistently reported as lianas or climbing plants, most of which belong to the genus Petrea. Diagnostics: Leaves opposite (sometimes aromatic), simple, exstipulate; stems commonly quadrangular; corolla gamopetalous; Citharexylum may be confused with Aegiphila (Lamiaceae) but it is distinguished by the racemose inflorescence (vs a cyme or glomerule). Sterile Petrea may Petrea sp., photo by P. Acevedo be confused with sterile Aegiphila and may be confused with members of Malpighiaceae, but leaves are devoid of glands, and indument not T-shaped. General Characters 1. STEMS. Of all neotropical climbing Verbenaceae, only Citharexylum and Petrea produce stems with substantial secondary growth. Young stems are often quadrangular, but becoming cylindrical, reaching 3-10 m in length and up to 8 cm in diameter; cross sections in Citharexylum and Petrea are regular, often with a square medulla, a cylindrical vascular cylinder traversed by numerous conspicuous, narrow rays (fig. 1a, b & d); vessels are narrow (fig. 1a-d); climbing species of Lantana have deeply fluted stems (fig. 1c). 2. EXUDATES. Exudates are inconspicuous in all genera. 3. CLIMBING MECHANISM. Lianas and vines in this family are either scramblers or twiners, and commonly have short lateral plagiotropic or hanging branches.
    [Show full text]
  • The Exceptional Lantana Lace Bug, Teleonemia Scrupulosa
    486 Session 9 Post-release Evaluation and Management The Exceptional Lantana Lace Bug, Teleonemia scrupulosa M. T. Johnson USDA Forest Service, Pacific Southwest Research Station, Institute of Pacific Islands Forestry, Volcano, HI USA [email protected] Abstract The lantana lace bug, Teleonemia scrupulosa Stål (Hemiptera: Tingidae), was introduced to Hawaii for biological control of lantana, Lantana camara L. (Verbenaceae), in 1902 and again in 1954. Among 43 cases of non-target native plants used as hosts by weed biological control agents in the US and Caribbean in the past century, all appear predictable with the exception of this lace bug. In Hawaii, T. scrupulosa is known to develop on one variety of naio, Myoporum sandwicense (A. DC.) A. Gray (Myoporaceae), a very distant relative recently placed in the same order as lantana, Lamiales. Biological control efforts using T. scrupulosa proliferated around the world following its first use in Hawaii. A few additional instances of non-target host use by this lace bug suggest that its host range may be disjunct but broad within Lamiales, extending to sesame, Sesamum orientale L. (Pedaliaceae) and teak, Tectona grandis L. f. (Lamiaceae). The possibility of genetic shifts in host specificity among Hawaiian populations of T. scrupulosa was investigated in retrospective greenhouse tests. Ovipositional host specificity did not vary among populations, but was consistently disjunct, suggesting a genetic pre-adaptation for selecting a specific subspecies of M. sandwicense as a host. However, adaptation for development on M. sandwicense also appears to have occurred in the population collected from this plant. Additional studies are needed to determine the basis for host specificity in this insect and whether new protocols for host range evaluation may improve our powers to predict such non-target interactions.
    [Show full text]
  • Lantana Invasion: an Overview
    Blackwell Science, LtdOxford, UKWBMWeed Biology and Management1444-61622005 Weed Science Society of JapanDecember 200554157165Review ArticleLantana invasionG.P. Sharma et al. Weed Biology and Management 5, 157–165 (2005) REVIEW PAPER Lantana invasion: An overview GYAN P. SHARMA, AKHILESH S. RAGHUBANSHI and JAMUNA S. SINGH* Department of Botany, Banaras Hindu University, Varanasi, India We review the key features of Lantana (Lantana camara L.), an invasive plant species considered to be among the world’s 10 worst weeds. Lantana occurs in diverse habitats and on a variety of soil types, and its spread is encouraged by animal activities and by human disturbances, such as cultivation, road construction, and changes in fire regimes. Lantana is morphologically dis- tinct in the different regions of its invasive range compared to those regions in its native range. The biological attributes contributing to the success of Lantana as an invader species include: fitness homeostasis, phenotypic plasticity, dispersal benefits from destructive foraging activities, widespread geographic range, vegetative reproduction, fire tolerance, better competitive abil- ity compared to native flora, and allelopathy. Mechanical, chemical and biological options for the eradication and control of Lantana are available. It is emphasized that ecosystem-level consequences of Lantana invasion, particularly on the biodiversity of native flora, are little understood and studies are needed to fulfill this knowledge gap. Keywords: biological attributes, geographic spread, invasive species, Lantana, management. INTRODUCTION corded but, today, there is an increasing realization of the ecological costs of this process. Over 40% of the Invasion of exotic species is among the most im- plants listed as threatened and endangered species in portant global-scale problems experienced by natural the United States of America are at risk from invasive ecosystems.
    [Show full text]