Glacial Landform from Wikipedia, the Free Encyclopedia Jump to Navigationjump to Search
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Quantitative Assessment of Dirt-Cone Dynamics
J ournal of Glaciology, V ol. 1 I , No. 63, 1972 A QUANTITATIVE ASSESSMENT OF DIRT-CONE DYNAMICS By DAVID J. DREWRY (Scott Polar Research Institute, Cambridge CB2 IER, Engla nd) ABSTRACT . Quantitative investigations have been made of ice-cored dirt cones on Bersaerkerbrre in north-east Greenland. Experiments were also undertaken to eva luate field observations. M easurem ents included: m aximum cone dimensions, sediment thickness and pa rticle size, cone growth ra tes, slo pe a ngles and the tempera ture distribution within the d ebris layer and ice core. Particle size, which h as not been stressed in previous studies, a nd rela ted liquid consistency limits, appear as the domina nt controls in cone forma tion, independent of d ebris thickness within the observed ra nge of 10 mm to 125 mm. A thres hold gra in·size for dir t-cone inception was found, between 0.2 mm and 0.6 mm. The growth of con es was usually no t more tha n 50% of the a blation over "clean" ice. T empera ture m easuremen ts within dirt cones has enabled heat-flow studies to be made, evalua ting the thermal conductivity of a sediment layer a nd the heat tra nsfer involved in m elting the ice core. A simple m odel of dirt-cone d ynamics is proposed , characterized by negative feed backs and describing a stead y-sta te system. R ESUME. Une approche quantitative de la dynamique des "cones de pOllssiere". Des recherches qua ntita ti ves ont ele faites d e cones de poussiere (dirt-cones) a noyau d e glace da ns le Bersaerkerbrre dans le Nord-Est du G roenla nd. -
University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript. -
Formation, Meltout Processes and Landscape Alteration of High-Arctic Ice-Cored Moraines——Examples from Nordenskiold Land, Central Spitsbergen Sven Lukas, Lindsey I
This article was downloaded by: [Universitaetsbibliothek Innsbruck] On: 14 September 2011, At: 02:08 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Polar Geography Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tpog20 Formation, Meltout Processes and Landscape Alteration of High-Arctic Ice-Cored Moraines——Examples From Nordenskiold Land, Central Spitsbergen Sven Lukas, Lindsey I. Nicholson, Fionna H. Ross & Ole Humlum Available online: 04 Mar 2011 To cite this article: Sven Lukas, Lindsey I. Nicholson, Fionna H. Ross & Ole Humlum (2005): Formation, Meltout Processes and Landscape Alteration of High-Arctic Ice-Cored Moraines——Examples From Nordenskiold Land, Central Spitsbergen, Polar Geography, 29:3, 157-187 To link to this article: http://dx.doi.org/10.1080/789610198 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and- conditions This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. -
Surface Mass Balance of Small Glaciers on James Ross Island
Journal of Glaciology (2018), 64(245) 349–361 doi: 10.1017/jog.2018.17 © The Author(s) 2018. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Surface mass balance of small glaciers on James Ross Island, north-eastern Antarctic Peninsula, during 2009–2015 ̌ ̌ ̌ ZBYNEK ENGEL,1* KAMIL LÁSKA,2 DANIEL NÝVLT,2 ZDENEK STACHON2 1Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Praha, Czech Republic 2Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic *Correspondence: Zbyněk Engel <[email protected]> ABSTRACT. Two small glaciers on James Ross Island, the north-eastern Antarctic Peninsula, experi- enced surface mass gain between 2009 and 2015 as revealed by field measurements. A positive cumulative surface mass balance of 0.57 ± 0.67 and 0.11 ± 0.37 m w.e. was observed during the 2009–2015 period on Whisky Glacier and Davies Dome, respectively. The results indicate a change from surface mass loss that prevailed in the region during the first decade of the 21st century to predominantly positive surface mass balance after 2009/10. The spatial pattern of annual surface mass-balance distribution implies snow redistribution by wind on both glaciers. The mean equilibrium line altitudes for Whisky Glacier (311 ± 16 m a.s.l.) and Davies Dome (393 ± 18 m a.s.l.) are in accordance with the regional data indicating 200–300 m higher equilibrium line on James Ross and Vega Islands compared with the South Shetland Islands. -
Annual Report of the State Geologist for the Year 1877
NEW JERSEY GEOLOGICAL SURVEY GEOLOGICALSURVEYOF IN:LWJERSELz r ANNUAL REPORT OF TIIE STATEGEOLOGIST FOB TH-EYEAR IS77. TREe's'TON..N'. J, : _AAR. DAy & _'AAR, PRINTERS. NEW JERSEY GEOLOGICAL SURVEY NEW JERSEY GEOLOGICAL SURVEY BOARD OF MANAGERS. His Excellency, JOSEPH D. BEDLE, Governor, and ex-off_eio Presi- dent of the Board ............................................................ Trenton. L CONGRES_SIO_AL DISTRICT. CIIXRL_S E. ELm:R, Esq ........................................................ Bridgeton. ItoN. ANDREW K, HAY .......................................................... Winslow. II. CONGRESSIONAL DISTRICT. I'[ON. "_VILLIAM PARRY ........................................................... Cinnamiuson. ' HON, H. S, LITTLE ................................................................. Trenton. 1II. CONGRESSlONAI_DISTRICT. HENRY AITKIN, Esq .............................................................. Elizabetll. ] JoHs VOUGI_T, M. D ............................................................. Freehold. IV. CONGRESSIONAL DISTRICT. SELDE._ T. SORA_'TO.'_, Esq ..................................................... Oxford. TtlO.MAS LAWRE_CE_ Esq...'. .................................................... Hamburg. v. CO._GRF._IO.'CAL DISTRICT. HO.N'. AUGUSTUS W. CUTLER ................................................... Morristown. (_OL. BENJA,'III_ _-YCRIGG ....................................................... Pf189aic. VI, CO_GRF_SIONAL DISTRICT. WILLIAM M. FORCg_ Esq ...................................................... -
Basal Control of Supraglacial Meltwater Catchments on the Greenland Ice Sheet
The Cryosphere, 12, 3383–3407, 2018 https://doi.org/10.5194/tc-12-3383-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Basal control of supraglacial meltwater catchments on the Greenland Ice Sheet Josh Crozier1, Leif Karlstrom1, and Kang Yang2,3 1University of Oregon Department of Earth Sciences, Eugene, Oregon, USA 2School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China 3Joint Center for Global Change Studies, Beijing 100875, China Correspondence: Josh Crozier ([email protected]) Received: 5 April 2018 – Discussion started: 17 May 2018 Revised: 13 October 2018 – Accepted: 15 October 2018 – Published: 29 October 2018 Abstract. Ice surface topography controls the routing of sur- sliding regimes. Predicted changes to subglacial hydraulic face meltwater generated in the ablation zones of glaciers and flow pathways directly caused by changing ice surface to- ice sheets. Meltwater routing is a direct source of ice mass pography are subtle, but temporal changes in basal sliding or loss as well as a primary influence on subglacial hydrology ice thickness have potentially significant influences on IDC and basal sliding of the ice sheet. Although the processes spatial distribution. We suggest that changes to IDC size and that determine ice sheet topography at the largest scales are number density could affect subglacial hydrology primarily known, controls on the topographic features that influence by dispersing the englacial–subglacial input of surface melt- meltwater routing at supraglacial internally drained catch- water. ment (IDC) scales ( < 10s of km) are less well constrained. Here we examine the effects of two processes on ice sheet surface topography: transfer of bed topography to the surface of flowing ice and thermal–fluvial erosion by supraglacial 1 Introduction meltwater streams. -
1 Recognising Glacial Features. Examine the Illustrations of Glacial Landforms That Are Shown on This Page and on the Next Page
1 Recognising glacial features. Examine the illustrations of glacial landforms that are shown on this C page and on the next page. In Column 1 of the grid provided write the names of the glacial D features that are labelled A–L. In Column 2 indicate whether B each feature is formed by glacial erosion of by glacial deposition. A In Column 3 indicate whether G each feature is more likely to be found in an upland or in a lowland area. E F 1 H K J 2 I 24 Chapter 6 L direction of boulder clay ice flow 3 Column 1 Column 2 Column 3 A Arête Erosion Upland B Tarn (cirque with tarn) Erosion Upland C Pyramidal peak Erosion Upland D Cirque Erosion Upland E Ribbon lake Erosion Upland F Glaciated valley Erosion Upland G Hanging valley Erosion Upland H Lateral moraine Deposition Lowland (upland also accepted) I Frontal moraine Deposition Lowland (upland also accepted) J Medial moraine Deposition Lowland (upland also accepted) K Fjord Erosion Upland L Drumlin Deposition Lowland 2 In the boxes provided, match each letter in Column X with the number of its pair in Column Y. One pair has been completed for you. COLUMN X COLUMN Y A Corrie 1 Narrow ridge between two corries A 4 B Arête 2 Glaciated valley overhanging main valley B 1 C Fjord 3 Hollow on valley floor scooped out by ice C 5 D Hanging valley 4 Steep-sided hollow sometimes containing a lake D 2 E Ribbon lake 5 Glaciated valley drowned by rising sea levels E 3 25 New Complete Geography Skills Book 3 (a) Landform of glacial erosion Name one feature of glacial erosion and with the aid of a diagram explain how it was formed. -
GENESIS of the HONDSRUG a SAALIAN MEGAFLUTE, Drenthe, the Netherlands
GENESIS OF THE HONDSRUG A SAALIAN MEGAFLUTE, Drenthe, the Netherlands ASPIRING EUROPEAN GEOPARK September 2012 E.P.H.Bregman F.W.H.Smit PROVINCE OF DRENTHE UTRECHT UNIVERSITY THE NETHERLANDS www. Geoparkdehondsrug.nl 1 Colophon E.P.H. Bregman, MSc, Province of Drenthe, Utrecht University. Adress: Province of Drenthe, Westerbrink 1, 9400 AC Assen. E-mail: [email protected] F.W.H. Smit, BSc Utrecht University, MSc Århus University (Denmark) E-mail: [email protected] This report is published by the Steering Group aspiring EUROPEAN GEOPARK de Hondsrug and will (partly or modified) be published as part of a Ph-D thesis of E.P.H.Bregman. Reprodution of this study (text and figures) at any way, or using data for presentations, lectures or publications is only allowed with permission of the main author, E.P.H.Bregman. © (2012) Steering Group aspiring EUROPEAN GEOPARK de HONDSRUG/E.P.H.Bregman This study is ordered by the Province of Drenthe and study is done under auspiciën of the Utrecht University, Faculty Geoscience, department Physical Geography. The Netherlands 2 Contents List of figures............................................................................................................................ 6 A proposed European Geopark................................................................................................ 8 1. Introduction.....................................................................................................................11 1.1 Framework of the research............................................................................................. -
Characteristics of the Bergschrund of an Avalanche-Cone Glacier in the Canadian Rocky Mountains
JOlIl"lla/ o/G/aci%gl'. VoL 29. No. 10 1. 1983 CHARACTERISTICS OF THE BERGSCHRUND OF AN AVALANCHE-CONE GLACIER IN THE CANADIAN ROCKY MOUNTAINS By G ERALD OSBORN (Department of Geology and Geophysics, Uni versity o f Calgary, Calgary, Alberta T2N I N4, Canada) ABSTRACT. Fi eld study of th e bergschrund of a small avalanche-cone glacier at the base of Mt Chephren, in Banff Nati onal Park , has been ca rried out as part of a general ex pl oratory study of glacier-head crevasses in th e Canadi an Roc ki es. The bergsc hrun d consists of a wide. shall ow. partl y bedrock-fl oored gap, und erneath whi ch ex tends a nearl y vertical Ralldklu!I, and a small , offset, subsidi ary crevasse (or crevasses). The fo ll owin g observations rega rdin g the behavior of th e bergsc hruncl and ice adjacent to it are of parti cul ar interest: ( I) topograph y of the subglaeial bedrock is a control on the location of the main bergschrund and subsidi a ry crevasses. (2) th e main bergschrund and subsid ia ry crevasse(s) are conn ected by subglacial gaps betwee n bedrock and ice; th e gaps are part of th e "bergschrund system" , (3) snow/ ice immedi ately down-glacier of the bergschrund system moves nea rl y verticall y dow nwa rd in response to rotational fl ow of the glacier. a ll owin g the bergschrund components to keep the same location and size fro m year to year, (4) an inde pend ent accumul ati on, fl ow. -
Calving Processes and the Dynamics of Calving Glaciers ⁎ Douglas I
Earth-Science Reviews 82 (2007) 143–179 www.elsevier.com/locate/earscirev Calving processes and the dynamics of calving glaciers ⁎ Douglas I. Benn a,b, , Charles R. Warren a, Ruth H. Mottram a a School of Geography and Geosciences, University of St Andrews, KY16 9AL, UK b The University Centre in Svalbard, PO Box 156, N-9171 Longyearbyen, Norway Received 26 October 2006; accepted 13 February 2007 Available online 27 February 2007 Abstract Calving of icebergs is an important component of mass loss from the polar ice sheets and glaciers in many parts of the world. Calving rates can increase dramatically in response to increases in velocity and/or retreat of the glacier margin, with important implications for sea level change. Despite their importance, calving and related dynamic processes are poorly represented in the current generation of ice sheet models. This is largely because understanding the ‘calving problem’ involves several other long-standing problems in glaciology, combined with the difficulties and dangers of field data collection. In this paper, we systematically review different aspects of the calving problem, and outline a new framework for representing calving processes in ice sheet models. We define a hierarchy of calving processes, to distinguish those that exert a fundamental control on the position of the ice margin from more localised processes responsible for individual calving events. The first-order control on calving is the strain rate arising from spatial variations in velocity (particularly sliding speed), which determines the location and depth of surface crevasses. Superimposed on this first-order process are second-order processes that can further erode the ice margin. -
Antarctic Primer
Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state. -
Glacier (And Ice Sheet) Mass Balance
Glacier (and ice sheet) Mass Balance The long-term average position of the highest (late summer) firn line ! is termed the Equilibrium Line Altitude (ELA) Firn is old snow How an ice sheet works (roughly): Accumulation zone ablation zone ice land ocean • Net accumulation creates surface slope Why is the NH insolation important for global ice• sheetSurface advance slope causes (Milankovitch ice to flow towards theory)? edges • Accumulation (and mass flow) is balanced by ablation and/or calving Why focus on summertime? Ice sheets are very sensitive to Normal summertime temperatures! • Ice sheet has parabolic shape. • line represents melt zone • small warming increases melt zone (horizontal area) a lot because of shape! Slightly warmer Influence of shape Warmer climate freezing line Normal freezing line ground Furthermore temperature has a powerful influence on melting rate Temperature and Ice Mass Balance Summer Temperature main factor determining ice growth e.g., a warming will Expand ablation area, lengthen melt season, increase the melt rate, and increase proportion of precip falling as rain It may also bring more precip to the region Since ablation rate increases rapidly with increasing temperature – Summer melting controls ice sheet fate* – Orbital timescales - Summer insolation must control ice sheet growth *Not true for Antarctica in near term though, where it ʼs too cold to melt much at surface Temperature and Ice Mass Balance Rule of thumb is that 1C warming causes an additional 1m of melt (see slope of ablation curve at right)