Mississippian Stratigraphic Framework of East-Central

Total Page:16

File Type:pdf, Size:1020Kb

Mississippian Stratigraphic Framework of East-Central Mississippian Stratigraphic Framework of East-Central California and Southern Nevada with Revision of Upper Devonian and Mississippian Stratigraphic Units in Inyo County, California U.S. GEOLOGICAL SURVEY BULLETIN 1988-J AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications re­ leased prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may no longer be available. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices listed below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey offices, all of general interest (such as leaflets, pamphlets, booklets), single of which are authorized agents of the Superintendent of Docu­ copies of Earthquakes & Volcanoes, Preliminary Determination of ments. Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from ANCHORAGE, Alaska-Rm. 101, 4230 University Dr. U.S. Geological Survey, Information Services LAKEWOOD, Colorado-Federal Center, Bldg. 810 Box 25286, Federal Center Denver, CO 80225 MENLO PARK, California-Bldg. 3, Rm. 3128, 345 Middlefield Rd. Subscriptions to periodicals (Earthquakes & Volcanoes and Preliminary Determination of Epicenters) can be obtained ONLY RESTON, Virginia-USGS National Center, Rm. 1C402, from the 12201 Sunrise Valley Dr. Superintendent of Documents SALT LAKE CITY, Utah-Federal Bldg., Rm. 8105, Government Printing Office 125 South State St. Washington, DC 20402 SPOKANE, Washington-U.S. Post Office Bldg., Rm. 135, (Check or money order must be payable to Superintendent of West 904 Riverside Ave. Documents.) WASHINGTON, D.C.-Main Interior Bldg., Rm. 2650, 18th and CSts., NW. Maps For maps, address mail orders to Maps Only U.S. Geological Survey, Information Services Maps may be purchased over the counter at the following Box 25286, Federal Center U.S. Geological Survey offices: Denver, CO 80225 Residents of Alaska may order maps from FAIRBANKS, Alaska-New Federal Bldg, 101 Twelfth Ave. U.S. Geological Survey, Earth Science Information Center ROLLA, Missouri-1400 Independence Rd. 101 Twelfth Ave., Box 12 Fairbanks, AK 99701 STENNIS SPACE CENTER, Mississippi-Bldg. 3101 Mississippian Stratigraphic Framework of East-Central California and Southern Nevada with Revision of Upper Devonian and Mississippian Stratigraphic Units in Inyo County, California By Calvin H. Stevens, Darrell S. Klingman, Charles A. Sandberg, Paul Stone, Paul Belasky, Forrest G. Poole, and J. Kent Snow EVOLUTION OF SEDIMENTARY BASINS EASTERN GREAT BASIN Harry E. Cook and Christopher J. Potter, Project Coordinators U.S. GEOLOGICAL SURVEY BULLETIN 1988-J A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modern UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Mississippian stratigraphic framework of east-central California and southern Nevada with revision of Upper Devonian and Mississippian stratigraphic units in Inyo County, California / by Calvin H. Stevens ... [et al.]. p. cm. (Evolution of sedimentary basins Eastern Great Basin ; J) (U.S. Geological Survey bulletin ; 1988) Includes bibliographical references. Supt. of Docs, no.: 119.3: 1988J 1. Geology, Stratigraphic Mississippian. 2. Geology, Stratigraphic Devonian. 3. Geology California Inyo County. 4. Geology Nevada. I. Stevens, Calvin H. II. Series, in. Series: Evolution of sedimentary basins Eastern Great Basin ; ch. J. QE75.B9 no. 1988-J [QE672] 557.3 s dc20 95-383 [551.7'51'0979487] CIP CONTENTS Abstract........................................................................................................................... Jl Introduction.................................................................................................................... 1 Mississippian Stratigraphic Nomenclature in Southern Nevada.................................... 6 Southeastern-Facies Belt........................................................................................ 6 Central-Facies Belt................................................................................................. 6 Northwestern-FaciesBelt....................................................................................... 9 Stratigraphic Nomenclature in East-Central California.................................................. 9 Southeastern-Facies Belt........................................................................................ 9 Central-Facies Belt................................................................................................. 10 Northwestern-FaciesBelt....................................................................................... 10 Proposed Revisions in Stratigraphic Nomenclature....................................................... 10 Perdido Group......................................................................................................... 11 Leaning Rock Formation................................................................................ 11 Mexican Spring Formation............................................................................. 13 Stone Canyon Limestone........................................................................................ 15 Squares Tunnel Formation and Kearsarge Formation............................................ 18 Squares Tunnel Formation.............................................................................. 18 Kearsarge Formation...................................................................................... 19 Comparison of Mississippian Stratigraphy and Stratigraphic Nomenclature in Southern Nevada and East-Central California.................................................... 22 Southeastern-Facies Belt........................................................................................ 22 Central-Facies Belt................................................................................................. 22 Northwestern-Facies Belt....................................................................................... 24 Summary......................................................................................................................... 25 References Cited............................................................................................................. 26 Appendix 1 ..................................................................................................................... 29 Appendix 2..................................................................................................................... 37 FIGURES 1. Map of southern Nevada and east-central California showing locations of sections and distribution of Mississippian facies belts............................................................................................................... J2 2, 3. Charts showing Mississippian Stratigraphic nomenclature for east-central California: 2. Currently in use............................................................................................................................................ 4 3. Proposed....................................................................................................................................................... 5 4, 5. Charts showing time-rock correlation of: 4. Mississippian rocks...................................................................................................................................... 7 5. Upper Devonian rocks.................................................................................................................................. 8 6, 7. Maps showing: 6. Location of measured sections..................................................................................................................... 12 7. Outcrop relations and location of type section of the Leaning Rock Formation and reference section of the Mexican Spring Formation ................................................................................................................ 13 8. Type section of the Leaning Rock Formation and reference section of the Mexican Spring Formation.............. 14 9,
Recommended publications
  • A New Species of Tiaracrinus from the Latest Emsian of Morocco and Its Phylogeny
    A new species of Tiaracrinus from the latest Emsian of Morocco and its phylogeny CHRISTIAN KLUG, KENNETH DE BAETS, CAROLE JUNE NAGLIK, and JOHNNY WATERS Klug, C., De Baets, K., Naglik, C.J., and Waters, J. 2014. A new species of Tiaracrinus from the latest Emsian of Morocco and its phylogeny. Acta Palaeontologica Polonica 59 (1): 135–145. We describe a new species of the unusual crinoid Tiaracrinus, T. jeanlemenni sp. nov. from the latest Emsian of the fa- mous mudmound locality Hamar Laghdad, Morocco. It differs from the previously known species in the higher number of ribs and the vaulted rib-fields, which is corroborated by the comparison of simple quantitative characters and ratios as well as by the results of a cluster analysis and a Principal Component Analysis. Based on the new material and the published specimens, we discuss the phylogeny of the genus and suggest that T. oehlerti and T. moravicus represent the ancestral forms of this small clade. Key words: Crinoidea, mudmounds, phylogeny, morphometry, symmetry, Devonian, Morocco. Christian Klug [[email protected]] and Carole J. Naglik [[email protected]], Paläontologisches Institut und Museum, Universität Zürich, Karl Schmid-Strasse 4, CH-8006 Zürich, Switzerland; Kenneth De Baets [[email protected]], GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Universität Erlan- gen, Loewenichstr. 28, D-91054 Erlangen, Germany; Johnny Waters [[email protected]], Department of Geology, Appalachian State University, ASU Box 32067, Boone, NC 28608-2067, USA. Received 30 November 2011, accepted 4 June 2012, available online 6 June 2012. Copyright © 2014 C. Klug et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Appendix 3.Pdf
    A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin Item Type Thesis or dissertation Authors Nicholls, Keith H. Citation Nicholls, K. (2019). A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin. (Doctoral dissertation). University of Chester, United Kingdom. Publisher University of Chester Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 26/09/2021 02:37:15 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/622234 International Chronostratigraphic Chart v2013/01 Erathem / Era System / Period Quaternary Neogene C e n o z o i c Paleogene Cretaceous M e s o z o i c Jurassic M e s o z o i c Jurassic Triassic Permian Carboniferous P a l Devonian e o z o i c P a l Devonian e o z o i c Silurian Ordovician s a n u a F y r Cambrian a n o i t u l o v E s ' i k s w o Ichnogeneric Diversity k p e 0 10 20 30 40 50 60 70 S 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 Number of Ichnogenera (Treatise Part W) Ichnogeneric Diversity 0 10 20 30 40 50 60 70 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 c i o 63 z 65 o e 67 a l 69 a 71 P 73 75 77 79 81 83 n 85 a i r 87 b 89 m 91 a 93 C Number of Ichnogenera (Treatise Part W)
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • Catalog of Type Specimens of Invertebrate Fossils: Cono- Donta
    % {I V 0> % rF h y Catalog of Type Specimens Compiled Frederick J. Collier of Invertebrate Fossils: Conodonta SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY NUMBER 9 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti­ tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com­ mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of profes­ sional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These publications are distributed by mailing lists to libraries, laboratories, and other in­ terested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available.
    [Show full text]
  • Evaluating the Frasnian-Famennian Mass Extinction: Comparing Brachiopod Faunas
    Evaluating the Frasnian-Famennian mass extinction: Comparing brachiopod faunas PAUL COPPER Copper, P. 1998. Evaluating the Frasnian-Famennian mass extinction: Comparing bra- chiopod faunas.- Acta Palaeontologica Polonica 43,2,137-154. The Frasnian-Famennian (F-F) mass extinctions saw the global loss of all genera belonging to the tropically confined order Atrypida (and Pentamerida): though Famen- nian forms have been reported in the literafure, none can be confirmed. Losses were more severe during the Givetian (including the extinction of the suborder Davidsoniidina, and the reduction of the suborder Lissatrypidina to a single genus),but ońgination rates in the remaining suborder surviving into the Frasnian kept the group alive, though much reduced in biodiversity from the late Earb and Middle Devonian. In the terminal phases of the late Palmatolepis rhenana and P linguifurmis zones at the end of the Frasnian, during which the last few Atrypidae dechned, no new genera originated, and thus the Atrypida were extĘated. There is no evidence for an abrupt termination of all lineages at the F-F boundary, nor that the Atrypida were abundant at this time, since all groups were in decline and impoverished. Atypida were well established in dysaerobic, muddy substrate, reef lagoonal and off-reef deeper water settings in the late Givetian and Frasnian, alongside a range of brachiopod orders which sailed through the F-F boundary: tropical shelf anoxia or hypońa seems implausible as a cause for aĘpid extinction. Glacial-interglacial climate cycles recorded in South Ameńca for the Late Devonian, and their synchronous global cooling effect in low latitudes, as well as loss of the reef habitat and shelf area reduction, remain as the most likely combined scenarios for the mass extinction events.
    [Show full text]
  • The Eifelian Givetian Boundary (Middle Devonian) at Tsakhir, Govi Altai Region, Southern Mongolia
    23rd Annual Keck Symposium: 2010 Houston, Texas THE EIFELIAN GIVETIAN BOUNDARY (MIDDLE DEVONIAN) AT TSAKHIR, GOVI ALTAI REGION, SOUTHERN MONGOLIA NICHOLAS SULLIVAN State University of New York at Geneseo Faculty Advisor: D. Jeffrey Over INTRODUCTION AND PURPOSE GEOLOGIC SETTING The Devonian System (418.1±3.0 – 365.7±2.7 Ma) Badarch et al. (2002) argued that Mongolia consists is subdivided into three epochs, Lower, Middle, and of numerous terranes that were accreted onto small Upper, which are further subdivided into seven stag- Precambrian cratonic blocks in the Hangay Region es. The Middle Devonian is subdivided into the Eif- during the Paleozoic and Mesozoic. The focus of elian (391.9±3.4 – 388.1±2.6 Ma) and the Givetian this investigation are strata in a region recognized (388.1±2.6 - 383.7±3.1 Ma; Kaufmann, 2006). The as part of one of these accretionary wedges, which stage boundary is defined by the first appearance is referred to as the Gobi Altai Terrane (Figure 1; Ba- of Polygnathus hemiansatus at the Eifelian-Givetian darch et al., 2002; Minjin and Soja, 2009a). Badarch Stage Global Stratotype Section and Point (GSSP), et al. (2002) characterized the Gobi Altai Terrane as which is a section at Jebel Mech Irdane in the Tifilalt a backarc basin, as evidenced by abundant volcano- of Morocco (Walliser et al. 1995). At some sections, clastic sedimentary rocks. The volcanics within the the appearance of the goniatite Maenioceras undu- Gobi Altai Terrane are believed to be derived from latum has been used as a proxy for the boundary a prehistoric island arc represented by the Mandalo- (Kutcher and Schmidt, 1958).
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • Tage。。,,。。。Ev。Nia。。Ystem by W
    鹭。tage。。,,。。。ev。nia。。ystem by W . Ziegler and G .K lapper Th e S ubc om m is sio n on D ev on ian S tr at ig rap h y h a s f orm a ll y ag re ed up on th e n om en c la tu re f or sev en S tan d ard S t ag es o f th e D e von ian S ys tem . A ba sa l b oun d ar y str a to typ e is d e scr ib ed in th i s ar ti c le f or th e E if e lian S t ag e , c o in ci de n t wi th th e b as e of th e M idd l e D evon i an S er i es . C r it er ia f or r ec ogn i zin g a Givetian-Frasnian Stage boundary (=base of Upper M O D e von ian Se ri es ) an d a F ra sn i an -F am enn i an S ta ge bo un d ar y are al so o u tl in ed . F u tu re w ork wi ll c om - p le te th e d ef in it ion o f ba sa l b oun d ar y st ra to t yp es f o r e a c h S t a g e . In trod uc tio n A nnual m eetings of the Subcom m ission on D evonian Stra- tigraphy (SD S) have been held since its foundation in 1973, w ith im portant decisions sum m arized here on stratigraphic standards being m ade in 1979, 1981, 1982 and 1983; these have now been form ally ratified by lU G S.
    [Show full text]
  • Stromatoporoid Diversity in the Devonian of the Ardennes: a Reinterpretation Pawel WOLNIEWICZ
    GEOLOGICA BELGICA (2012) 15/1-2: 3-7 Stromatoporoid diversity in the Devonian of the Ardennes: a reinterpretation Pawel WOLNIEWICZ Geological Institute, Adam Mickiewicz University, Makow Polnych 16, PL-61-606 Poznan, Poland; e-mail: [email protected] ABSTRACT. Previous studies of the stromatoporoid palaeobiodiversity in the Devonian of the Ardennes are revised. The data set used in this study consists of 3416 specimens of 180 species. The rarefaction method was employed in order to reduce sampling bias in the diversity curves. The estimated stromatoporoid diversity reached its plateau in the Eifelian (Couvin Formation) and in the Givetian, and decreased during the Late Devonian. KEYWORDS: stromatoporoids, palaeobiodiversity, Eifelian, rarefaction, diversity curves 1. Introduction poor environmental conditions could result in a lower number of taxa. On the other hand the lack of numerous easily accessible outcrops of Devonian stromatoporoids (class Stromatoporoidea Nicholson & biostromes containing abundant stromatoporoids may also lead to a Murie, 1878) of the Ardennes and adjacent areas have been extensively further underestimation of the biodiversity documented in the fossil studied for the last 80 years, beginning from the pioneer works by Le record, since poorly exposed sedimentary rocks are sampled less Maître (1931, 1933) and Lecompte (1951, 1952), to the recent intensively (Peters & Foote, 2001). Raup (1976a, 1976b) concluded contributions by Mistiaen (2002), Hubert (2008) and Da Silva et al. that diversity trends and rock outcrop area are linked. Other studies (2011). Givetian and Frasnian stromatoporoid faunas received the (e.g. Miller & Foote, 1996) revealed that sampling problems indeed most extensive scientific attention (e.g. Lecompte 1951, 1952; Cornet, affect biodiversity curves.
    [Show full text]
  • 1 Correlation of the Base of the Serpukhovian Stage
    Correlation of the base of the Serpukhovian Stage (Carboniferous; Mississippian) in northwest Europe GEORGE D. SEVASTOPULO* & MILO BARHAM✝ *Department of Geology, Trinity College Dublin, Dublin 2, Ireland ✝Milo Barham, Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia Author for correspondence: [email protected] Running head: Correlation base Serpukhovian northwest Europe Abstract - The Task Group charged with proposing the GSSP for the base of the Serpukhovian Stage (Mississippian: Lower Carboniferous) is likely to use the global First Appearance Datum (FAD: evolutionary first appearance) of the conodont Lochriea ziegleri in the lineage Lochriea nodosa-L. ziegleri for the definition and correlation of the base of the stage. It is important to establish that the FOD (First Occurrence Datum) of L. ziegleri in different basins is essentially penecontemporaneous. Ammonoids provide high-resolution biostratigraphy in the late Mississippian but their use for international correlation is limited by provincialism. However, it is possible to assess the levels of diachronism of the FOD of L. ziegleri in sections in northwest Europe using ammonoid zones. Published compilations of conodont distribution in the Rhenish Slate Mountains of Germany show the FOD of L. ziegleri in the Emstites novalis Biozone (upper part of the P2c zone of the British/Irish ammonoid biozonation) but L. ziegleri has also been reported as occurring in the Neoglyphioceras spirale Biozone (P1d zone). In the Yoredale Group of northern England, the FOD of L. ziegleri is in either the P1c or P1d zone. In NW Ireland, the oldest records of both L. nodosa and L. ziegleri are from the Lusitanoceras granosum Biozone (P2a).
    [Show full text]
  • Lithostratigraphy, Microlithofacies, And
    Lithostratigraphy, Microlithofacies, and Conodont Biostratigraphy and Biofacies of the Wahoo Limestone (Carboniferous), Eastern Sadlerochit Mountains, Northeast Brooks Range, Alaska U. S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1568 j^^^fe^i^^t%t^^S%^A^tK-^^ ^.3lF Cover: Angular unconformity separating steeply dipping pre-Mississippian rocks from gently dipping carbonate rocks of the Lisburne Group near Sunset Pass, eastern Sadlerochit Mountains, northeast Brooks Range, Alaska. The image is a digital enhancement of the photograph (fig. 5) on page 9. Lithostratigraphy, Microlithofacies, and Conodont Biostratigraphy and Biofacies of the Wahoo Limestone (Carboniferous), Eastern Sadlerochit Mountains, Northeast Brooks Range, Alaska By Andrea P. Krumhardt, Anita G. Harris, and Keith F. Watts U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1568 Description of the lithostratigraphy, microlithofacies, and conodont bio stratigraphy and biofacies in a key section of a relatively widespread stratigraphic unit that straddles the Mississippian-Pennsylvanian boundary UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY GORDON P. EATON, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center, Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Published in the Eastern Region, Reston, Va. Manuscript approved for publication June 26, 1995. Library of Congress Cataloging in Publication Data Krumhardt, Andrea P. Lithostratigraphy, microlithofacies, and conodont biostratigraphy and biofacies of the Wahoo Limestone (Carboniferous), eastern Sadlerochit Mountains, northeast Brooks Range, Alaska / by Andrea P. Krumhardt, Anita G. Harris, and Keith F.
    [Show full text]
  • Late Viséan Conodont Biostratigraphy and Biofacies in the Kingscourt Area, Ireland
    Bollettino della Società Paleontologica Italiana Modena, Novembre 1999 Late Viséan conodont biostratigraphy and biofacies in the Kingscourt area, Ireland H.E. Anne SOMERVILLE Ian D. SOMERVILLE Department of Geology University College Duolin KEYWORDS- Conodonts Biostratigraphy, Biofacies, Carboniferous, Late Viséan, Kingscourt, Ireland. ABSTRACT - The Gnathodus bilineatus and Lochriea nodosa zones are recognised in the Kingscourt area, Ireland in both platform and basinal facies. The base ofthe nodosa Zone ù defined by the synchronous first occurrence ofL. nodosa and L. mononodosa in the same bed. Severa! conodont species (e.g. Mestognathus bipluti, Idioprioniodus healdi and Kladognathus macrodentata) are mostly restricted to the Brigantian (upper part ofthe bilineatus and nodosa zones). The richest and most diverse conodont faunas dominated by species ofGnathodus and Lochriea are Jrom late platform and basinallimestones within the L. nodosa Zone (Gnathodus-Lochriea Biofacies) . Lower yields and diversity are recorded Jrom early Brigantian platform limestones (upper p art ofthe G. bilineatus Zone); with the poorest conodont yields in late Asbian platform limestones and mudmounds ofthe lower G. bilineatus Zone. T here is a significant rise in the abundance and diversity of conodonts above the Asbian/Brigantian bounda'} a change which coincides with changes in foraminiferal assemblages and lithofacies; this indicates probable transgressive environmental injluences. A second major increase in conodont abundance and diversity is recognised at the base ofthe nodosa Zone, in platform and basinal {acies. Shallow-water, coarse-grainedAsbian platform limestones are dominated by Synclydognathus geminus and Kladognathus tenuis compfectens (Synclydognathus-Kladognathus Biofacies), the elements of which are ojten abraded and fragmented. The best preserved faunas are mostly from the wackestones in the nodosa Zone at Poulmore, which have the best representation ofall apparatus components.
    [Show full text]