:.. ;}.·:···.·;·1 Congenital Neutropenia

Total Page:16

File Type:pdf, Size:1020Kb

:.. ;}.·:···.·;·1 Congenital Neutropenia C HAP T E R 13 >;:.. ;}.·:···.·;·1 CONGENITAL NEUTROPENIA Jill M. Watanabe, MD, MPH, and David C. Dale, MD defined by a neutrophil count less than 1500 cellS/ilL; KEY POINTS beyond 10 years of age, neutropenia is defined by a neu­ trophil count less' than 1800 cells//1L in persons of white Congenital Neutropenia and Asian descent. 1 In persons of African descent, neu­ tropenia is defined by a count of 800--1000 cells//1L. 1 (& Congenital neutropenia encompasses a heterogeneous group of The severity and duration of neutropenia are also clin­ iuheri ted diseases. ically important. Mild neutropenia is usually defined by • The genetic mutations causing congenital neutropenia may neutrophil counts of 1000-1500 cells//1L, moderate neu­ have an isolated effect on the bone marrow but can also affect tropenia is 500-1000 cells//1L, and severe neutropenia one or more other organ systems. is less than 500 cells//1L. Acute neutropenia usually is present for only 5-10 days; neutropenia is chronic if its (& The genetic defects underlying the diseases that cause con­ duration is at least several weeks. Almost all congenital genital neutropenia have been rapidly identified over the past neutropenias are chronic neutropenia. decade. The characteristics and causes of congenital neu­ (& Granulocyte colony-stimulating factor has dramatically tropenia are shown in Tables 13-1 and 13-2, and an algo­ improved the prognosis for children with congenital rithm for their diagnosis is presented in Figure 13-1. neutropenia. SEVERE CONGENITAL NEUTROPENIA Patient'; with severe congenital neutropenia (SCN) typi­ cally present with recurrent bacterial infections and neutrophil count'> persistently less than 200 cells//1L. INTRODUCTION Kostmann described SCN as an autosomal recessive dis­ order in 1956 2 ; subsequently many sporadic cases and The congenital neutropenias are inherited hematologic families with an autosomal dominant inheritance were conditions that are usually recognized in infancy or early reported. The incidence of SCN is estimated at 2 per 1 childhood. Congenital neutropenia is often diagnosed million births. 3 when a young child has a differential white blood cell count performed for symptoms and signs of a severe infection. Congenital neutropenia may also be recognized Pathophysiology in evaluating a child with a complex congenital syn­ drome. The severity of the neutropenia and its clinical The genetics of SCN are heterogeneous. Up to 80o/i! of consequences vary considerably. patients have heterozygous mutations in exons 2, 3, 4, Neutropenia is defined as an absolute blood neu­ or 5 of the gene for neutrophil elastase (NE), also known trophil count more than 2 standard deviations below as e1astase-2 (EL42; locus 19p13.3) 4,5 (Fig. 13-2). ELA2 normaL The absolute count is percent neutrophils plus encodes a potent protease that is synthesized at the bands counted on a differential multiplied by the total promyelocytic stage in neutrophil development and white blood cell count Using this definition, the blood packaged in the neutrophil's primary granules. Genetic count to define neutropenia varies by age and race. In and cellular evidence is persuasive that mutations in children 1 month to 10 years of age, neutropenia is ELA2 cause sporadic and autosomal dominant SCN. The 2 SEC T I 0 N1 DISEASES OF HEMATOPOIETIC CELL PRODUCTION cause for the autosomal recessive cases is still unknown, immunoglobulins, 17,18 or granulocyte-macrophage In autosomal dominant SCN, the same colony stimulating factor 19 are of little benefit The role mutation is found in all affected family members but not of CCSF in the treatment of the congenital in normal relatives. 6 In a very informative case, the father is summarized in Table 13-3, The effectiveness of a patient with typical SCK showed mosaic phylactic G-CSF was established in a randomized, con­ of the same ELA2 mutation; half of his somatic trolled clinical trial. 20 In this study, the median G-CSF Wined the mutant gene, but the mutant was vir­ dose for SCN was approximately 5Jlg/kg/day; at tually absent in circulating neutrophils. In this natural this dose, G-CSF was increased by 5-10Jlg/kg/day every observation, neutrophils expressing the abnormal gene 14 days to achieve a neutrophil count greater than 1000 appeared to be destroyed in the marrow before cells/JlL. Currently, dosages higher than 50-100Jlg/ the circulation,7 fIuman promyelocytic leukemia kg/day are generally not recommended because of such as HL-60 cells, which express the neutrophil the low likelihood of benefit and the volume of drug 8 esterase mutants, exhibit accelerated apoptosis. Accel­ required, 3,21 Adverse effects are generally mild, primarily erated apoptosis may be mediated through altered of transient headache and bone pain. 20 expression of Bcl-2 proapoptotic factors, which appear Splenomegaly, osteoporosis, vasculitis, rashes, arthralgia, to be normalized with the administration of granulocyte and hematuria are infrequent adverse events. 22 Allogenic colony-stimulating factor CG-CSF). 9 Several other muta­ hematopoietic stem cell transplantation is the only estab­ tions have been associated with SCN, but their causal role lished alternative treatment for patients refractory to is uncertain. G-CSF receptor mutations, which have been G-CSF. reported in a few cases, were probably acquired muta­ SCN patients are at risk of developing myelodyspJas­ tions during evolution to acute myelogenous leukemia tic syndrome CMDS) and A\llL, a risk recognized before (AMi). 8,10 A mutation in CFII has been reported in one the of G-CSF. In a population of SCN patient child. d transformation to AML or MDS occurred in about 2% per year. 24 The risk appears to be higher for with more severe disease, as reflected by Clinical Features and Diagnosis of higher doses of G-CSF. 6 Monitoring clinical evaluations, blood counts, and an In addition to severe neutropenia, SCN patients usually have monocytOSis, thrombocytosis, and a mild normo­ marrow examination is recommended to normochromic, or hypochromic anemia. The bone changes and chromosomal abnormali­ ties, the acquisition of monosomy 7. Ras and marrow characteristically shows "arrest" of neutrophil G-CSF receptor mutations also have been linked to malig­ development at the promyelocyte and myelocyte stage, nant transformation. 22 Survival after hematopoietic stem although some samples show many maturing band and cell transplantation is more favorable if patients do not neutrophils, particularly in response to infec­ tions, The cellularity of the bone marrow is normal or have MDS/AML; transplantation should be considered in patients transformation in their bone with a reduced myeloid-to-erythroid ratiO, marrow. normal megakaryocytes, and occasional eosinophilia 3 Anemia and thrombocytOSiS are probably due to chronic inflammation; monocytosis may also reflect CYCLIC NEUTROPENIA growth factor stimulation of the neutrophil-monocyte lineage. At diagnosis, tests for anti neutrophil antibodies Cyclic neutropenia usually with recurring and chromosomal abnormalities are negative,3 Tests for episodes of fever, mouth ulcers, pharyngitis, and lym­ ELA2 mutations may be helpful but are still largely a phadenopathy every 3 which usually resolve research nr'..... r'~r1' spontaneously over about 5-7 days. In 1910, Leale Patients with SCK typically have recurrent fevers, reported the first case in a 19-month-old boy.25 CN and skin, respiratory, and perirec­ occurs sporadically or autosomal dominant inheri­ tissue abscesses in the liver and lungs tance; the estimated is 0.5-1 per 1 million with bacteremias are not uncommon, and these infec­ births, 26 tions may become life-threatening. Common pathogens include aureus, Escherichia and Pseudomonas Until recently, SCN was Pathophysiology often fatal as a result infections in early childhood, despite prompt and antibiotic therapy. Prior Mutations of ~he gene for NE were originally to the availability of the mortality by the age of implicated in autosomal dominant and sporadic forms of 2 years was estimated at 42%. Cl'\ prior to the discovery of the same associa­ tion with SCN, ELA2 mutations predominantly involve exon 4 at its junction with intron 4 27 In Treatment and Prognosis both SCN and CN, the neutrophil are sub~ jected to accelerated apoptosis) marrow produc­ The availability of G-CSF has markedly changed the tion of neutrophils ineffective, The loci of the mutations outlook for SCN Almost all patients respond to predicted that they affect function of the active site of the G-CSF with in their quality of life, lZ By enzyme binding to its substrates or to natural inhibitors, 4 contrast, corticosteroids, lithium, 15.16 intravenous 1 ) f () I', CHAPTER 13 CONGENITAL NEUTROPENIA 3 No abnormality of the gene for the GCSF receptor or MYELOKATHE.XIS AND WHIM SYNDROME other genes has been documented in well-characterized cases of CN. Myelokathexis term for retention of neutrophils in the bone marrow) is a rare congenital disorder characterized by severe neutropenia and lymphocytopenia, first Clinical Features and Diagnosis described by Zuezler and by Krill and colleagues in 1964,36,37 White blood cell counts are usually less than In most cases, neutrophil nadirs occur every 19~21 1000 cells!~L, and neutrophil counts less than 500 days, but some long and shorter cycles are reported, cellS/ilL. The neutrophils in the blood and marrow have ranging from 11 to 52 days. 29 Neutrophil counts typically very pyknotic nuclei, a distinctive if not entirely diag­ fall to zero at their nadir an.. d.... d.o.. n.. o...t.... i.n.. crease ~200 nostic feature of this disorder, Neutropenia associated cells/~L for 3~5 days; peaks are,gener,!-jJ,y les~OOO with wafts, hypogammagiobulinemia, infections, and cells/~L. The !Il0nocytecounts also cycle, rising as the myelokathexis constitute the WHIM syndrome. Both neutrophlIs . fall; platelets, eosinophils, lymphocytes, myelokathexis and WHIM syndrome have autosomal and reticulocytes can oscillate in a pattern of "cyclic dominant inheritance,38 although sporadic cases have hematopoeisis" 29 (Fig.
Recommended publications
  • Neutropenia Fact Sheet
    Neutropenia in Barth Syndrome i ii (Chronic, Cyclic or Intermittent) What problems can Neutropenia cause? Neutrophils are the main white blood cell for fighting or preventing bacterial or fungal infections. They may be referred to as polymorphonuclear cells (polys or PMNs), white cells with segmented nuclei (segs), or neutrophils in the complete blood cell count (CBC) report. Immature neutrophils are referred to as bands. When someone is neutropenic (an abnormally low level of neutrophils in the blood), the risk of infection increases. The absolute neutrophil count (ANC) is a measure of the total number of neutrophils present in the blood. When the ANC is less than 1,000, the risk of infection increases. Most infections occur in the ears, skin or throat and to a lesser extent, the chest. These infections can be very serious and may require antibiotics to clear infections. When someone with Barth syndrome is neutropenic his defenses are weakened, he is likely to become seriously ill more quickly than someone with a normal neutrophil count. Tips: • No rectal temperatures as any break in the skin can lead to an infection. • If the individual has a temperature > 100.4° F (38° C) or has infectious symptoms, the primary physician or hematologist should be notified. The individual may need to be seen. • If the individual has a temperature of 100.4° F (38° C) – 100.5° F (38.05° C)> 8 hours or a temperature > 101.5° F (38.61° C), an immediate examination by the physician is warranted. Some or all of the following studies may be ordered: CBC with differential and ANC Urinalysis Blood, urine, and other appropriate cultures C-Reactive Protein Echocardiogram if warranted • The physician may suggest antibiotics (and G-CSF if the ANC is low) for common infections such as otitis media, stomatitis.
    [Show full text]
  • WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure
    Journal of Clinical Immunology (2019) 39:532–556 https://doi.org/10.1007/s10875-019-00665-w CME REVIEW WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure Lauren E. Heusinkveld1,2 & Shamik Majumdar1 & Ji-Liang Gao1 & David H. McDermott1 & Philip M. Murphy1 Received: 22 April 2019 /Accepted: 26 June 2019 /Published online: 16 July 2019 # This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019 Abstract WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lympho- penia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions. Keywords Chemokine . CXCL12 . CXCR4 . CXCR2 . myelokathexis . human papillomavirus . plerixafor Historical Background [M:E] ratio with a “shift to the right”); and (3) numerous dysmorphic bone marrow neutrophils having cytoplasmic Myelokathexis was first described as a new type of severe hypervacuolation and hyperlobulated pyknotic nuclear lobes congenital neutropenia in 1964 by Krill and colleagues from connected by long thin strands (Fig.
    [Show full text]
  • THE PATHOLOGY of BONE MARROW FAILURE Roos Leguit, Jan G Van Den Tweel
    THE PATHOLOGY OF BONE MARROW FAILURE Roos Leguit, Jan G van den Tweel To cite this version: Roos Leguit, Jan G van den Tweel. THE PATHOLOGY OF BONE MARROW FAILURE. Histopathology, Wiley, 2010, 57 (5), pp.655. 10.1111/j.1365-2559.2010.03612.x. hal-00599534 HAL Id: hal-00599534 https://hal.archives-ouvertes.fr/hal-00599534 Submitted on 10 Jun 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Histopathology THE PATHOLOGY OF BONE MARROW FAILURE ForJournal: Histopathology Peer Review Manuscript ID: HISTOP-02-10-0090 Manuscript Type: Review Date Submitted by the 08-Feb-2010 Author: Complete List of Authors: Leguit, Roos; UMC utrecht, Pathology van den Tweel, Jan; UMC Utrecht, Pathology bone marrow, histopathology, myelodysplastic syndromes, Keywords: inherited bone marrow failure syndromes, trephine biopsy Published on behalf of the British Division of the International Academy of Pathology Page 1 of 40 Histopathology THE PATHOLOGY OF BONE MARROW FAILURE Roos J Leguit & Jan G van den Tweel University Medical Centre Utrecht Department of Pathology H4.312 Heidelberglaan 100 For Peer Review 3584 CX Utrecht The Netherlands Running title: Pathology of bone marrow failure Keywords: bone marrow, histopathology, myelodysplastic syndromes, inherited bone marrow failure syndromes, trephine biopsy.
    [Show full text]
  • Pediatric Oral Pathology. Soft Tissue and Periodontal Conditions
    PEDIATRIC ORAL HEALTH 0031-3955100 $15.00 + .OO PEDIATRIC ORAL PATHOLOGY Soft Tissue and Periodontal Conditions Jayne E. Delaney, DDS, MSD, and Martha Ann Keels, DDS, PhD Parents often are concerned with “lumps and bumps” that appear in the mouths of children. Pediatricians should be able to distinguish the normal clinical appearance of the intraoral tissues in children from gingivitis, periodontal abnormalities, and oral lesions. Recognizing early primary tooth mobility or early primary tooth loss is critical because these dental findings may be indicative of a severe underlying medical illness. Diagnostic criteria and .treatment recommendations are reviewed for many commonly encountered oral conditions. INTRAORAL SOFT-TISSUE ABNORMALITIES Congenital Lesions Ankyloglossia Ankyloglossia, or “tongue-tied,” is a common congenital condition characterized by an abnormally short lingual frenum and the inability to extend the tongue. The frenum may lengthen with growth to produce normal function. If the extent of the ankyloglossia is severe, speech may be affected, mandating speech therapy or surgical correction. If a child is able to extend his or her tongue sufficiently far to moisten the lower lip, then a frenectomy usually is not indicated (Fig. 1). From Private Practice, Waldorf, Maryland (JED); and Department of Pediatrics, Division of Pediatric Dentistry, Duke Children’s Hospital, Duke University Medical Center, Durham, North Carolina (MAK) ~~ ~ ~ ~ ~ ~ ~ PEDIATRIC CLINICS OF NORTH AMERICA VOLUME 47 * NUMBER 5 OCTOBER 2000 1125 1126 DELANEY & KEELS Figure 1. A, Short lingual frenum in a 4-year-old child. B, Child demonstrating the ability to lick his lower lip. Developmental Lesions Geographic Tongue Benign migratory glossitis, or geographic tongue, is a common finding during routine clinical examination of children.
    [Show full text]
  • My Beloved Neutrophil Dr Boxer 2014 Neutropenia Family Conference
    The Beloved Neutrophil: Its Function in Health and Disease Stem Cell Multipotent Progenitor Myeloid Lymphoid CMP IL-3, SCF, GM-CSF CLP Committed Progenitor MEP GMP GM-CSF, IL-3, SCF EPO TPO G-CSF M-CSF IL-5 IL-3 SCF RBC Platelet Neutrophil Monocyte/ Basophil B-cells Macrophage Eosinophil T-Cells Mast cell NK cells Mature Cell Dendritic cells PRODUCTION AND KINETICS OF NEUTROPHILS CELLS % CELLS TIME Bone Marrow: Myeloblast 1 7 - 9 Mitotic Promyelocyte 4 Days Myelocyte 16 Maturation/ Metamyelocyte 22 3 – 7 Storage Band 30 Days Seg 21 Vascular: Peripheral Blood Seg 2 6 – 12 hours 3 Marginating Pool Apoptosis and ? Tissue clearance by 0 – 3 macrophages days PHAGOCYTOSIS 1. Mobilization 2. Chemotaxis 3. Recognition (Opsonization) 4. Ingestion 5. Degranulation 6. Peroxidation 7. Killing and Digestion 8. Net formation Adhesion: β 2 Integrins ▪ Heterodimer of a and b chain ▪ Tight adhesion, migration, ingestion, co- stimulation of other PMN responses LFA-1 Mac-1 (CR3) p150,95 a2b2 a CD11a CD11b CD11c CD11d b CD18 CD18 CD18 CD18 Cells All PMN, Dendritic Mac, mono, leukocytes mono/mac, PMN, T cell LGL Ligands ICAMs ICAM-1 C3bi, ICAM-3, C3bi other other Fibrinogen other GRANULOCYTE CHEMOATTRACTANTS Chemoattractants Source Activators Lipids PAF Neutrophils C5a, LPS, FMLP Endothelium LTB4 Neutrophils FMLP, C5a, LPS Chemokines (a) IL-8 Monocytes, endothelium LPS, IL-1, TNF, IL-3 other cells Gro a, b, g Monocytes, endothelium IL-1, TNF other cells NAP-2 Activated platelets Platelet activation Others FMLP Bacteria C5a Activation of complement Other Important Receptors on PMNs ñ Pattern recognition receptors – Detect microbes - Toll receptor family - Mannose receptor - bGlucan receptor – fungal cell walls ñ Cytokine receptors – enhance PMN function - G-CSF, GM-CSF - TNF Receptor ñ Opsonin receptors – trigger phagocytosis - FcgRI, II, III - Complement receptors – ñ Mac1/CR3 (CD11b/CD18) – C3bi ñ CR-1 – C3b, C4b, C3bi, C1q, Mannose binding protein From JG Hirsch, J Exp Med 116:827, 1962, with permission.
    [Show full text]
  • Prevalence and Incidence of Rare Diseases: Bibliographic Data
    Number 1 | January 2019 Prevalence and incidence of rare diseases: Bibliographic data Prevalence, incidence or number of published cases listed by diseases (in alphabetical order) www.orpha.net www.orphadata.org If a range of national data is available, the average is Methodology calculated to estimate the worldwide or European prevalence or incidence. When a range of data sources is available, the most Orphanet carries out a systematic survey of literature in recent data source that meets a certain number of quality order to estimate the prevalence and incidence of rare criteria is favoured (registries, meta-analyses, diseases. This study aims to collect new data regarding population-based studies, large cohorts studies). point prevalence, birth prevalence and incidence, and to update already published data according to new For congenital diseases, the prevalence is estimated, so scientific studies or other available data. that: Prevalence = birth prevalence x (patient life This data is presented in the following reports published expectancy/general population life expectancy). biannually: When only incidence data is documented, the prevalence is estimated when possible, so that : • Prevalence, incidence or number of published cases listed by diseases (in alphabetical order); Prevalence = incidence x disease mean duration. • Diseases listed by decreasing prevalence, incidence When neither prevalence nor incidence data is available, or number of published cases; which is the case for very rare diseases, the number of cases or families documented in the medical literature is Data collection provided. A number of different sources are used : Limitations of the study • Registries (RARECARE, EUROCAT, etc) ; The prevalence and incidence data presented in this report are only estimations and cannot be considered to • National/international health institutes and agencies be absolutely correct.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • Oral Sequelae of Chronic Neutrophil Defects: Case Report of A
    Case Report Oral sequelaeof chronic neutrophil defects: case report of a child with glycogenstorage diseasetype lb Nancy Dougherty, DMDMary Ann Gataletto, DMD complex group of enzymereactions is respon- tion presently are inconclusive. Various etiologies of sible for the breakdownof the large glycogen neutropenia include abnormal maturation of neutro- A moleculeinto glucose, whichis used by the body phil precursors and reduced release of neutrophils from to maintain blood sugar and provide energy. The glyco- the bone marrow.It is unclear whether either of these is gen storage diseases are a group of inherited disorders responsible for the neutropenia seen in GSDtype lb. involving deficiencies of one or more of the enzymes The importance of transport of glucose into neutrophils necessary to store and metabolize glycogen. Glycogen for chemotaxis has been demonstrated, and this might storage disease (GSD)exists in a variety of forms, each well2 be the etiology for the neutrophil dysfunction. involving different enzyme systems of the glycogen The purpose of this paper is to present, via a report metabolic pathway. of a patient with GSDtype lb, the short- and long-term GSDtype lb is caused by a lack of glucose-6-phos- effects of a chronic neutrophil defect on the phatase (G6P) translocase. This prevents the transport periodontium and oral mucosa. of G6Pacross the endoplasmic reticulum.1 As a result, glycogen cannot be metabolized into glucose and is Casereport deposited in the liver. The modeof genetic transmis- Medicalhistory sion of GSDtype lb is autosomal recessive. It is ex- The patient was an African-American male diag- tremely rare, with an estimated incidence of less than 1 nosed with GSDtype lb at 3 months of age.
    [Show full text]
  • Neutropenia : an Analysis of the Risk Factors for Infection Steven Ira Rosenfeld Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1980 Neutropenia : an analysis of the risk factors for infection Steven Ira Rosenfeld Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Rosenfeld, Steven Ira, "Neutropenia : an analysis of the risk factors for infection" (1980). Yale Medicine Thesis Digital Library. 3087. http://elischolar.library.yale.edu/ymtdl/3087 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. NEUTROPENIA: AN ANALYSIS OF THE RISK FACTORS FOR INFECTION by Steven Ira Rosenfeld B.A. Johns Hopkins University 1976 A Thesis Submitted to The Yale University School of Medicine In Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine 1980 Med Li^> Ya ABSTRACT The risk factors for infection were evaluated retrospectively in 107 neutropenic patients without underlying malignancy or cyto¬ toxic drug therapy. Neutrophil count was an independent risk factor for infection, with the incidence of infection increasing as the neutrophil count decreased. The critical neutrophil count, below which the incidence of infection was significantly increased was 250/mnr*, (p<.001). Eighty five percent of the <250 group entered with, or developed infection. Additional risk factors for infection included increased duration of neutropenia, age less than 1 year old, male sex, hypogammaglobulinemia, and recent antibiotic therapy.
    [Show full text]
  • Sign In: Pemphigus.Org/Form
    3/27/2018 Pemphigus and Pemphigoid –The Unique Role of the Dental Professional Dr. Carol Anne Murdoch‐Kinch Sign In: pemphigus.org/form The International Pemphigus & Pemphigoid Foundation (IPPF) kindly asks all attendees to sign‐in using the link provided. The above sign‐in link is optional and NOT required to receive CE credits (if being offered). Information collected will be used by the IPPF. www.PutItOnYourRadar.org The IPPF Awareness Program is generously funded by the Sy Syms Foundation and the Unger Family. The International Pemphigus & Pemphigoid Foundation (IPPF) advises audience members of the risks of using limited knowledge gained from this course when in practice. VISION To find a cure for pemphigus and pemphigoid EARLY DIAGNOSIS AWARENESS PROGRAM It takes the average pemphigus / pemphigoid patient 5 healthcare providers and 10 months to obtain a correct diagnosis. Help us reduce diagnostic delays! 1 3/27/2018 PATIENT SUPPORT SERVICES • Physician Referral List • Peer Health Coaches • Patient Education Calls • Support Group Meetings • Quarterly Newsletter • Annual Patient Education Conference www.pemphigus.org RESOURCES FOR DENTAL PROFESSIONALS • CE courses • Patient speakers at dental schools • Educational materials • Comprehensive disease information www.PutItOnYourRadar.org PLEASE STOP BY THE IPPF EXHIBIT BOOTH #008 Meet a patient and learn more Thank You! 2 3/27/2018 Key Concepts • Oral lesions may be the first or only sign of vesiculobullous diseases, including pemphigus and pemphigoid: “First to show and last to go”
    [Show full text]
  • Patient Handbook 3-2-10
    ∑ UNDERSTANDING SEVERE CHRONIC NEUTROPENIA A Handbook for Patients and Their Families Written for the Severe Chronic Neutropenia International Registry By: Audrey Anna Bolyard, R.N., B.S. Laurence Boxer, M.D. Tammy Cottle Carole Edwards, R.G.N/R.S.C.N., BSc. Sally Kinsey, M.D. Peter Newburger, M.D. Beate Schwinzer, Ph.D. Cornelia Zeidler, M.D. Understanding Severe Chronic Neutropenia 1 A handbook for patients and their families Revised February 2010 ∑ Contents Page Introduction 3 How Blood is Formed 3 What is Neutropenia? 4 Overview: Diagnosis & Treatment of Severe Chronic Neutropenia 5 Risk of Myelodysplastic Syndrome and Leukemia 6 Risk of Osteopenia/Osteoporosis 7 Types of Severe Chronic Neutropenia 7 Severe Congenital Neutropenia 8 Cyclic Neutropenia 8 Shwachman-Diamond Syndrome 9 Metabolic disorders with neutropenia 10 Glycogen-Storage Disease Type 1b 10 Barth Syndrome 10 Idiopathic Neutropenia 10 Autoimmune Neutropenia 10 Other Conditions Associated with Neutropenia 11 Genetics of Severe Congenital Neutropenia 11 Diagnostic Tests Used in Severe Chronic Neutropenia 12 Blood Count Monitoring 12 Other Blood Tests 12 Bone Marrow Aspirate / Trephine Biopsy 12 Cytogenetic Evaluation 12 Investigations in Other Conditions 12 Treatment for Severe Chronic Neutropenia 13 Granulocyte-Colony Stimulating Factor (G-CSF) 14 Hematopoietic Stem Cell (Bone Marrow) Transplant 15 Other Treatments 15 Long Term Management of SCN 16 Bone Marrow Monitoring 17 Pregnancy 17 Psychosocial Issues 17 The Severe Chronic Neutropenia International Registry 18 Support Groups 20 Frequently Asked Questions and Answers 20 Information Form for Schools 24 Glossary 25 Understanding Severe Chronic Neutropenia 2 A handbook for patients and their families Revised February 2010 ∑ Introduction Severe chronic neutropenia (SCN) is the name given to a group of conditions in which neutropenia is the primary problem.
    [Show full text]
  • Whole-Exome Sequencing Identifies Causative Mutations in Families
    BASIC RESEARCH www.jasn.org Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract Amelie T. van der Ven,1 Dervla M. Connaughton,1 Hadas Ityel,1 Nina Mann,1 Makiko Nakayama,1 Jing Chen,1 Asaf Vivante,1 Daw-yang Hwang,1 Julian Schulz,1 Daniela A. Braun,1 Johanna Magdalena Schmidt,1 David Schapiro,1 Ronen Schneider,1 Jillian K. Warejko,1 Ankana Daga,1 Amar J. Majmundar,1 Weizhen Tan,1 Tilman Jobst-Schwan,1 Tobias Hermle,1 Eugen Widmeier,1 Shazia Ashraf,1 Ali Amar,1 Charlotte A. Hoogstraaten,1 Hannah Hugo,1 Thomas M. Kitzler,1 Franziska Kause,1 Caroline M. Kolvenbach,1 Rufeng Dai,1 Leslie Spaneas,1 Kassaundra Amann,1 Deborah R. Stein,1 Michelle A. Baum,1 Michael J.G. Somers,1 Nancy M. Rodig,1 Michael A. Ferguson,1 Avram Z. Traum,1 Ghaleb H. Daouk,1 Radovan Bogdanovic,2 Natasa Stajic,2 Neveen A. Soliman,3,4 Jameela A. Kari,5,6 Sherif El Desoky,5,6 Hanan M. Fathy,7 Danko Milosevic,8 Muna Al-Saffar,1,9 Hazem S. Awad,10 Loai A. Eid,10 Aravind Selvin,11 Prabha Senguttuvan,12 Simone Sanna-Cherchi,13 Heidi L. Rehm,14 Daniel G. MacArthur,14,15 Monkol Lek,14,15 Kristen M. Laricchia,15 Michael W. Wilson,15 Shrikant M. Mane,16 Richard P. Lifton,16,17 Richard S. Lee,18 Stuart B. Bauer,18 Weining Lu,19 Heiko M. Reutter ,20,21 Velibor Tasic,22 Shirlee Shril,1 and Friedhelm Hildebrandt1 Due to the number of contributing authors, the affiliations are listed at the end of this article.
    [Show full text]