Blueprint Genetics Comprehensive Hematology and Hereditary Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Blueprint Genetics Comprehensive Hematology and Hereditary Cancer Comprehensive Hematology and Hereditary Cancer Panel Test code: HE1401 Is a 348 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of hematological disorder with genetic predisposition to malignancies. This panel is designed to detect heritable germline mutations and should not be used for the detection of somatic mutations in tumor tissue. Is not recommended for patients suspected to have anemia due to alpha-thalassemia (HBA1 or HBA2). These genes are highly homologous reducing mutation detection rate due to challenges in variant call and difficult to detect mutation profile (deletions and gene-fusions within the homologous genes tandem in the human genome). Is not recommended for patients with a suspicion of severe Hemophilia A if the common inversions are not excluded by previous testing. An intron 22 inversion of the F8 gene is identified in 43%-45% individuals with severe hemophilia A and intron 1 inversion in 2%-5% (GeneReviews NBK1404; PMID:8275087, 8490618, 29296726, 27292088, 22282501, 11756167). This test does not detect reliably these inversions. Is not recommended for patients suspected to have anemia due to alpha-thalassemia (HBA1 or HBA2). These genes are highly homologous reducing mutation detection rate due to challenges in variant call and difficult to detect mutation profile (deletions and gene-fusions within the homologous genes tandem in the human genome). About Comprehensive Hematology and Hereditary Cancer Inherited hematological diseases are a group of blood disorders with variable clinical presentation. Many of them predispose to malignancies and for example patients with inherited bone marrow failure syndromes (Fanconi anemia) have a high risk of developing cancer, either leukemia or solid tumors. Genetic testing is the most effective way to identify individuals with inherited hematological diseases and a genetic predisposition to develop malignancies. Accurate genetic diagnosis enables personal cancer risk assessment and inherited genetic variant can be taken into account when planning the treatment and the follow-up of both unaffected and affected persons. In most of the cases, cancer mortality can be significantly reduced in high- risk individuals by regular surveillance and preventive strategies. Gene Set Description Genes in the Comprehensive Hematology and Hereditary Cancer Panel and their clinical significance Gene Associated phenotypes Inheritance ClinVar HGMD ABCA3 Interstitial lung disease, Surfactant metabolism dysfunction, AR 11 287 pulmonary ABCB7 Anemia, sideroblastic, and spinocerebellar ataxia XL 8 9 ABCG5 Sitosterolemia AR 13 42 ABCG8 Sitosterolemia AR 18 44 ACD Dyskeratosis congenita, autosomal dominant 6, Dyskeratosis AD/AR 2 8 congenita, autosomal recessive 7 ACTB* Baraitser-Winter syndrome AD 55 60 ACTN1 Bleeding disorder, platelet- AD 7 25 https://blueprintgenetics.com/ ADAMTS13 Schulman-Upshaw syndrome, Thrombotic thrombocytopenic purpura, AR 30 183 familial AIP Pituitary adenoma, familial isolated AD 53 110 AK1 Adenylate kinase deficiency, hemolytic anemia due to AR 8 10 AK2 Reticular dysgenesis AR 14 17 ALAS2 Anemia, sideroblastic, Protoporphyria, erythropoietic XL 27 103 ALK Neuroblastoma AD 31 15 AMN Megaloblastic anemia-1, Norwegian AR 29 34 ANK1 Spherocytosis AD/AR 20 105 ANKRD26 Thrombocytopenia AD 6 21 AP3B1 Hermansky-Pudlak syndrome AR 14 34 AP3D1 Hermansky-Pudlak syndrome 10 AR 1 4 APC Gardner syndrome, Desmoid disease, hereditary, Familial AD 773 1926 adenomatous polyposis ARPC1B Platelet abnormalities with eosinophilia and immune-mediated AR 2 4 inflammatory disease ATM Breast cancer, Ataxia-Telangiectasia AD/AR 1047 1109 ATR Cutaneous telangiectasia and cancer syndrome, Seckel syndrome AD/AR 10 33 ATRX Carpenter-Waziri syndrome, Alpha-thalassemia/mental retardation XL 65 165 syndrome, Holmes-Gang syndrome, Juberg-Marsidi syndrome, Smith- Fineman-Myers syndrome, Mental retardation-hypotonic facies syndrome AXIN2 Oligodontia-colorectal cancer syndrome, Oligondontia, isolated AD 19 18 BAP1 Tumor predisposition syndrome AD 74 113 BARD1 Breast cancer AD 159 114 BLM Bloom syndrome AR 152 119 BLOC1S3 Hermansky-Pudlak syndrome AR 2 4 BLOC1S6 Hermansky-Pudlak syndrome AR 1 2 BMPR1A* Polyposis, juvenile intestinal AD 110 140 BRAF* LEOPARD syndrome, Noonan syndrome, Cardiofaciocutaneous AD 134 65 syndrome BRCA1* Pancreatic cancer, Breast-ovarian cancer, familial AD 2997 2631 BRCA2 Fanconi anemia, Medulloblastoma, Glioma susceptibility, Pancreatic AD/AR 3369 2659 cancer, Wilms tumor, Breast-ovarian cancer, familial BRIP1 Fanconi anemia, Breast cancer AD/AR 238 189 https://blueprintgenetics.com/ BUB1B Mosaic variegated aneuploidy syndrome, Premature chromatid AD/AR 14 28 separation trait C15ORF41 Congenital dyserythropoietic anemia AR 3 3 CBL Noonan syndrome-like disorder with or without juvenile AD 24 43 myelomonocytic leukemia CD70 Primary immunodeficiency AR 4 CDAN1 Anemia, dyserythropoietic congenital AR 12 61 CDC42 Takenouchi-Kosaki syndrome, Noonan-syndrome like phenotype AD 11 9 CDC73 Carcinoma, parathyroid, Hyperparathyroidism, Hyperparathyroidism- AD 50 101 jaw tumor syndrome CDH1 CDH1-related cancer, Blepharocheilodontic syndrome 1 AD 178 242 CDK4 Melanoma, cutaneous malignant AD 4 14 CDKN1B Multiple endocrine neoplasia AD 13 20 CDKN1C Beckwith-Wiedemann syndrome, IMAGE syndrome AD 35 81 CDKN2A Melanoma, familial, Melanoma-pancreatic cancer syndrome AD 87 232 CEBPA Acute myeloid leukemia, familial AD 15 13 CEP57 Mosaic variegated aneuploidy syndrome AR 5 5 CHEK2* Li-Fraumeni syndrome AD/AR 275 197 CLCN7 Osteopetrosis AD/AR 15 98 CLPB 3-methylglutaconic aciduria with cataracts, neurologic involvement, AR 26 25 and neutropenia (MEGCANN) CSF2RA* Surfactant metabolism dysfunction, pulmonary XL 2 17 CSF3R Neutrophilia, hereditary AD 13 13 CTC1 Cerebroretinal microangiopathy with calcifications and cysts AR 21 33 CTSC Periodontitis, juvenile, Haim-Munk syndrome, Papillon-Lefevre AR 19 92 syndrome CUBN* Megaloblastic anemia-1, Finnish AR 42 53 CXCR4 Warts, hypogammaglobulinemia, infections, and myelokathexis AD 5 15 (WHIM) syndrome CYB5R3 Methemoglobinemia due to methemoglobin reductase deficiency AR 21 71 CYCS* Thrombocytopenia AD 2 3 CYLD Spiegler-Brooke syndrome, Trichoepithelioma, multiple, AD 34 106 Cylindromatosis DDB2 Xeroderma pigmentosum AR 4 17 https://blueprintgenetics.com/ DDX41 Familial myeloproliferative/lymphoproliferative neoplasms, multiple AD 9 21 types, susceptibility to DHFR* Megaloblastic anemia due to dihydrofolate reductase deficiency AR 2 5 DICER1* DICER1 syndrome AD 197 137 DIS3L2* Perlman syndrome AR 12 14 DKC1 Hoyeraal-Hreidarsson syndrome, Dyskeratosis congenita XL 48 74 DNAJC21 Bone marrow failure syndrome 3 AR 5 11 DNASE2 Primary immunodeficiency 2 DTNBP1 Hermansky-Pudlak syndrome AR 2 3 EFL1 Shwachman-Diamond syndrome 3 2 EGFR Lung cancer, familial, susceptibilty to, Inflammatory skin and bowel AD/AR 55 18 disease, neonatal, Acute myeloid leukemia, familial EGLN1* Hemoglobin, high altitude adapation AD 3 64 ELANE Neutropenia AD 43 217 EPAS1 Erthyrocytosis, familial 4 AD 3 30 EPB41 Ellipsocytosis 1 AR 6 12 EPB42 Spherocytosis AR 8 17 EPCAM Diarrhea 5, with tufting enteropathy, congenital, Colorectal cancer, AD/AR 38 80 hereditary nonpolyposis EPOR Erythrocytosis, familial, 1 AD 4 32 ERCC1 Cerebrooculofacioskeletal syndrome 4 AR 8 5 ERCC2 Xeroderma pigmentosum, Trichothiodystrophy, photosensitive, AR 26 98 Cerebrooculofacioskeletal syndrome 2 ERCC3 Xeroderma pigmentosum, Trichothiodystrophy, photosensitive AR 10 19 ERCC4 Fanconi anemia, Xeroderma pigmentosum, XFE progeroid syndrome AR 13 70 ERCC5 Xeroderma pigmentosum, Xeroderma pigmentosum/Cockayne AR 21 54 syndrome ERCC6L2 Bone marrow failure syndrome 2 AR 4 9 ETV6 Thrombocytopenia 5 AD 10 38 EXO1 Lynch syndrome AD/AR 1 14 EXT1 Multiple cartilagenious exostoses 1 AD 97 523 EXT2 Multiple cartilagenious exostoses 2 AD 45 250 EZH2 Weaver syndrome AD 29 41 https://blueprintgenetics.com/ F10 Factor X deficiency AR 15 155 F11 Factor XI deficiency AD/AR 77 271 F12 Angioedema, Factor XII deficiency AD/AR 7 53 F13A1 Factor XIIIA deficiency AR 20 180 F13B Factor XIIIB deficiency AR 4 18 F2 Thrombophilia due to thrombin defect, Prothrombin deficiency, AD/AR 14 66 congenital F5 Factor V deficiency, Thrombophilia due to activated protein C AD/AR 19 157 resistance F7 Factor VII deficiency AR 27 322 F8* Hemophilia A XL 296 3205 F9 Hemophilia B, Warfarin sensitivity, Thrombophilia, due to factor IX XL 117 1281 defect FADD Infections, recurrent, with encephalopathy, hepatic dysfunction, and AR 2 1 cardiovascular malformations FAM111B Hereditary Fibrosing Poikiloderma with Tendon Contracture, AD 7 7 Myopathy, and Pulmonary Fibrosis, Lung cancer, familial, susceptibilty to FANCA Fanconi anemia AR 191 677 FANCB Fanconi anemia XL 11 21 FANCC Fanconi anemia AR 94 64 FANCD2* Fanconi anemia AR 21 61 FANCE Fanconi anemia AR 4 17 FANCF Fanconia anemia AR 7 16 FANCG Fanconi anemia AR 16 92 FANCI Fanconi anemia AR 13 45 FANCL Fanconi anemia AR 13 24 FANCM Fanconi anemia AR 6 50 FAS Autoimmune lymphoproliferative syndrome AD/AR 31 133 FASLG Autoimmune lymphoproliferative syndrome, type IB AD 2 10 FGA Afibrinogenemia, congenital, Dysfibrinogenemia, congenital, AD/AR 10 144 Hypodysfibrinogenemia, congenital, Familial visceral amyloidosis FGB Afibrinogenemia, congenital, Dysfibrinogenemia, congenital, AD/AR 6 92 Hypodysfibrinogenemia, congenital https://blueprintgenetics.com/ FGG Afibrinogenemia, congenital, Hypodysfibrinogenemia, AD/AR 7 127 Dysfibrinogenemia, congenital,
Recommended publications
  • Blueprint Genetics Hereditary Leukemia Panel
    Hereditary Leukemia Panel Test code: ON0101 Is a 41 gene panel that includes assessment of non-coding variants. Is ideal for patients with a personal history of a syndrome that confers an increased risk of leukemia or patients with a family history of a syndrome that confers an increased risk of leukemia. About Hereditary Leukemia An inherited predisposition to hematological malignancies, namely acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and bone marrow myelodysplastic syndrome (MDS) may be associated with syndromic features or occur as the principal clinical feature. MDSs and AMLs can occur in the context of syndromic bone marrow failure (eg. dyskeratosis congenita, Fanconi anemia). Other hereditary syndromes with an increased risk of leukemia include Li-Fraumeni syndrome (TP53), ataxia telangiectasia (ATM), Bloom syndrome (BLM), neurofibromatosis type 1 (NF1) and less frequently Noonan syndrome (PTPN11, CBL). Some reports have also shown an association of biallelic germline mutations in constitutional mismatch repair-deficiency syndrome genes, MLH1, MSH2, MSH6, and PMS2 with the development of ALL. Isolated hematological malignancies are associated with germline mutations in RUNX1 (familial platelet syndrome with predisposition to acute myelogenous leukemia), CEBPA (familial AML), GATA2 (GATA2-associated syndromes) and DDX41(DDX41 -related myeloid neoplasms). There is a rapidly expanding list of germline mutations associated with increased risks for myeloid malignancies and inherited predisposition to hematologic malignancies may be more common than has been thought. Many different genetic defects associated with the development of leukemia have been described but the common underlying mechanism is a dysfunctional DNA damage response. Recognition of an inherited cause provides a specific molecular diagnosis and helps to guide treatment, understand unique disease features, prognosis and other organ systems that may be involved, and identify others in the family who may be at risk.
    [Show full text]
  • WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure
    Journal of Clinical Immunology (2019) 39:532–556 https://doi.org/10.1007/s10875-019-00665-w CME REVIEW WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure Lauren E. Heusinkveld1,2 & Shamik Majumdar1 & Ji-Liang Gao1 & David H. McDermott1 & Philip M. Murphy1 Received: 22 April 2019 /Accepted: 26 June 2019 /Published online: 16 July 2019 # This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019 Abstract WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lympho- penia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions. Keywords Chemokine . CXCL12 . CXCR4 . CXCR2 . myelokathexis . human papillomavirus . plerixafor Historical Background [M:E] ratio with a “shift to the right”); and (3) numerous dysmorphic bone marrow neutrophils having cytoplasmic Myelokathexis was first described as a new type of severe hypervacuolation and hyperlobulated pyknotic nuclear lobes congenital neutropenia in 1964 by Krill and colleagues from connected by long thin strands (Fig.
    [Show full text]
  • Exostoses, Enchondromatosis and Metachondromatosis; Diagnosis and Management
    Acta Orthop. Belg., 2016, 82, 102-105 ORIGINAL STUDY Exostoses, enchondromatosis and metachondromatosis; diagnosis and management John MCFARLANE, Tim KNIGHT, Anubha SINHA, Trevor COLE, Nigel KIELY, Rob FREEMAN From the Department of Orthopaedics, Robert Jones Agnes Hunt Hospital, Oswestry, UK We describe a 5 years old girl who presented to the region of long bones and are composed of a carti- multidisciplinary skeletal dysplasia clinic following lage lump outside the bone which may be peduncu- excision of two bony lumps from her fingers. Based on lated or sessile, the knee is the most common clinical examination, radiolographs and histological site (1,10). An isolated exostosis is a common inci- results an initial diagnosis of hereditary multiple dental finding rarely requiring treatment. Disorders exostosis (HME) was made. Four years later she developed further lumps which had the radiological associated with exostoses include HME, Langer- appearance of enchondromas. The appearance of Giedion syndrome, Gardner syndrome and meta- both exostoses and enchondromas suggested a possi- chondromatosis. ble diagnosis of metachondromatosis. Genetic testing Enchondroma are the second most common be- revealed a splice site mutation at the end of exon 11 on nign bone tumour characterised by the formation of the PTPN11 gene, confirming the diagnosis of meta- hyaline cartilage in the medulla of a bone. It occurs chondromatosis. While both single or multiple exosto- most frequently in the hand (60%) and then the feet. ses and enchondromas occur relatively commonly on The typical radiological features are of a well- their own, the appearance of multiple exostoses and defined lucent defect with endosteal scalloping and enchondromas together is rare and should raise the differential diagnosis of metachondromatosis.
    [Show full text]
  • Conserved and Novel Properties of Clathrin-Mediated Endocytosis in Dictyostelium Discoideum" (2012)
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2012 Conserved and Novel Properties of Clathrin- Mediated Endocytosis in Dictyostelium Discoideum Laura Macro Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Macro, Laura, "Conserved and Novel Properties of Clathrin-Mediated Endocytosis in Dictyostelium Discoideum" (2012). Student Theses and Dissertations. Paper 163. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. CONSERVED AND NOVEL PROPERTIES OF CLATHRIN- MEDIATED ENDOCYTOSIS IN DICTYOSTELIUM DISCOIDEUM A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Laura Macro June 2012 © Copyright by Laura Macro 2012 CONSERVED AND NOVEL PROPERTIES OF CLATHRIN- MEDIATED ENDOCYTOSIS IN DICTYOSTELIUM DISCOIDEUM Laura Macro, Ph.D. The Rockefeller University 2012 The protein clathrin mediates one of the major pathways of endocytosis from the extracellular milieu and plasma membrane. Clathrin functions with a network of interacting accessory proteins, one of which is the adaptor complex AP-2, to co-ordinate vesicle formation. Disruption of genes involved in clathrin-mediated endocytosis causes embryonic lethality in multicellular animals suggesting that clathrin-mediated endocytosis is a fundamental cellular process. However, loss of clathrin-mediated endocytosis genes in single cell eukaryotes, such as S.cerevisiae (yeast), does not cause lethality, suggesting that clathrin may convey specific advantages for multicellularity.
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Generalized Hypertrichosis
    Letters to the Editor case of female. Ambras syndrome is a type of universal Generalized hypertrichosis affecting the vellus hair, where there is uniform overgrowth of hair over the face and external hypertrichosis ear with or without dysmorphic facies.[3] Patients with Gingival fi bromaatosis also have generalized hypertrichosis Sir, especially on the face.[4] Congenital hypertrichosis can A 4-year-old girl born out of non-consanguinous marriage occur due to fetal alcohol syndrome and fetal hydentoin presented with generalized increase in body hair noticed syndrome.[5] Prepubertal hypertrichosis is seen in otherwise since birth. None of the other family members were healthy infants and children. There is involvement of affected. Hair was pigmented and soft suggesting vellus hair. face back and extremities Distribution of hair shows an There was generalized increase in body hair predominantly inverted fi r-tree pattern on the back. More commonly seen affecting the back of trunk arms and legs [Figures 1 and 2]. in Mediterranean and South Asian descendants.[6] There is Face was relatively spared except for fore head. Palms and soles were spared. Scalp hair was normal. Teeth and nail usually no hormonal alterations. Various genodermatosis were normal. There was no gingival hypertrophy. No other associated with hypertrichosis as the main or secondary skeletal or systemic abnormalities were detected clinically. diagnostic symptom are: Routine blood investigations were normal. Hormonal Lipoatrophy (Lawrernce Seip syndrome) study was within normal limit for her age. With this Cornelia de Lange syndrome clinical picture of generalized hypertrichosis with no other Craniofacial dysostosis associated anomalies a diagnosis of universal hypertrichosis Winchester syndrome was made.
    [Show full text]
  • Hereditary Spherocytosis: Clinical Features
    Title Overview: Hereditary Hematological Disorders of red cell shape. Disorders Red cell Enzyme disorders Disorders of Hemoglobin Inherited bleeding disorders- platelet disorders, coagulation factor Anthea Greenway MBBS FRACP FRCPA Visiting Associate deficiencies Division of Pediatric Hematology-Oncology Duke University Health Service Inherited Thrombophilia Hereditary Disorders of red cell Disorders of red cell shape (cytoskeleton): cytoskeleton: • Mutations of 5 proteins connect cytoskeleton of red cell to red cell membrane • Hereditary Spherocytosis- sphere – Spectrin (composed of alpha, beta heterodimers) –Ankyrin • Hereditary Elliptocytosis-ellipse, elongated forms – Pallidin (band 4.2) – Band 4.1 (protein 4.1) • Hereditary Pyropoikilocytosis-bizarre red cell forms – Band 3 protein (the anion exchanger, AE1) – RhAG (the Rh-associated glycoprotein) Normal red blood cell- discoid, with membrane flexibility Hereditary Spherocytosis: Clinical features: • Most common hereditary hemolytic disorder (red cell • Neonatal jaundice- severe (phototherapy), +/- anaemia membrane) • Hemolytic anemia- moderate in 60-75% cases • Mutations of one of 5 genes (chromosome 8) for • Severe hemolytic anaemia in 5% (AR, parents ASx) cytoskeletal proteins, overall effect is spectrin • fatigue, jaundice, dark urine deficiency, severity dependant on spectrin deficiency • SplenomegalSplenomegaly • 200-300:million births, most common in Northern • Chronic complications- growth impairment, gallstones European countries • Often follows clinical course of affected
    [Show full text]
  • MICHIGAN BIRTH DEFECTS REGISTRY Cytogenetics Laboratory Reporting Instructions 2002
    MICHIGAN BIRTH DEFECTS REGISTRY Cytogenetics Laboratory Reporting Instructions 2002 Michigan Department of Community Health Community Public Health Agency and Center for Health Statistics 3423 N. Martin Luther King Jr. Blvd. P. O. Box 30691 Lansing, Michigan 48909 Michigan Department of Community Health James K. Haveman, Jr., Director B-274a (March, 2002) Authority: P.A. 236 of 1988 BIRTH DEFECTS REGISTRY MICHIGAN DEPARTMENT OF COMMUNITY HEALTH BIRTH DEFECTS REGISTRY STAFF The Michigan Birth Defects Registry staff prepared this manual to provide the information needed to submit reports. The manual contains copies of the legislation mandating the Registry, the Rules for reporting birth defects, information about reportable and non reportable birth defects, and methods of reporting. Changes in the manual will be sent to each hospital contact to assist in complete and accurate reporting. We are interested in your comments about the manual and any suggestions about information you would like to receive. The Michigan Birth Defects Registry is located in the Office of the State Registrar and Division of Health Statistics. Registry staff can be reached at the following address: Michigan Birth Defects Registry 3423 N. Martin Luther King Jr. Blvd. P.O. Box 30691 Lansing MI 48909 Telephone number (517) 335-8678 FAX (517) 335-9513 FOR ASSISTANCE WITH SPECIFIC QUESTIONS PLEASE CONTACT Glenn E. Copeland (517) 335-8677 Cytogenetics Laboratory Reporting Instructions I. INTRODUCTION This manual provides detailed instructions on the proper reporting of diagnosed birth defects by cytogenetics laboratories. A report is required from cytogenetics laboratories whenever a reportable condition is diagnosed for patients under the age of two years.
    [Show full text]
  • Dyskeratosis Congenita Precision Panel Overview Indications Clinical
    Dyskeratosis Congenita Precision Panel Overview Dyskeratosis Congenita (DKC) is a rare, progressive bone marrow failure syndrome characterized by reticulated skin hyperpigmentation, nail dystrophy and oral leukoplakia. Patients usually present with symptoms of skin hyperpigmentation and nail changes during the first decade of life. It is caused by germline mutations in genes regulating telomere maintenance, resulting in very short telomeres. DKC is a genetically heterogeneous with X-linked recessive form being the most common, autosomal dominant and autosomal recessive subtypes based on different patters of inheritance. Early mortality is associated with bone marrow failure, infections, lung and pulmonary complications as well as malignancy. The Igenomix Dyskeratosis Congenita Precision Panel can be used for an accurate and directed diagnosis as well as differential diagnosis of reticulate pigmentary disorders ultimately leading to a better management and prognosis of the disease. It provides a comprehensive analysis of the genes involved in this disease using next-generation sequencing (NGS) to fully understand the spectrum of relevant genes involved. Indications The Igenomix Dyskeratosis Congenita Precision Panel is used for patients with a clinical diagnosis or suspicion with or without the following symptoms: ‐ Abnormal skin pigmentation (tan-to-gray hyperpigmented or hypopigmented macules and patches) ‐ Nail dystrophy ‐ Skin atrophy and telangiectasia ‐ Alopecia of the skin, eyebrows and eyelashes ‐ Mucosal leukoplakia ‐ Bone marrow failure ‐ Dental manifestations Clinical Utility The clinical utility of this panel is: ‐ The genetic and molecular confirmation for an accurate clinical diagnosis of a symptomatic patient. 1 ‐ Early initiation of treatment involving a multidisciplinary team in the form of hematopoietic stem cell transplantation as well as medical care to prevent complications and early surveillance of malignancy.
    [Show full text]
  • Targeted Disruption of Shp2 in Chondrocytes Leads to Metachondromatosis with Multiple Cartilaginous Protrusions
    ORIGINAL ARTICLE JBMR Targeted Disruption of Shp2 in Chondrocytes Leads to Metachondromatosis With Multiple Cartilaginous Protrusions Harry KW Kim,1,2 Gen‐Sheng Feng,3 Di Chen,4 Philip D King,5 and Nobuhiro Kamiya1,2 1Texas Scottish Rite Hospital for Children, Dallas, TX, USA 2Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA 3Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA 4Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA 5Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA ABSTRACT Metachondromatosis is a benign bone disease predominantly observed in the hands and feet of children or young adults demonstrating two different manifestations: a cartilage‐capped bony outgrowth on the surface of the bone called exostosis and ectopic cartilaginous nodules inside the bone called enchondroma. Recently, it has been reported that loss‐of‐function mutations of the SHP2 gene, which encodes the SHP2 protein tyrosine phosphatase, are associated with metachondromatosis. The purpose of this study was to investigate the role of SHP2 in postnatal cartilage development, which is largely unknown. We disrupted Shp2 during the postnatal stage of mouse development in a chondrocyte‐specific manner using a tamoxifen‐inducible system. We found tumor‐like nodules on the hands and feet within a month after the initial induction. The SHP2‐deficient mice demonstrated an exostosis‐like and enchondroma‐like phenotype in multiple bones of the hands, feet, and ribs as assessed by X‐ray and micro‐computed tomography (CT). Histological assessment revealed the disorganization of the growth plate cartilage, a cartilaginous protrusion from the epiphyseal bone, and ectopic cartilage nodules within the bones, which is consistent with the pathological features of metachondromatosis in humans (ie, both exostosis and enchondroma).
    [Show full text]
  • Prevalence and Incidence of Rare Diseases: Bibliographic Data
    Number 1 | January 2019 Prevalence and incidence of rare diseases: Bibliographic data Prevalence, incidence or number of published cases listed by diseases (in alphabetical order) www.orpha.net www.orphadata.org If a range of national data is available, the average is Methodology calculated to estimate the worldwide or European prevalence or incidence. When a range of data sources is available, the most Orphanet carries out a systematic survey of literature in recent data source that meets a certain number of quality order to estimate the prevalence and incidence of rare criteria is favoured (registries, meta-analyses, diseases. This study aims to collect new data regarding population-based studies, large cohorts studies). point prevalence, birth prevalence and incidence, and to update already published data according to new For congenital diseases, the prevalence is estimated, so scientific studies or other available data. that: Prevalence = birth prevalence x (patient life This data is presented in the following reports published expectancy/general population life expectancy). biannually: When only incidence data is documented, the prevalence is estimated when possible, so that : • Prevalence, incidence or number of published cases listed by diseases (in alphabetical order); Prevalence = incidence x disease mean duration. • Diseases listed by decreasing prevalence, incidence When neither prevalence nor incidence data is available, or number of published cases; which is the case for very rare diseases, the number of cases or families documented in the medical literature is Data collection provided. A number of different sources are used : Limitations of the study • Registries (RARECARE, EUROCAT, etc) ; The prevalence and incidence data presented in this report are only estimations and cannot be considered to • National/international health institutes and agencies be absolutely correct.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]