COPENHAGEN CONSENSUS ON CLIMATE An Analysis of Climate Engineering as a Response to Climate Change J Eric Bickel & Lee Lane COPENHAGEN CONSENSUS ON CLIMATE An Analysis of Climate Engineering as a Response to Climate Change J Eric Bickel* & Lee Lane ** *Graduate Program in Operations Research The Center for International Energy and Environmental Policy The University of Texas at Austin **American Enterprise Institute for Public Policy Research Operations Research and Industrial Engineering, The University of Texas, Austin, Texas, 78712-0292, Tel: +1 512.232.8316, Fax: 512.232.1489,
[email protected] American Enterprise Institute for Public Policy Research, 1150 Seventeenth Street, N.W., Washington, DC 20036, Tel: +1 202.862.5948, Fax: 202.862.5924,
[email protected] Acknowledgements: The authors gratefully acknowledge Ken Caldeira and Lowell Wood for helpful discussions regarding the structure of a research and development program. The authors also thank Christian Bjørnskov, Roger Pielke, Jr., Anne E. Smith, and Vernon Smith for careful and challenging reviews. Finally, authors acknowledge the valuable assistance of Dan Fichtler in preparing this report. Copenhagen Consensus Center Copenhagen Business School Solbjerg Plads 3 DK-2000 Frederiksberg Denmark +45 3815 2255
[email protected] www.copenhagenconsensus.com COPENHAGEN CONSENSUS ON CLIMATE PREFACE ABSTRACT This paper offers a preliminary and exploratory assessment of the potential benefits and costs of climate engineering (CE). We examine two families of CE technologies, solar radiation management (SRM) and air capture (AC), under three emissions control environments: no controls, optimal abatement, and limiting temperature change to 2°C. Our analysis suggests that, today, SRM offers larger net benefits than AC, but that both deserve to be investigated further.