Isotope Ratio Mass Spectrometry in Forensic Science Applications T ⁎ Mayara P.V

Total Page:16

File Type:pdf, Size:1020Kb

Isotope Ratio Mass Spectrometry in Forensic Science Applications T ⁎ Mayara P.V Forensic Chemistry 13 (2019) 100154 Contents lists available at ScienceDirect Forensic Chemistry journal homepage: www.elsevier.com/locate/forc Isotope ratio mass spectrometry in forensic science applications T ⁎ Mayara P.V. Matosa, Glen P. Jacksonb,c, a Department of Biology, West Virginia University, Morgantown, WV, United States b Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, United States c C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States HIGHLIGHTS • Review of forensic applications of isotope ratio mass spectrometry publications since 2009. • Includes details on good practices for calibration, quality assurance and uncertainty assessments and reporting. • Review is organized into 10 different forensic science disciplines. ABSTRACT This review highlights advances in the application of isotope ratio mass spectrometry (IRMS) to materials of interest to the forensic community. We give special attention to the natural abundance differences in the stable isotopes of carbon, nitrogen, hydrogen and oxygen because they are the most abundant andinformative elements in typical forensic casework. We also present some of the recent developments in normalization, error reporting and data analysis, which together provide a more scientific and robust foundation for admissibility in court. The review focusses on research published in the last decade and is organized into 10majorsections, including human provenancing, wildlife forensics, environmental forensics, seized drugs, ignitable liquids, explosives, food forensics, poisoning, questioned docu- ments and miscellaneous applications. 1. Introduction IRMS to forensic casework. FIRMS has been organizing triennial con- ferences, providing forensic practitioner approvals, conducting inter- The ability to unravel the source of chemically indistinguishable laboratory proficiency tests [2,14], presenting guidance on suitable substances has made isotope ratio mass spectrometry (IRMS) an indis- reference materials (RMs), and offering a “Good Practice Guide for pensable tool in a variety of scientific disciplines, and especially in IRMS” (GPG) to assist practitioners with the essential principles of the forensic science [1–3]. There are many excellent reviews and monologs instrument operation, quality assurance, troubleshooting and data on the theory, development, and application of stable isotope analysis management [15]. The FIRMS Network often publishes a special issue (SIA) in different forensic science areas of study [4–13]. Herein, we do in an analytical or forensic science journal following each triennial not attempt to be so comprehensive. Instead, we focus on the most conference, and these special editions are a rich source of forensically- recent, novel and impactful forensic applications, including new aspects relevant IRMS literature for anyone interested in the topic. of data analysis and reporting. In the last decade, IRMS, in combination Relating to the FIRMS Network, Carter and Fry [16] conducted a with improved chromatographic techniques, has provided advances in series of inter-laboratory tests within FIRMS Network members to first diverse areas of forensic science, including sample preparation techni- assess the variance, quality control and quality assurance protocols of ques that have enabled more reliable or meaningful discrimination different laboratories, and then to guide improvements in there- between samples. The review is organized into ten major topical areas producibility of measurements between laboratories. Problems related of forensic interest. Most of the citations are for applications that in- to homogeneity in sample preparation, choice of reference materials volve source provenance and sample classification, but some articles and internal standards, as well as data reporting relative to delta (δ) report on better understanding the fractionation of isotopes within or scale, are among the identified deficiencies that required improvements between certain substrates. to make IRMS results fit-for-purpose. Only a minority of labs were Since its foundation in 2002, the Forensic Isotope Ratio Mass outside the expected range of the results. More recently, another inter- Spectrometry Network (FIRMS) has spearheaded the application of laboratory assessment was performed to compare the bulk isotope ⁎ Corresponding author at: Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, United States. E-mail address: [email protected] (G.P. Jackson). https://doi.org/10.1016/j.forc.2019.100154 Received 28 January 2019; Received in revised form 3 March 2019; Accepted 3 March 2019 Available online 06 March 2019 2468-1709/ © 2019 Elsevier B.V. All rights reserved. M.P.V. Matos and G.P. Jackson Forensic Chemistry 13 (2019) 100154 analysis of honey coming from diverse metrological institutes [17]. The lead, such as insight into a person’s geographic origin or travel history. results derived from forensic stable isotope laboratories within the Assisting such investigations, many IRMS studies have examined the FIRMS Network [18], and all the participating laboratories, provided relationship between the isotopic composition of human tissues and the δ13C values for bulk honey that were within an acceptable range. The geographic origin, health status or dietary interventions of the subjects. method by which each laboratory calculated and reported their mea- Such studies are useful for both paleo-archeological purposes and surement uncertainty was a notable point of discussion, however, be- modern law enforcement investigations because both applications re- cause some laboratories report standard deviations instead of expanded quire the prediction of geographic origin of unidentified human re- measurement uncertainty, such as the 95% confidence interval. To mains [10,11,44–46]. align with international standards, the use of an expanded uncertainty A critical factor for strong geo-location inference is the establish- instead of a standard deviation is recommended for reported results. ment of reliable and high-resolution spatial maps for the precipitation To assist practitioners in establishing expanding uncertainties, Dunn and groundwater values for δ2H and δ18O [47,48]. Such isotope land- and coworkers [19] have suggested a simple and straightforward im- scapes, also known as Isoscapes [49], provide the framework for spa- provement to the Kragten spreadsheet published in the GPG [15], tiotemporal movement of humans and other organisms [2,47,50]. In which complements the existing approaches and guidelines used for 2014, δ2H and δ18O measurements of 349 US tap water samples were delta scale [20]. The new spreadsheet is quite practical, and it combines made available in the largest public dataset to date. The samples in- the different sources of isotope uncertainty to multiple samples inone cluded a broad geographic sampling and seasonal sampling [51]. Dr. spreadsheet. Note that analytical results can include human errors, Gabriel Bowen, from the University of Utah, has made the spatial which are outside the random errors that are captured in uncertainty- variation metadata for water isotopes fully accessible through the budgeting spreadsheets. All researchers and practitioners should take Water Isotopes Database (http://wateriso.utah.edu/waterisotopes/ preventative steps to promptly identify and mitigate sources of occa- index.html) and through a recently developed mobile phone applica- sional mistakes, thereby enhancing the reliability of any reported result tion called “wiSamples”. Publicly-available data like this are critical for [21,22]. the validation and acceptance of Isoscapes for modern human prove- One of the biggest challenges in IRMS is the selection and use of nancing, and some groups have successfully started using Isoscapes for appropriate—i.e. matrix matched—and well-characterized reference such applications [52]. As a word of caution to prospective researchers materials (RMs) [23]. The last few years have witnessed significant in this area, one has to be especially careful with the calibration and developments in RMs for calibration of δ2H, δ18O [24–27], δ13C, δ15N, interpretation of δ2H measurements of proteinaceous material like hair, and δ34S values [28–30]. One RM is a mixture of three glycine solutions muscle and feathers [53]. The number of exchangeable hydrogens that are recommended for establishing multiple-point calibration varies greatly depending on the protein composition, so it is critical to curves for the δ13C scale [29]. Another three sugar RMs (BEET-1, GALT- use matrix-matched standards to obtain accurate isotope ratio nor- 1 and FRUT-1) were developed for δ13C normalization of sugar-based malization [54]. materials, although it can also be used for other organic materials [31]. For geographical provenance determinations, biological samples The hair RMs USGS-42 and USGS-43 have been developed for mea- must be representative of the organism and be chemically robust to surements of hydrogen and oxygen stable isotopes, but are also ap- provide meaningful isotope ratios, which is why bone, teeth, hair and propriate for measurements involving C, N, and S of human and nails are especially useful matrices. Hair and fingernails have the added mammalian hair [28]. The use of (at least) a two-point calibration scale advantages that they store a chronological record of diet and health of a is now a minimum requirement for
Recommended publications
  • An Introduction to Isotopic Calculations John M
    An Introduction to Isotopic Calculations John M. Hayes ([email protected]) Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA, 30 September 2004 Abstract. These notes provide an introduction to: termed isotope effects. As a result of such effects, the • Methods for the expression of isotopic abundances, natural abundances of the stable isotopes of practically • Isotopic mass balances, and all elements involved in low-temperature geochemical • Isotope effects and their consequences in open and (< 200°C) and biological processes are not precisely con- closed systems. stant. Taking carbon as an example, the range of interest is roughly 0.00998 ≤ 13F ≤ 0.01121. Within that range, Notation. Absolute abundances of isotopes are com- differences as small as 0.00001 can provide information monly reported in terms of atom percent. For example, about the source of the carbon and about processes in 13 13 12 13 atom percent C = [ C/( C + C)]100 (1) which the carbon has participated. A closely related term is the fractional abundance The delta notation. Because the interesting isotopic 13 13 fractional abundance of C ≡ F differences between natural samples usually occur at and 13F = 13C/(12C + 13C) (2) beyond the third significant figure of the isotope ratio, it has become conventional to express isotopic abundances These variables deserve attention because they provide using a differential notation. To provide a concrete the only basis for perfectly accurate mass balances. example, it is far easier to say – and to remember – that Isotope ratios are also measures of the absolute abun- the isotope ratios of samples A and B differ by one part dance of isotopes; they are usually arranged so that the per thousand than to say that sample A has 0.3663 %15N more abundant isotope appears in the denominator and sample B has 0.3659 %15N.
    [Show full text]
  • Mass Spectrometry: Quadrupole Mass Filter
    Advanced Lab, Jan. 2008 Mass Spectrometry: Quadrupole Mass Filter The mass spectrometer is essentially an instrument which can be used to measure the mass, or more correctly the mass/charge ratio, of ionized atoms or other electrically charged particles. Mass spectrometers are now used in physics, geology, chemistry, biology and medicine to determine compositions, to measure isotopic ratios, for detecting leaks in vacuum systems, and in homeland security. Mass Spectrometer Designs The first mass spectrographs were invented almost 100 years ago, by A.J. Dempster, F.W. Aston and others, and have therefore been in continuous development over a very long period. However the principle of using electric and magnetic fields to accelerate and establish the trajectories of ions inside the spectrometer according to their mass/charge ratio is common to all the different designs. The following description of Dempster’s original mass spectrograph is a simple illustration of these physical principles: The magnetic sector spectrograph PUMP F DD S S3 1 r S2 Fig. 1: Dempster’s Mass Spectrograph (1918). Atoms/molecules are first ionized by electrons emitted from the hot filament (F) and then accelerated towards the entrance slit (S1). The ions then follow a semicircular trajectory established by the Lorentz force in a uniform magnetic field. The radius of the trajectory, r, is defined by three slits (S1, S2, and S3). Ions with this selected trajectory are then detected by the detector D. How the magnetic sector mass spectrograph works: Equating the Lorentz force with the centripetal force gives: qvB = mv2/r (1) where q is the charge on the ion (usually +e), B the magnetic field, m is the mass of the ion and r the radius of the ion trajectory.
    [Show full text]
  • Forensic Chemistry (4 Credit Hrs) Course Description: Surve
    CHEMISTRY 107 FORENSIC CHEMISTRY BULLETIN INFORMATION CHEM 107 – Forensic Chemistry (4 credit hrs) Course Description: Surveys chemical aspects of criminal investigation and adjudication including drug, arson, DNA, paint, and fiber identification. Note: Three lecture and three laboratory hours per week. SAMPLE COURSE OVERVIEW This course is an introduction to forensic chemistry intended for non-science majors. The course examines the many ways that chemical principles and scientific techniques are applied in modern crime investigation: the chemical characteristics of fuels and explosives as well as arson-related methods; other ways of identifying criminals through chemical processes, including blood and bodily fluid analyses, the chemical characteristics found in paints, fibers, hair, DNA, and fingerprinting; and the chemical properties of drug analysis. Through readings, lectures, demonstrations, homework, and laboratory exercises, students learn the fundamentals of forensic chemistry and its applications in crime investigation and adjudication. Student learning is evaluated through exams, assignments, participation in class discussions and activities, a case study project, and laboratory reports. ITEMIZED LEARNING OUTCOMES Upon successful completion of CHEM 107, students will be able to: 1. Demonstrate understanding of the scientific method. 2. Discuss the basic principles, concepts, terms, and scientific techniques associated with forensic chemistry. 3. Evaluate the relationships between science, technology, and society as these affect forensic issues. By specifically being able to: Identify steps of scientific method; describe and perform various forensic analytical techniques. Explain the characteristics of fuels and explosives, and their chemical evidence. Classify drugs, identify their chemical properties, and conduct their analysis. Describe the characteristics and properties of various materials such as hair, paint, polymers, fibers.
    [Show full text]
  • Good Practice Guide for Isotope Ratio Mass Spectrometry, FIRMS (2011)
    Good Practice Guide for Isotope Ratio Mass Spectrometry Good Practice Guide for Isotope Ratio Mass Spectrometry First Edition 2011 Editors Dr Jim Carter, UK Vicki Barwick, UK Contributors Dr Jim Carter, UK Dr Claire Lock, UK Acknowledgements Prof Wolfram Meier-Augenstein, UK This Guide has been produced by Dr Helen Kemp, UK members of the Steering Group of the Forensic Isotope Ratio Mass Dr Sabine Schneiders, Germany Spectrometry (FIRMS) Network. Dr Libby Stern, USA Acknowledgement of an individual does not indicate their agreement with Dr Gerard van der Peijl, Netherlands this Guide in its entirety. Production of this Guide was funded in part by the UK National Measurement System. This publication should be cited as: First edition 2011 J. F. Carter and V. J. Barwick (Eds), Good practice guide for isotope ratio mass spectrometry, FIRMS (2011). ISBN 978-0-948926-31-0 ISBN 978-0-948926-31-0 Copyright © 2011 Copyright of this document is vested in the members of the FIRMS Network. IRMS Guide 1st Ed. 2011 Preface A few decades ago, mass spectrometry (by which I mean organic MS) was considered a “black art”. Its complex and highly expensive instruments were maintained and operated by a few dedicated technicians and its output understood by only a few academics. Despite, or because, of this the data produced were amongst the “gold standard” of analytical science. In recent years a revolution occurred and MS became an affordable, easy to use and routine technique in many laboratories. Although many (rightly) applaud this popularisation, as a consequence the “black art” has been replaced by a “black box”: SAMPLES GO IN → → RESULTS COME OUT The user often has little comprehension of what goes on “under the hood” and, when “things go wrong”, the inexperienced operator can be unaware of why (or even that) the results that come out do not reflect the sample that goes in.
    [Show full text]
  • Soft and Robust Identification of Body Fluid Using Fourier Transform
    www.nature.com/scientificreports OPEN Soft and Robust Identifcation of Body Fluid Using Fourier Transform Infrared Spectroscopy Received: 14 February 2018 Accepted: 21 May 2018 and Chemometric Strategies for Published: xx xx xxxx Forensic Analysis Ayari Takamura1,2, Ken Watanabe1, Tomoko Akutsu1 & Takeaki Ozawa2 Body fuid (BF) identifcation is a critical part of a criminal investigation because of its ability to suggest how the crime was committed and to provide reliable origins of DNA. In contrast to current methods using serological and biochemical techniques, vibrational spectroscopic approaches provide alternative advantages for forensic BF identifcation, such as non-destructivity and versatility for various BF types and analytical interests. However, unexplored issues remain for its practical application to forensics; for example, a specifc BF needs to be discriminated from all other suspicious materials as well as other BFs, and the method should be applicable even to aged BF samples. Herein, we describe an innovative modeling method for discriminating the ATR FT-IR spectra of various BFs, including peripheral blood, saliva, semen, urine and sweat, to meet the practical demands described above. Spectra from unexpected non-BF samples were efciently excluded as outliers by adopting the Q-statistics technique. The robustness of the models against aged BFs was signifcantly improved by using the discrimination scheme of a dichotomous classifcation tree with hierarchical clustering. The present study advances the use of vibrational spectroscopy and a chemometric strategy for forensic BF identifcation. Forensic science is an applied research feld that aims to develop and validate analytical methods for criminal investigation and justice. Although research interest in forensics is quite diversifed, the analysis of biological samples collected at a crime scene is undoubtedly one of the most important tasks owing to the ability to identify criminal acts and suspects by DNA profling.
    [Show full text]
  • Electron Ionization
    Chapter 6 Chapter 6 Electron Ionization I. Introduction ......................................................................................................317 II. Ionization Process............................................................................................317 III. Strategy for Data Interpretation......................................................................321 1. Assumptions 2. The Ionization Process IV. Types of Fragmentation Pathways.................................................................328 1. Sigma-Bond Cleavage 2. Homolytic or Radical-Site-Driven Cleavage 3. Heterolytic or Charge-Site-Driven Cleavage 4. Rearrangements A. Hydrogen-Shift Rearrangements B. Hydride-Shift Rearrangements V. Representative Fragmentations (Spectra) of Classes of Compounds.......... 344 1. Hydrocarbons A. Saturated Hydrocarbons 1) Straight-Chain Hydrocarbons 2) Branched Hydrocarbons 3) Cyclic Hydrocarbons B. Unsaturated C. Aromatic 2. Alkyl Halides 3. Oxygen-Containing Compounds A. Aliphatic Alcohols B. Aliphatic Ethers C. Aromatic Alcohols D. Cyclic Ethers E. Ketones and Aldehydes F. Aliphatic Acids and Esters G. Aromatic Acids and Esters 4. Nitrogen-Containing Compounds A. Aliphatic Amines B. Aromatic Compounds Containing Atoms of Nitrogen C. Heterocyclic Nitrogen-Containing Compounds D. Nitro Compounds E. Concluding Remarks on the Mass Spectra of Nitrogen-Containing Compounds 5. Multiple Heteroatoms or Heteroatoms and a Double Bond 6. Trimethylsilyl Derivative 7. Determining the Location of Double Bonds VI. Library
    [Show full text]
  • Modern Mass Spectrometry
    Modern Mass Spectrometry MacMillan Group Meeting 2005 Sandra Lee Key References: E. Uggerud, S. Petrie, D. K. Bohme, F. Turecek, D. Schröder, H. Schwarz, D. Plattner, T. Wyttenbach, M. T. Bowers, P. B. Armentrout, S. A. Truger, T. Junker, G. Suizdak, Mark Brönstrup. Topics in Current Chemistry: Modern Mass Spectroscopy, pp. 1-302, 225. Springer-Verlag, Berlin, 2003. Current Topics in Organic Chemistry 2003, 15, 1503-1624 1 The Basics of Mass Spectroscopy ! Purpose Mass spectrometers use the difference in mass-to-charge ratio (m/z) of ionized atoms or molecules to separate them. Therefore, mass spectroscopy allows quantitation of atoms or molecules and provides structural information by the identification of distinctive fragmentation patterns. The general operation of a mass spectrometer is: "1. " create gas-phase ions "2. " separate the ions in space or time based on their mass-to-charge ratio "3. " measure the quantity of ions of each mass-to-charge ratio Ionization sources ! Instrumentation Chemical Ionisation (CI) Atmospheric Pressure CI!(APCI) Electron Impact!(EI) Electrospray Ionization!(ESI) SORTING DETECTION IONIZATION OF IONS OF IONS Fast Atom Bombardment (FAB) Field Desorption/Field Ionisation (FD/FI) Matrix Assisted Laser Desorption gaseous mass ion Ionisation!(MALDI) ion source analyzer transducer Thermospray Ionisation (TI) Analyzers quadrupoles vacuum signal Time-of-Flight (TOF) pump processor magnetic sectors 10-5– 10-8 torr Fourier transform and quadrupole ion traps inlet Detectors mass electron multiplier spectrum Faraday cup Ionization Sources: Classical Methods ! Electron Impact Ionization A beam of electrons passes through a gas-phase sample and collides with neutral analyte molcules (M) to produce a positively charged ion or a fragment ion.
    [Show full text]
  • Find the Molar Mass of Sodium Carbonate, Na 2CO3. Na 2 X
    Moles and Molar Mass The mole is the "counting unit" used by chemists to indicate the number of atoms, ions, molecules, or formula units present in a particular chemical sample. The mole is similar to other counting units that you've used before....pair (2), dozen (12), and gross (144). One mole of a compound contains Avogadro's number (6.022 x 1023) of molecules (molecular compound) or formula units (ionic compound). The molar mass of a compound tells you the mass of 1 mole of that substance. In other words, it tells you the number of grams per mole of a compound. The units for molar mass are, therefore, grams/mole. To find the molar mass of a compound: 1. Use the chemical formula to determine the number of each type of atom present in the compound. 2. Multiply the atomic weight (from the periodic table) of each element by the number of atoms of that element present in the compound. 3. Add it all together and put units of grams/mole after the number. Example: Find the molar mass of sodium carbonate, Na2CO3. Na 2 x 23.0 = 46.0 C 1 x 12.0 = 12.0 O 3 x 16.0 = 48.0 molar = 106.0 g/mole mass For many (but not all) problems, you can simply round the atomic weights and the molar mass to the nearest 0.1 g/mole. HOWEVER, make sure that you use at least as many significant figures in your molar mass as the measurement with the fewest significant figures.
    [Show full text]
  • Fundamentals of Biological Mass Spectrometry and Proteomics
    Fundamentals of Biological Mass Spectrometry and Proteomics Steve Carr Broad Institute of MIT and Harvard Modern Mass Spectrometer (MS) Systems Orbitrap Q-Exactive Triple Quadrupole Discovery/Global Experiments Targeted MS MS systems used for proteomics have 4 tasks: • Create ions from analyte molecules • Separate the ions based on charge and mass • Detect ions and determine their mass-to-charge • Select and fragment ions of interest to provide structural information (MS/MS) Electrospray MS: ease of coupling to liquid-based separation methods has made it the key technology in proteomics Possible Sample Inlets Syringe Pump Sample Injection Loop Liquid Autosampler, HPLC Capillary Electrophoresis Expansion of the Ion Formation and Sampling Regions Nitrogen Drying Gas Electrospray Atmosphere Vacuum Needle 3- 5 kV Liquid Nebulizing Gas Droplets Ions Containing Solvated Ions Isotopes Most elements have more than one stable isotope. For example, most carbon atoms have a mass of 12 Da, but in nature, 1.1% of C atoms have an extra neutron, making their mass 13 Da. Why do we care? Mass spectrometers “see” the isotope peaks provided the resolution is high enough. If an MS instrument has resolution high enough to resolve these isotopes, better mass accuracy is achieved. Stable isotopes of most abundant elements of peptides Element Mass Abundance H 1.0078 99.985% 2.0141 0.015 C 12.0000 98.89 13.0034 1.11 N 14.0031 99.64 15.0001 0.36 O 15.9949 99.76 16.9991 0.04 17.9992 0.20 Monoisotopic mass and isotopes We use instruments that resolve the isotopes enabling us to accurately measure the monoisotopic mass MonoisotopicMonoisotopic mass; all 12C, mass no 13C atoms corresponds to 13 lowestOne massC atom peak Two 13C atoms Angiotensin I (MW = 1295.6) (M+H)+ = C62 H90 N17 O14 TheWhen monoisotopic the isotopes mass of aare molecule clearly is the resolved sum of the the accurate monoisotopic masses for the massmost abundant isotope of each element present.
    [Show full text]
  • An Introduction to Mass Spectrometry
    An Introduction to Mass Spectrometry by Scott E. Van Bramer Widener University Department of Chemistry One University Place Chester, PA 19013 [email protected] http://science.widener.edu/~svanbram revised: September 2, 1998 © Copyright 1997 TABLE OF CONTENTS INTRODUCTION ........................................................... 4 SAMPLE INTRODUCTION ....................................................5 Direct Vapor Inlet .......................................................5 Gas Chromatography.....................................................5 Liquid Chromatography...................................................6 Direct Insertion Probe ....................................................6 Direct Ionization of Sample ................................................6 IONIZATION TECHNIQUES...................................................6 Electron Ionization .......................................................7 Chemical Ionization ..................................................... 9 Fast Atom Bombardment and Secondary Ion Mass Spectrometry .................10 Atmospheric Pressure Ionization and Electrospray Ionization ....................11 Matrix Assisted Laser Desorption/Ionization ................................ 13 Other Ionization Methods ................................................13 Self-Test #1 ...........................................................14 MASS ANALYZERS .........................................................14 Quadrupole ............................................................15
    [Show full text]
  • An Organic Chemist's Guide to Electrospray Mass Spectrometric
    molecules Review An Organic Chemist’s Guide to Electrospray Mass Spectrometric Structure Elucidation Arnold Steckel 1 and Gitta Schlosser 2,* 1 Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary; [email protected] 2 Department of Analytical Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary * Correspondence: [email protected] Received: 16 January 2019; Accepted: 8 February 2019; Published: 10 February 2019 Abstract: Tandem mass spectrometry is an important tool for structure elucidation of natural and synthetic organic products. Fragmentation of odd electron ions (OE+) generated by electron ionization (EI) was extensively studied in the last few decades, however there are only a few systematic reviews available concerning the fragmentation of even-electron ions (EE+/EE−) produced by the currently most common ionization techniques, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). This review summarizes the most important features of tandem mass spectra generated by collision-induced dissociation fragmentation and presents didactic examples for the unexperienced users. Keywords: tandem mass spectrometry; MS/MS fragmentation; collision-induced dissociation; CID; ESI; structure elucidation 1. Introduction Electron ionization (EI), a hard ionization technique, is the method of choice for analyses of small (<1000 Da), nonpolar, volatile compounds. As its name implies, the technique involves ionization by electrons with ~70 eV energy. This energy is high enough to yield very reproducible mass spectra with a large number of fragments. However, these spectra frequently lack the radical type molecular ions (M+) due to the high internal energy transferred to the precursors [1].
    [Show full text]
  • Methods of Ion Generation
    Chem. Rev. 2001, 101, 361−375 361 Methods of Ion Generation Marvin L. Vestal PE Biosystems, Framingham, Massachusetts 01701 Received May 24, 2000 Contents I. Introduction 361 II. Atomic Ions 362 A. Thermal Ionization 362 B. Spark Source 362 C. Plasma Sources 362 D. Glow Discharge 362 E. Inductively Coupled Plasma (ICP) 363 III. Molecular Ions from Volatile Samples. 364 A. Electron Ionization (EI) 364 B. Chemical Ionization (CI) 365 C. Photoionization (PI) 367 D. Field Ionization (FI) 367 IV. Molecular Ions from Nonvolatile Samples 367 Marvin L. Vestal received his B.S. and M.S. degrees, 1958 and 1960, A. Spray Techniques 367 respectively, in Engineering Sciences from Purdue Univesity, Layfayette, IN. In 1975 he received his Ph.D. degree in Chemical Physics from the B. Electrospray 367 University of Utah, Salt Lake City. From 1958 to 1960 he was a Scientist C. Desorption from Surfaces 369 at Johnston Laboratories, Inc., in Layfayette, IN. From 1960 to 1967 he D. High-Energy Particle Impact 369 became Senior Scientist at Johnston Laboratories, Inc., in Baltimore, MD. E. Low-Energy Particle Impact 370 From 1960 to 1962 he was a Graduate Student in the Department of Physics at John Hopkins University. From 1967 to 1970 he was Vice F. Low-Energy Impact with Liquid Surfaces 371 President at Scientific Research Instruments, Corp. in Baltimore, MD. From G. Flow FAB 371 1970 to 1975 he was a Graduate Student and Research Instructor at the H. Laser Ionization−MALDI 371 University of Utah, Salt Lake City. From 1976 to 1981 he became I.
    [Show full text]