<<

CHEMICALANALYSISOF MEDICINALANDPOISONOUS OFFORENSIC IMPORTANCEINSOUTH

P.A.STEENKAMP

Submittedinfulfilmentoftherequirementsforthedegree

PHILOSOPHIAEDOCTOR

in

CHEMISTRY

inthe

FACULTYOFSCIENCE

atthe

UNIVERSITYOFJOHANNESBURG

Promotor:PROF.F.R.VANHEERDEN

Copromotor:PROF.BE.VANWYK

MAY2005

Created by Neevia Personal Converter trial version http://www.neevia.com Created by Neevia Personal Converter trial version ACKNOWLEDGEMENTS

Iwishtoexpressmysincereappreciationtoallwhoseassistanceandadvicecontributed tothecreationofthisthesis,andinparticularthefollowing: Professor F.R. van Heerden , my promotor, for her continued interest, advice, invaluable guidancewiththechemicalaspectsoftheprojectand NMR data interpretation of chapters six, sevenandeight. ProfessorBE.vanWyk ,mycopromotor,forhisenthusiasm,editorialguidanceandinvaluable assistancewiththebotanicalaspectsoftheproject. TheDepartmentofHealthfortheirfinancialsupportandtheForensicLaboratoryfor theuseoftheirinfrastructuretocompletethisresearch. DoctorL.H.Steenkamp,mywife,forherlove,patience,assistanceandencouragement. Mychildren,AntonandAndries,fortheirpatience,supportandunderstanding. MycolleaguesoftheForensicToxicologyResearchUnitfortheirsupport. MissKimLilleyoftheWatersCorporation(USA)forhertechnicalsupportandadviceonmass spectrometry. Mymotherforherunwaveringsupportandencouragement. Myfriendsandfamilyfortheirinterestandencouragement. Finally,butmostimportant,IwanttoexpressmygratitudetoGODforHisgraceandprovision, andfortheabilityandopportunitytostudyasmallpartofHiswonderfulcreation. TOGODALLTHEGLORY

ii Created by Neevia Personal Converter trial version http://www.neevia.com CONTENTS

PAGE ACKNOWLEDGEMENTS ii CONTENTS iii ABBREVIATIONS ix INDEXOFTABLES xi INDEXOFFIGURES xiii SUMMARY xviii OPSOMMING xxi CHAPTER1 Aimofstudy 1 CHAPTER2 Introduction 3 2.1 Forensicscience 3 2.2 Forensictechnology 3 2.2.1 Deathsfromdrugabuse 7 2.2.2 Accidentalpoisoning 7 2.2.3 Suicidalpoisoning 8 2.2.4 Homicidalpoisoning 8 2.3 Medicinalplants 10 2.4 Analyticalmethodsusedintoxicology 13 2.4.1 Colourtests 14 2.4.2 Microdiffusiontest 14 2.4.3 Immunoassays 14 2.4.4 14 2.4.4.1 Thinlayerchromatography 15 2.4.4.2 Gaschromatography 15 2.4.4.3 Highperformanceliquidchromatography 16 2.4.5 Columntheory 18 2.4.6 HPLCMSsystems(LCMS) 21 2.5 Developmentofextractionprocedures 24 2.6 Developmentofchromatographicscreeningmethods 25 2.7 Screeningofvisceraand muti samplesofforensicinterest 25 2.8 Identificationandconfirmationofcompounds 27 2.9 Selectionofthemedicinalandpoisonousplantsforthestudy 29

iii Created by Neevia Personal Converter trial version http://www.neevia.com CHAPTER3 Nicotiana glauca 3.1 Botanicaldescription 32 3.2 Originanddistribution 32 3.3 Typeoftoxin 33 3.4 Activecomponentsandpharmacologicaleffects 33 3.5 Ethnopharmacologicalimportance 33 3.6 Poisoning 3.6.1 Accidental 34 3.6.2 Deliberate 34 3.7 FCLJHBinvestigation 34 3.8 Experimentalprocedure 3.8.1 Standardsandreagents 35 3.8.2 Instrumentsandconditions 35 3.8.3 Chemicalfingerprintingof N. glauca trees 35 3.8.4 Chemicalextractionandanalysisofvisceraandcaseexhibits 36 3.9 Resultanddiscussion 3.9.1 Chromatographyanddetectionofanabasine 36 3.9.2 Chemicalfingerprintingof N. glauca trees 37 3.9.3 EvaluationofSPEextractionandanalysisofvisceraandexhibit 38 3.10 Forensicapplicability 43 CHAPTER4 Datura stramonium / Datura ferox 4.1 Botanicaldescription 45 4.2 Originanddistribution 46 4.3 Typeoftoxin 46 4.4 Activecomponentsandpharmacologicaleffects 46 4.5 Ethnopharmacologicalimportance 47 4.6 Poisoning 4.6.1 Accidental 47 4.6.2 Deliberate 48 4.7 FCLJHBinvestigation 48 4.8 Experimentalprocedure 4.8.1 Standardsandreagents 48 4.8.2 Instrumentsandconditions 49 4.8.3 Chemicalfingerprintingof D. stramonium and D. ferox plants 49 4.8.4 Chemicalextractionandanalysisofvisceracaseexhibits 50 4.9 Resultanddiscussion

iv Created by Neevia Personal Converter trial version http://www.neevia.com 4.9.1 Chromatographyanddetectionofandscopolamine 50 4.9.2 Chemicalfingerprintingof D. stramonium and D. ferox plants 53 4.9.3 EvaluationofSPEextractionandanalysisofviscerasamples 53 4.10 Forensicapplicability 56 CHAPTER5 Callilepis laureola 5.1 Botanicaldescription 58 5.2 Originanddistribution 58 5.3 Typeoftoxin 58 5.4 Activecomponentsandpharmacologicaleffects 59 5.5 Ethnopharmacologicalimportance 59 5.6 Poisoning 5.6.1 Accidental 59 5.6.2 Deliberate 59 5.7 FCLJHBinvestigation 60 5.8 Experimentalprocedure 5.8.1 Standardsandreagents 60 5.8.2 Instrumentsandconditions 5.8.2.1 LC–MSconditions 61 5.8.2.2 Flowinjectionanalysis 63 5.8.2.3 Evaluationoftheanalyticalprocedure 63 5.8.3 Extractionof C. laureola tubersandunknownpowderedsamples 63 5.8.4 Chemicalextractionandanalysisofvisceraandcaseexhibits 64 5.9 Resultanddiscussion 5.9.1 Chromatographyanddetectionofatractyloside 64 5.9.2 Evaluationoftheanalyticalmethod 66 5.9.3 SPEofATR, C. laureola tuberandpowderedherbalsamples 67 5.9.4 Analysisof C. laureola tuberandunknownpowderedsamples 67 5.9.5 Solidphaseextractionandanalysisofviscerasamples 68 5.9.6 Optimisationofmassspectralconditionsfortraceanalysis 73 5.10 Forensicapplicability 77 CHAPTER6 disticha 6.1 Botanicaldescription 78 6.2 Originanddistribution 78 6.3 Typeoftoxin 79 6.4 Activecomponentsandpharmacologicaleffects 80 6.5 Ethnopharmacologicalimportance 80

v Created by Neevia Personal Converter trial version http://www.neevia.com 6.6 Poisoning 6.6.1 Accidental 80 6.6.2 Deliberate 82 6.7 FCLJHBinvestigation 82 6.8 Experimentalprocedure 6.8.1 Standardsandreagents 82 6.8.2 Instrumentsandconditions 83 6.8.3 Chemicalextractionof B. disticha bulband Ammocharis coranica scales 84 6.8.4 IsolationofthefromthebulbofB. disticha 85 6.8.5 Chemicalextractionandanalysisofvisceraandcaseexhibits 87 6.9 Resultanddiscussion 6.9.1 Chromatographyanddetectionofalkaloids 87 6.9.2 Chemicalextractionandpurificationof B. disticha bulbcompounds 90 6.9.3 Chromatographicfingerprintingof B. disticha and A. coranica 93 6.9.4 Analysisofcaseexhibitsandviscerasamples 96 6.10 Forensicapplicability 103 CHAPTER7 Abrus precatorius 7.1 Botanicaldescription 105 7.2 Originanddistribution 105 7.3 Typeoftoxin 106 7.4 Activecomponentsandpharmacologicaleffects 107 7.5 Ethnopharmacologicalimportance 107 7.6 Poisoning 7.6.1 Accidental 107 7.6.2 Deliberate 107 7.7 FCLJHBinvestigation 108 7.8 Experimentalprocedure 7.8.1 Standardsandreagents 108 7.8.2 Instrumentsandconditions 108 7.8.3 Chemicalextractionof A. precatorius seeds 109 7.8.4 Isolationofabrineandhypaphorinefrom A. precatorius seeds 112 7.9 Resultanddiscussion 7.9.1 Chromatographyanddetectionofabrineandhypaphorine 113 7.9.2 Chemicalextractionof A. precatorius seeds 118 7.9.3 Purificationofabrineandhypaphorine 118 7.10 Forensicapplicability 119

vi Created by Neevia Personal Converter trial version http://www.neevia.com CHAPTER8 Ricinus communis 8.1 Botanicaldescription 123 8.2 Originanddistribution 123 8.3 Typeoftoxin 124 8.4 Activecomponentsandpharmacologicaleffects 124 8.5 Ethnopharmacologicalimportance 125 8.6 Poisoning 8.6.1 Accidental 125 8.6.2 Deliberate 125 8.7 FCLJHBinvestigation 126 8.8 Experimentalprocedure 8.8.1 Standardsandreagents 126 8.8.2 Instrumentsandconditions 127 8.8.3 Chemicalextractionof R. communis seeds 128 8.8.4 Isolationofricininefrom R. communis seeds 128 8.9 Resultanddiscussion 8.9.1 Chemicalextractionof R. communis seeds 129 8.9.2 Chromatographyanddetectionofricinine 130 8.9.3 Purificationofricinine 134 8.10 Forensicapplicability 136 CHAPTER9 Nerium oleander / Thevetia peruviana 9.1 Botanicaldescription 137 9.2 Originanddistribution 138 9.3 Typeoftoxin 139 9.4 Activecomponentsandpharmacologicaleffects 139 9.5 Ethnopharmacologicalimportance 140 9.6 Poisoning 9.6.1 Accidental 140 9.6.2 Deliberate 141 9.7 FCLJHBinvestigation 141 9.8 Experimentalprocedure 9.8.1 Standardsandreagents 142 9.8.2 Instrumentsandconditions 143 9.8.3 Chemicalextractionof N. oleander and T. peruviana leaves 145 9.8.4 Chemicalextractionandanalysisofvisceraandcaseexhibits 146 9.9 Resultanddiscussion 9.9.1 Chromatographyanddetectionofcardiacglycosides 146

vii Created by Neevia Personal Converter trial version http://www.neevia.com 9.9.2 Chemicalextractionof N. oleander and T. peruviana leaves 154 9.9.3 Chemicalextractionandanalysisofvisceraandcaseexhibits 157 9.10 Forensicapplicability 163 CHAPTER10 Bowiea volubilis 10.1 Botanicaldescription 166 10.2 Originanddistribution 166 10.3 Typeoftoxin 167 10.4 Activecomponentsandpharmacologicaleffects 167 10.5 Ethnopharmacologicalimportance 167 10.6 Poisoning 10.6.1 Accidental 168 10.6.2 Deliberate 168 10.7 FCLJHBinvestigation 168 10.8 Experimentalprocedure 10.8.1 Standardsandreagents 169 10.8.2 Instrumentsandconditions 169 10.8.3 Chemicalextractionof B. volubilis bulb 171 10.8.4 PurificationofbovosideA 172 10.9 Resultanddiscussion 10.9.1 Chromatographyanddetectionofbufadienolides 173 10.9.2 Chemicalextractionof B. volubilis bulb 173 10.9.3 PurificationofbovosideA 173 10.9.4 Identificationofunknownextracts 179 10.10 Forensicapplicability 180 CONCLUSION 182 REFERENCES 186 APPENDICES A1 PUBLISHEDARTICLES 196 A2 ACKNOWLEDGEMENTOFGRAPHICSUSED 197

viii Created by Neevia Personal Converter trial version http://www.neevia.com INDEXOFTABLES

3.1 TheLODandLOQforanabasinewiththePDA,TMDandZMDdetectors 38 3.2 AnabasinecontentofvisceraandplantsamplesontheTMDandZMDsystems 41 4.1 LODandLOQresultsforatropineandscopolamineonthePDAandZMDdetectors 53 4.2 Datura speciesused,theirgeographicallocationsandtheratiooftheseeds 54 5.1 OptimisedHPLCconditionsforthedetectionofatractyloside(ZQsystem) 62 5.2 OptimisedESIMSconditionsforthedetectionofatractyloside(ZQsystem) 62 5.3 EvaluationofRSDvaluesinvariousmatricesforATRanalysis(ZQsystem) 67 5.4 AnalysisofforensicsamplesusingtheoptimisedMSconditionsforthe determinationofATR,CATRandtheirmonodesulfatedderivatives 74 6.1 Knownalkaloidsfromthebulbof Boophone disticha 79 6.2 HPLCgradientprofileofthegeneralscreeningmethod(TMDsystem) 84 6.3 OptimisedMSconditionsforthedetectionof Boophone alkaloidsontheTMDsystem 85 6.4 Gradientprofileofthealkaloidscreeningmethod(ZMDsystem) 86 6.5 PreparativeLCconditionsusedontheVersaFlashsystemfortheseparation of Boophone alkaloids 90 6.6 GradientprofileofthepreparativeHPLCalkaloidfractionationmethodasused ontheZMDsystem 90 6.7 ComparisonofthecompoundsdetectedinthebulbextractsofAmmocharis coranica and Boophone disticha (ESI +onZMDsystem) 95 6.8 IdentificationofthecompoundsdetectedinthebulbextractsofCase1175by comparingtotheNIST TM MSspectrallibrary 97 7.1 GradientprofileofthegeneralscreeningmethodontheTMDsystem 110 7.2 OptimisedMSconditionsforthedetectionofabrineandhypaphorineonthe TMDdetector 110 7.3 Optimisedconditionsforthedetectionofabrineandhypaphorineonthe ZMDdetector 111 7.4 HPLCgradientprofileofthealkaloidscreeningmethodontheZMDsystem 111

ix Created by Neevia Personal Converter trial version http://www.neevia.com 8.1 HPLCgradientprofileofthegeneralscreeningmethod(TMDsystem) 128 8.2 OptimisedMSconditionsforthedetectingricinineontheZMDdetector 135 9.1 HPLCgradientprofileofthegeneralscreeningmethod(TMDsystem) 144 9.2 OptimisedESI +MSconditionsforthedetectionofoleandrin(ZQsystem) 144 9.3 OptimisedHPLCconditionsforthedetectionofoleandrin(ZQsystem) 145 9.4 MassspectralinterpretationoftheESIspectraobtainedfortheselected cardiacglycosides(ZQsystem) 153 9.5 AnalysisresultsofthesamplespertainingtoCase995 161 9.6 AnalysisresultsofthesamplespertainingtoCase234 163 10.1 HPLCgradientprofileofthegeneralscreeningmethod(TMDsystem) 169 10.2 OptimisedMSconditionsforthedetectionofbovosideAontheTMDsystem 170 10.3 OptimisedHPLCconditionsfortheseparationofcardiacglycosidesonthe ZQsystem 171 10.4 OptimisedESI +MSconditionsforthedetectionofbovosideAontheZQdetector 172 10.5 OptimisedHPLCconditionsforfractionatingbovosideA 176

x Created by Neevia Personal Converter trial version http://www.neevia.com INDEXOFFIGURES

2.1 Thesevenmajorgroupsofpoisons/toxins 5 2.2 Graphicrepresentationofthefactorsaffectingchromatographyandselectivity 17 2.3 TheidealworkflowdiagramfortoxicologicalanalysisattheForensic ChemistryLaboratoryofJohannesburg 28 3.1 Typicalhabitandhabitatof Nicotiana glauca 32 3.2 Flowersof Nicotiana glauca 32 3.3 Chemicalstructuresofanabasineand 33 3.4 Juvenile Nicotiana glauca (left)andAmaranthushybridusplants(right)showing themarkedvisualsimilaritybetweenthetwoplants 34 3.5 Juvenile A. hybridus plant 34 3.6 Chromatogram,UVspectrumandEImassspectrumofa1000g/ml anabasinestandard(TMDsystem) 39 3.7 ChromatogramandESImassspectrumofa10g/mlanabasinestandard (ZMDsystem) 39 3.8 ComparisonoftheUVchromatogramsofthreegeographicallyisolated Nicotiana glauca treesontheTMDsystem(leavesandflowersanalysed–seeTable3.2) 40 3.9 HPLCUVanalysisofanabasine,nicotine,atropineandscopolamine 40 3.10 HPLCUVanalysisofthestomachcontentsofmother,childandthe flowerexhibit 42 3.11 HPLCESIanalysisofthestomachcontentsofmother,childandthe flowerexhibit 43 4.1 AtypicalDatura ferox plant 45 4.2 Developingunripefruitof Datura stramonium 45 4.3 Ripefruitof Datura ferox 46 4.4 Seedsof Datura stramonium 46 4.5 Chemicalstructuresofatropineandscopolamine 47 4.6 AtypicalESI +chromatogramof50ng/mlatropine/scopolaminetestmixture (ZMDsystem) 51 4.7 ESI +spectraofatropineandscopolamineasanalysedontheZMDsystem 52 4.8 UVspectraofatropineandscopolamineasanalysedontheZMDsystem 52 4.9 Thechromatogramsoftheseedextractsfromthetwelve Datura plants (ZMDsystem) 55

xi Created by Neevia Personal Converter trial version http://www.neevia.com 4.10 HPLCESI +MSanalysis,aftergrinding,oftheintactseedsfoundinthestomach (ZMDsystem) 55 4.11 HPLCESI +MSanalysisoftheliquefiedstomachcontentswithoutvisualseeds present(ZMDsystem) 56 4.12 HPLCESI +MSanalysisoftheliquefiedstomachcontents(withseeds) usingadualscanfunctionandISCID(ZMDsystem) 57 5.1 Typicalhabitof Callilepis laureola 58

5.2 ChemicalstructuresofatractylosideKATR,ATRand[ATRSO 3] 58 5.3 Tuberousrootsof Callilepis laureola 60 5.4 ESI chromatogramsandspectraofa10 µg/mlATRstandardobtainedunder optimisedconditions(ZQsystem) 66 5.5 ESI chromatogramandspectraofthemaincompoundsdetectedintheaged tuberextract.Overlaidthechromatogramofa10g/mlATRstandard(ZQsystem) 69 5.6 ESI chromatogramandspectraofthemaincompoundsdetectedinthefresh tuberextract(ZQsystem) 70 5.7 ESI chromatogramandspectraoftheanalysisoftheunknownpowdered sampleofCase207(ZQsystem) 71 5.8 ESI SIManalysisoftheunknownpoweredsampleofCase1294(ZQsystem) 72 5.9 ChromatogramsoftheSIManalysisofthestomachandcontentsofCase283 (ZQsystem) 73 5.10 ESI spectraobtainedfromthe16SIManalysisofthestomachandcontents ofCase283(ZQsystem) 75 5.11 PredictedandactualESI spectraofthecompoundsidentifiedinthe stomachandcontentsofCase283(ZQsystem) 76 6.1 Typicalhabitatof Boophone disticha 78 6.2 Paperybulbscalesof Boophone disticha 78 6.3 Crosssectionofa Boophone disticha bulb 79 6.4 Inflorescenceof Boophone disticha 79 6.5 Knownalkaloidsfoundinthebulbof Boophone disticha 81 6.6 PDAchromatogramofacrudebulbextractof Boophone disticha onthe TMDsystem 88 6.7 EIchromatogramofacrudebulbextractof Boophone disticha ontheTMDsystem 88 6.8 ESI +BPIchromatogramsofacrudebulbextractof Boophone disticha onthe ZMDsystemattwoconevoltages(25Vand45V) 89

xii Created by Neevia Personal Converter trial version http://www.neevia.com 6.9 ESI +chromatogramacrudebulbextractof Boophone disticha ontheZMD systemobtainedbymonitoringselectedmasses(286,288,302,316,320,330 &332amu)attwoconevoltages(25Vand45V) 89 6.10 OverlaidESI +chromatogramoftheSPEextractsofthebulbsofAmmocharis coranica and Boophone disticha (ZMDsystem)bymonitoringselectedmasses (286,288,302,316,320,330&332amu) 94 6.11 StackedEIchromatogramsofthebulbextractofthebulbsubmittedwith Case1175(TMDsystem) 97 6.12 StackedEIspectraofthebulbextractofthebulbsubmittedwithCase1175 (TMDsystem) 98 6.13 ESI +chromatogramoftheSPEextractoftheempty muti bottleofCase1175. Thenominalmassesofthecompoundsareindicated(ZMDsystem) 99 6.14 ESI +spectraoftheSPEextractoftheempty muti bottleofCase1175 (ZMDsystem) 99 6.15 ESI +SIMchromatogramsoftheSPEextractofthepowdered muti sample ofCase121.TheSIMmassesareindicatedonthebaselineofeach chromatogram 100 6.16 ESI +SIMchromatogramsoftheSPEextractoftheemptymuti bottleofCase1196. EachSIMchannelmassisdisplayedonthebaselineofthechromatogram 100 6.17 ESI +spectraofthemaincompoundsdetectedinFigure6.17 101 6.18 ESI +chromatogramsatselectedmassesoftheSPEextractderivedfromthe stomachsamplesubmittedforCase1196 101 6.19 ESI +chromatogramatselectedmassesoftheSPEextractderivedfromthe liversamplesubmittedforCase1196 102 6.20 ESI +chromatogramatselectedmassesoftheSPEextractderivedfromthe kidneysamplesubmittedforCase1196 103 7.1 Leavesof Abrus precatorius 105 7.2 Leavesandflowerof Abrus precatorius 105 7.3 Unripepodsof Abrus precatorius 106 7.4 Seedsof Abrus precatorius 106 7.5 Chemicalstructureofabrineandhypaphorine 106 7.6 HPLCPDAchromatogramoftheacidicextractofAbrus precatorius seeds ontheTMDsystem 114 7.7 HPLCPDAchromatogramofthebasicextractof Abrus precatorius seeds ontheTMDsystem 114 7.8 UVspectraofabrineandhypaphorine(TMDsystem) 115

xiii Created by Neevia Personal Converter trial version http://www.neevia.com 7.9 EIspectraofabrineandhypaphorine(TMDsystem) 115 7.10 ChromatogramandESI +spectraofthe1 st fractioncontainingabrine (ZMDsystem) 116 7.11 ChromatogramandESI +spectraofthe2 nd fractioncontaininghypaphorine (ZMDsystem) 116 7.12 ESI +ISCIDfragmentationofabrineandhypaphorine(ZMDsystem) 117 7.13 ESI +chromatogramsoftheacidicextractof Abrus precatorius ontheZMDsystem atconevoltagesof15Vand25V 117 7.14 ESI +spectraofabrineandhypaphorineasdetectedintheacidicextractat conevoltagesof15Vand25V 118 7.15 UVspectraoftheapolarcompoundsextractedfrom Abrus precatorius seeds 120 7.16 MaxplotUVchromatogramoftheanalysisofthebloodsampleofCase114 (TMDsystem) 120 7.17 EISIMchromatogramoftheanalysisofthebloodsampleofCase114 (TMDsystem) 121 7.18 ESI +chromatogramsoftheanalysisofthebloodsampleofCase114.Overlaid thechromatogramofthepurifiedabrinefraction(bothZMDsystem) 121 7.19 ESI +spectraofthesuspectedabrinepeakdetectedintheanalysisoftheblood sampleofCase114(ZMDsystem) 122 8.1 Purpleformof Ricinus communis 123 8.2 Seedsof Ricinus communis 123 8.3 Chemicalstructureofricinine 124 13 8.4 PDAMaxplotchromatogramofthe C6ricininestandard(TMDsystem) 130 13 8.5 PDAspectrumofthe C6ricininestandard(TMDsystem) 131 13 8.6 EIchromatogramofthe C6ricininestandard(TMDsystem) 131 13 8.7 EIspectrumofthe C6ricininestandard(TMDsystem) 132 8.8 PDAMaxplotchromatogramoftheacidicricinineextractoftheseedsof Ricinus communis containingricinine(TMDsystem) 132 8.9 EIchromatogramoftheacidicricinineextractoftheseedsof Ricinus communis containingricinine(TMDsystem) 133 8.10 EIspectrumoftheextractedricinine(TMDsystem) 133 8.11 ESI +chromatogramsoftheextractedricinineattwoconevoltages (25Vand45V)ontheZMDsystem 135 8.12 ESI +MSspectraoftheextractedricinineattwoconevoltages(25Vand45V) ontheZMDsystem 136 8.13 ESI +ISCIDoftheextractedricinine(ZMDsystem) 136

xiv Created by Neevia Personal Converter trial version http://www.neevia.com 9.1 Typical Nerium oleander shrub 137 9.2 Somecolourformsof Nerium oleander 137 9.3 Typical Thevetia peruviana shrub 138 9.4 Flowerandfruitof Thevetia peruviana 138 9.5 Openedfruitandseedof Thevetia peruviana 138 9.6 Chemicalstructuresofoleandrin,thevetinAandB 139 9.7 ComparisonoftheUVspectraofoleandrinandbufalinonthePDAdetector (TMDsystem) 147 9.8(a) Chemicalstructuresoftheselectedcardiacglycosides 149 9.8(b) Chemicalstructuresoftheselectedcardiacglycosides 150 9.9(a) ESIspectraoftheselectedcardiacglycosides 151 9.9(b) ESIspectraoftheselectedcardiacglycosides 152 9.10 Overlaidchromatogramsoftheselectedcardiacglycosides(ZQsystem) 153 9.11 OverlaidESI +chromatogramsoftheleafextractof Nerium oleander and oleandrinstandard(ZQsystem). 156 9.12 SIMESI +chromatogramsoftheothercardiacglycosidesdetectedintheleaf extractof Nerium oleander (ZQsystem) 156 9.13 ESI +massspectraoftheothercardiacglycosidesdetectedintheleafextractof Nerium oleander (ZQsystem) 157 9.14 ESI +chromatographicprofilesofthe Nerium oleander and Thevetia peruviana leafextracts(ZQsystem) 158 9.15 Comparisonof Nerium and Thevetia leafextractsusingthecommonmassesof Nerium oleander (ESI +chromatogramsonZQsystem) 158 9.16 Comparisonof Nerium and Thevetia leafextractsusingthecommonmassesof Thevetia peruviana (ESI +chromatogramsonZQsystem) 159 9.17 ComparisonoftheESI +chromatographicprofilesof5colourformsof Nerium oleander (FullanalysisrunonZQsystem) 159 9.18 ComparisonoftheESI +chromatographicprofilesof5colourformsof Nerium oleander (Zoomed–ZQsystem) 160 9.19 ESI +chromatographiccomparisonoftheextractsoftheexhibitofCase995 and Nerium oleander leafextract(ZQsystem) 160 9.20 ESI +SIMchromatogramsat599amuofthevarioussamplesofCase995 (ZQsystem) 161 9.21 SpectraobtainedfromtheESI +SIManalysisat599amuofthesamplesof Case995(ZQsystem) 162 9.22 ESI +chromatogramoftheSIManalysis(sixmasses)ofthe muti sampleof Case234(ZQsystem) 163 9.23 ESI +chromatogramoftheSIManalysis(sixmasses)ofthebloodsampleof

xv Created by Neevia Personal Converter trial version http://www.neevia.com Case234(ZQsystem) 164 9.24 ESI +spectrumoftheSIManalysis(sixmasses)ofthe muti sampleof Case234(ZQsystem) 164 9.25 ESI+spectrumoftheSIManalysis(sixmasses)ofthebloodsampleof Case234(ZQsystem) 165 10.1 Thefleshybulbandstemsof Bowiea volubilis 166 10.2 Flowersof Bowiea volubilis 166 10.3 ChemicalstructureofbovosideA 167 10.4 ESI +ChromatogramofabufalinstandardontheZQsystem 174 10.5 AdductsofbufalinunderESI +conditionsontheZQsystem 174 10.6 ESI +chromatogram(selectedmasses)ofthebulbextractof Bowiea volubilis (ZQsystem) 175

10.7 UVspectrumofthecompoundatR t =26.45min(Figure10.6) 175 + 10.8 ESI spectrumofthecompoundatR t =26.45min(Figure10.6) 176 10.9 MaxPlotUVchromatogramofthepurifiedbovosideAfractionontheTMDsystem 177 10.10 EISIMchromatogramofthepurifiedbovosideAfractionontheTMDsystem 177 10.11 EIspectrumofthepurifiedbovosideAfractionontheTMDsystem 178 10.12 ESI +chromatogramofthepurifiedbovosideAfractionontheZQsystem. + InsertedtheUVandESI spectraofthepeakatR t=27.71min 178 10.13 ComparisonoftheESI +BPIchromatogramsof4plantextracts(ZQsystem) 179 10.14 ComparisonoftheESI +chromatogramsof4plantextractsbymonitoring 561,583,599,881and897amu(ZQsystem) 180

xvi Created by Neevia Personal Converter trial version http://www.neevia.com ABBREVIATIONS AAFS : AmericanAssociationofForensicSciences ADP : Adenosinediphosphate amu : Atomicmassunit APCI : Atmosphericpressurechemicalionisation API : Atmosphericpressureionisation ARC : AgriculturalResearchCouncil ATR : Atractyloside(referringtotheionicspeciesin) BPC : Bondedphasechromatography BPI : Basepeakintensity CATR : Carboxyatractyloside CHEX : Cyclohexane CIDorISCID : Collisioninduceddissociation(alsocalledInsourcecollisioninduced dissociation) Da : Dalton DEA : Dietylamine EI : Electronimpactionisation EMIT : Enzymemultipliedimmunoassaytechnique ESI : Electrosprayionisation FCLJHB : ForensicChemistryLaboratoryJohannesburg FIA : Flowinjectionanalysis FPIA : Fluorescentpolarisationimmunoassay FTIR : Fouriertransform GC : Gaschromatography(similartoGLC) GCEIMS : Gaschromatographycoupledtoanelectronimpactmassselectivedetector GCMS : Gaschromatographycoupledtomassspectrometry GLC : Gasliquidchromatography GMP : Goodmanufacturingpractice GP : Province gpg : guineapig HorHETP : Theheightequivalenttoatheoreticalplate HPLC : Highperformanceliquidchromatography HPLCMS : Highperformanceliquidchromatographycoupledtomassspectrometry I : Intensity ID : Innerdiameter IP : Intraperitoneal KATR : Atractyloside(referringtothesaltcontainingtwopotassium)

xvii Created by Neevia Personal Converter trial version http://www.neevia.com LC : Liquidchromatography

LD 50 : Lethaldose (where50%ofapopulationwoulddieafteradministrationofthedose) LOD : Limitofdetection LOQ : Limitofquantification muti : Traditionalmedicinederivedfrombotanical/animaloriginbutmayalso containpharmaceuticaland/orindustrialchemicals N : Numberoftheoreticalplates NMR : Nuclearmagneticresonance NWP : NorthWestProvince orl : oral PBS : Phosphatebufferedsalinesolution PDA : Photodiodearray PEEK : Polyetheretherketone R : Resolution RAU : RandAfrikaansUniversity RIA : Radioimmunoassay RSA : RepublicofSouthAfrica RSD : Relativestandard

Rt : Retentiontime(usuallyinminutes) SAPS : SouthAfricanPoliceService scu : subcutaneous SIM : Singleionmonitoring[similartoSIR(Singleionreaction)] SOFT : SocietyofForensicToxicologists SPE : Solidphaseextraction TIAFT : TheInternationalAssociationofForensicToxicologists TIC : Totalionchromatogram TLC : Thinlayerchromatography TMD : WatersThermabeamelectronimpactmassspectrometer TOF : Timeofflight UJHB : UniversityofJohannesburg UV : Ultraviolet V : Volt WADA : WorldAntiDopingAgency ZMD : ZSpraymassselectivedetector(1 st Generation) ZQ : ZSpraymassselectivedetector(3 rd Generation)

xviii Created by Neevia Personal Converter trial version http://www.neevia.com SUMMARY The Forensic Chemistry Laboratory of Johannesburg (FCL JHB) is tasked with the chemical analysis of a variety of samples to assist in determining the cause of death where unnatural cause is suspected. Some of the samples submitted to the laboratory have a herbal or muti connotation,butalargeportionofthesecasesturnouttohavenoherbalcomponentspresentas only pharmaceutical or agricultural products are detected in these samples. This study combined, for the first time, forensic investigation, chemistry and botany to create a unique platform needed for the identification of poisonous plants and their components in forensic exhibitsandviscera.Theresearchwasfocussedonthepoisonousplantspreviouslydetectedat thelaboratory,aswellastherequestsreceivedfortheanalysisof muti /toxicplantcomponents. Theselectionofplantsincluded Nicotiana glauca, Datura stramonium / Datura ferox , Callilepis laureola, Boophone disticha / Ammocharis coranica, Abrus precatorius, Ricinus communis, Nerium oleander / Thevetia peruviana and Bowiea volubilis. Allthesespeciesareknowntohave causedfatalities,hencetheirchoice. Nicotiana glauca has been implicated in the deaths of at least 15 people since 2001. It was previously detected by GCMS (EI) in plant exhibits, but could not be detected in a viscera matrix. A selective extraction method for alkaloids was used to extract botanical and viscera samples.AnabasinewassuccessfullydetectedontheHPLCMS(EI)systembutthisdetection technique was not considered sensitive enough. A very sensitive HPLCMS method was developed on the ZMD detector by using electrospray technology. This method outperformed bothelectronimpactdetectors(GCandHPLC)andcoulddetect1ng/mlanabasinewithrelative easeinfullscanmode. Datura stramonium and D. ferox have not been previously positively linked to any human poisoningordeathduetoexposuretobotanicallyderivedproductsattheFCLJHB.Atropineand scopolamineweresuccessfullyionisedinESIpositivemodeandcouldbedetectedat10pg/ml and 100 pg/ml level respectively. The identities of the compounds were confirmed by characteristicISCIDfragmentationpatterns.Thedevelopedmethodwassuccessfullyappliedto asuspectedheartattackcase.Theresultsprovedconclusivelythatthedeceasedwasgiven D. ferox seedsaspartofhismealandanoverdoseofatropineandscopolaminecontributedtohis death. Callilepis laureola isreputedtobeoneofthemorecommonlyusedmedicinalplantsinSouth Africa,andalthoughitsusehasbeenindicatedbythespecificmentionofapossiblenephrotoxin and/orhepatotoxinascausativeagent,ithasnotbeendetectedinanyoftheforensicchemistry laboratories in SouthAfrica.This wasmainly duetotheabsenceofareliablemethodforthe

xix Created by Neevia Personal Converter trial version http://www.neevia.com analysis of the main toxic component of C. laureola , atractyloside, by mass spectrometry. A sensitive and very selective HPLCESIMS method was developed that could detect atractyloside,carboxyatractylosideandtheirmonodesulfatedanaloguesinbotanicalandviscera matrices.Themethodwassuccessfullyappliedtoavarietyofforensicsamplesandprovedthat C. laureola mayplayanimportantroleinherbalpoisonings.Inaselectionofsuspectedherbal poisoningswherethecauseofpoisoningwasunknown,30%ofthesamplestestedpositivefor thepresenceofatractyloside,carboxyatractylosideortheirmonodesulfatedanalogues. Thebulbsof Boophone disticha arerichinisoquinolinealkaloidsandsomeofthealkaloidswere detectedbyGCEIMSandLCEIMS,butthedetectionofthesealkaloidsinviscerasamples was not successful. A routine method used for the screening for drugs of abuse in forensic samples,weresuccessfullyusedfortheanalysisofthebulbextractsof B. disticha andthebulb scalesof A. coranica .Thechromatographicprofileofthesetwoplantsappearedverysimilarata first glance, but a closer evaluation of the mass spectra highlighted significant differences betweenthetwoplants.Sixalkaloidsfrom B. disticha wereisolatedandcharacterisedbyLCMS andNMRandthesecompoundsweredetectedinsuspectedherbalpoisoningcases.Ithasbeen shownthat B. disticha isoneofthecommonlyusedplantsto“cleanthesystem”butfrequently resultsinthedeathofthepatient. Abrus precatorius containsoneofthemosttoxiccompoundsknowntomankind,namelyabrin thatcollectivelyreferstoagroupofglycoproteins.Theseedsof A. precatorius alsocontaintwo indolealkaloids,abrineandhypaphorine.Thetwoalkaloidswerefractionatedandcharacterised byLCMSandNMR.DuetothefactthattheinstrumentationoftheFCLJHBisnotsuitedtothe detectionofproteins,anLCESIMSmethodwasdevelopedforthedetectionofthetwoalkaloids inplantandvisceramatrixasmarkersfor A. precatorius .Thepresenceofthesetwoalkaloids wasindicatedontheTMDsystem(EIspectra)inasuspectedherbalpoisoningcase.TheLC ESIMS method was applied to the analysis of the samples and the absence of abrine and hypaphorinewereproveninthesamples. Ricinus communis is similar to A. precatorius in that it also contains a group of extremely poisonous glycoproteins, collectively refered to as . The analysis of R. communis seeds encounteredthesameproblemsastheanalysisof A. precatorius seeds,andtheanalysiswas againfocusedonthedetectionoftheminorpiperidinealkaloidricinine.TheLCESIMSmethod developedforabrinewasmodifiedtodetectricinineandfunctionedwellinbotanicalandviscera matrices.Thismethodwillenabletheforensicanalysttodetectricinineinverylowlevelswhen thepresenceofricinoleicacidinsamplesindicatestheuseofa R. communis basedproduct.

xx Created by Neevia Personal Converter trial version http://www.neevia.com Nerium oleander isacommondecorativegardenplantthatisusedmedicinally.Theplantisrich incardenolideswitholeandrinthemaincompound.Areversedphasechromatographicmethod withESImassspectraldetectionwasdevelopedtoseparateanddetect11cardiacglycosides. Thecompoundswereadequatelyseparatedtoallowunambiguousidentification,anddisplayed verystablecationisationwithsodium.Anextractionmethodwasdevelopedtoextractthecardiac glycosidesfromtheleavesof N. oleander and Thevetia peruviana andwasalsoevaluatedina visceramatrix.Theextractionmethodfunctionedwellandextractedavarietyofcompoundsthat produceduniquechromatographic,allowingfortheeasydifferentiationbetweenthe twoplants.Themethodisideallysuitedforthedetectionofoleandrininhighconcentrations(full scanmode),lowconcentrations(selectedmasses)ortracelevels(SIManalysisofionclusters). Themethodisabletodistinguishbetweenextractsderivedfrom N. oleander and T. peruviana and was able to detect and confirm neriifolin, odoroside and neritaloside in N. oleander leaf extracts. Analysis of forensic case exhibits were also successfully done with this method and performedwellwithliquidandsolidmatrices.Withthenewmethodoleandrincouldbedetected attracelevelsinviscerasamplesthatdidnotproducepositiveresultsinthepast. Bowiea volubilis is widelyusedasamedicinalplant,butisalsoanextremelytoxicplant.Itis freelyavailableattraditionalhealermarkets,andisoneofthemosthighlytradedplantsonthe Durban market. Despite the high usage of the plant, it has not been detected by any of the forensic laboratories in South Africa. Bovoside A, a bufadienolide, is reported to be the main cardiac glycoside in the bulb of B. volubilis . The cardiac glycoside method was successfully appliedtotheanalysisofthebulbextractof B. volubilis andbovosideAwasidentifiedasthe mainbufadienolidepresentinthebulb.BovosideAwasfractionatedandcharacterisedbyLC MS. Four extracts of botanical origin could be successfully distinguished from each other by monitoring the main masses of bovoside A, oleandrin and thevetin A and thevetin B. These marker compounds were well separated from each other and made the identification of the botanical extracts quite easy, and the identity of each extract was confirmed by the mass spectrumofeachpeak.

xxi Created by Neevia Personal Converter trial version http://www.neevia.com OPSOMMING DieForensieseChemieseLaboratoriuminJohannesburg(FCLJHB)hetdietaakomdeurmiddel vanchemieseanalisevan‘nverskeidenheidmonstersdieoorsaakvandoodvanuit‘nchemiese oogpunt te bepaal. Sommige van die monsters wat aan die laboratorium oorhandig word, is moontlikgekoppelaankruieofmuti,maar‘ngrootgetalvanhierdiesakebevatuiteindelikgeen kruie komponente nie en daar word slegs farmaseutiese of landboukundige substanse in die monsters waargeneem. In hierdie studie word daar vir die eerste keer die dissiplines van forensieseondersoek,chemieenplantkundegekombineerom‘nuniekeplatformteskepvirdie identifisering van giftige plante en hulle komponenete in forensiese bewysstukke en menslike weefsel. Die navorsing was gefokus op die giftige plante wat voorheen in die laboratorium waargeneem is, sowel as die versoeke wat ontvang is vir die bepaling van muti/giftige plant komponente.Dieplantewatgeselekteerissluitin Nicotiana glauca, Datura stramonium/Datura ferox, Callilepis laureola, Boophone disticha/Ammocharis coranica, Abrus precatorius, Ricinus communis, Nerium oleander/Thevetia peruviana en Bowiea volubilis .Alhierdiespesiesisbekend daarvoordathullereedssterftesveroorsaakhetenvandaar,diekeuseomhulleintesluitindie studie. Nicotiana glauca isreedsgekoppelaandiedoodvantenminste15mensesedert2001.Ditis voorheen met behulp van GCMS (EI) in plant bewysstukke waargeneem, maar kon nie in menslikeweefselopgespoorwordnie.‘nSelektieweekstraksiemetodeviralkaloïedeisgebruik omdieplantaardigeenweefselmonstersteekstraheer.AnabasienissuksesvolopdieHPLCMS (EI)sisteemwaargeneem,maardiemetodewasniebaiesensitiefnie.‘nBaiesensitieweHPLC MSmetodeisopdieZMDdetektorontwikkeldeurgebruiktemaakvanelektrosproeitegnologie. Hierdiemetode wassuperieurin vergelykingmetelektronimpakdetektore(GCenHPLC)en1 ng/mlanabasienkonbetreklikmaklikwaargeneemwordinvolskanderingsanalise. Datura stramonium and D. ferox isnognooitvoorheengekoppelaanenigemenslikevergiftiging of sterftes asgevolg van blootstelling aan produkte van botaniese oorsprong by die FCL JHB. AtropienenskopolamienissuksesvolgeïoniseerinESIpositiewefaseenkononderskeideliktot op‘n vlak van10pg/mlen100pg/ml waargeneemword. Dieidentiteit vandiekomponenteis bevestig deur karakteristieke “ISCID” fragmentasie patrone. Die metode wat ontwikkel is, is suksesvol toegepas op ‘n saak waar ‘n hartaanval vermoed was. Die resultate het eenduidig aangetoon dat die ontslapene met D. ferox gevoer was, wat hy ingekry het as deel van sy maaltyd,endat‘noordosisatropienenskopolamienbygedrahettotsydood. Callilepis laureola isbekenddaarvoordatditeenvandiemeesalgemenemedisinaleplantein SuidAfrikaisenalhoewel‘nmoontlikenefrotoksienen/ofhepatoksiendieredeisvirsytoksisiteit,

xxii Created by Neevia Personal Converter trial version http://www.neevia.com is dit nog nooit voorheen waargneem by enige van die chemiese forensiese laboratoriums in SuidAfrikanie.Diehoofrededaarvoorwasdiegebrekaan‘nbetroubaremetodevirdieanalise van die toksiese komponent van C. laureola , atraktilosied, deur gebruik te maak van massa spektrometrie. ‘n Sensitiewe en baie selektiewe HPLCESIMS metode is ontwikkel wat atraktilosied,karboksieatraktilosiedenhullemonosulfaatanaloëindieplantaardigeenweefsel matriksekonwaarneem.Diemetodeissuksesvoltoegepasop‘nverskeidenheidvanforensiese monsters en het bewys dat C. laureola moontlik ‘n belangerike rol speel in vermeende kruie vergiftigingsake.In‘nseleksievanvermeendekruievergiftigingswaardieoorsaakvanvergiftiging onbekendis,het30%vandiemonsterspositiefgetoetsvirdieteenwoordigheidvanatraktilosied, karboksieatraktilosiedofhullemonosulfaatanaloë. Diebollevan Boophone disticha isrykaanisokwinolienalkaloïedeenvandiealkaloïedekonmet GCEIMSasookLCEIMSwaargeneemword,maardiewaarnemingvanhierdiealkaloïedein weefselmonstersmethierdiemetodeswasonsuksesvol.‘nRoetinemetode,watgebruikwordvir die vinnige evaluering van monsters wat verband hou met dwelmmisbruik, is suksesvol aangewendvirdieanalisevandiebolekstraktevan B. disticha endieeksterneskudblarevan A. coranica. As ‘n eerste observasie het die chromatografiese profiele van die twee plante baie eenders vertoon, maar by nadere ondersoek van die massa spektra kon belangrike verskille tussendietweekomponentewaargeneemword.Sesalkaloïedeisgeïsoleerengekarakteriseer met LCMS en KMR en hierdie komponente is daarna gereeld waargeneem in vermeende kruievergiftigingssake.Daarisaangetoondat B. disticha eenvandiemeesalgemeneplanteis watgebruikwordomdie“sisteemskoontemaak”,maarveroorsaakdikwels diedood van die pasiënt. Abrus precatorius bevat een van die mees toksiese komponente bekend aan die mensdom, naamlikabrin,watgesamentlikverwysna‘ngroepglikoproteïene.Diesadevan A. precatorius bevatooktweeindoolalkaloïede,abrienenhipaforien.Hierdietweealkaloïedeisgefraksioneer engekarakteriseermetbehulpvanLCMSenKMR.AangesiendieinstrumentevandieFCLJHB nie geskik is vir die waarneming van proteïene nie, is ‘n LCESIMS metode ontwikkel vir die waarneming van hierdie twee alkaloïede in plant en weefsel monster matrikse. Die teenwoordigheid van die twee alkaloïede is aangedui deur die TMD sisteem (EI spektra) in ‘n vermeendekruievergiftigingsaak.DieLCESIMSmetodeisgebruikomdiemonstersteanaliseer endieafwesigheidvanabrienenhipaforienindiemonsters,isbewys. Ricinus communis is soortgelyk aan A. precatorius aangesien dit ook ‘n groep uiters giftige glikoproteïene bevat waarna gesamentlik verwys word as risien. Die analise van R. communis sadehetsoortgelykeproblemeondervindasdieanalisevan A. precatorius sade,endaaromis dieanaliseweereensgefokusopdiewaarnemingvandiekleinerpiperidienalkaloïed,risinien.Die

xxiii Created by Neevia Personal Converter trial version http://www.neevia.com LCESIMSmetodeontwikkelvirabrienisgemodifiseeromrisinienwaarteneemenwasgeskik virdieplantaardigesowelasweefselmatrikse.Hierdiemetodesal‘nforensieseanalisinstaatstel ombaielaevlakkerisinienoptespoorwaardieteenwoordigheidvanrisienolïensuurinmonsters aanduidat‘nproduk,gebaseeropR. communis, g ebruikis. Nerium oleander is‘nalgemenesierplantintuinewatmedisinaalgebruikword.Dieplantisryk aan kardenoliede waarvan oleandrien die hoofkomponent is. ‘n Omgekeerde fase chromatografiese metode met ESI massa spektrometrie as deteksie is ontwikkel om 11 hartglikosiedeteskeienwaarteneem.Diekomponenteisgenoegsaamgeskeiomeenduidige identifikasie te verseker, en het baie stabiele kationisasie met natrium vertoon. ‘n Ekstraskie metodeisontwikkelomdiehartglikosiedeuitdieblarevan N. oleander en Thevetia peruviana te ekstraheerenisookinweefselmatriksegetoets.Dieekstraksiemetodewasbaiesuksesvolen het ‘n verskeidenheid komponente geekstraheer wat gelei het tot unieke chromatografiese vingerafdrukke waarmee duidelike onderskeid getref kon word tussen die twee plante. Die metodeisideaalvirdiewaarnemingvanoleandrieninhoëkonsentrasies(volspektrumanalise), laekonsentrasies(geselekteerdemassas)ofspoorhoeveelhede(“SIM”analisevanioongroepe). Diemetodeisinstaatomteonderskeitussendieekstrakteverkryuit N. oleader en T. peruviana enwasookinstaatomneriifolien,odorosiedenneritalosiedin N. oleander blaarekstraktewaarte neem en te bevestig. Analise van forensiese bewysstukke is suksesvol toegepas en ditkan in vloeistofensoliedematriksegebruikword.Metdienuwemetodekonoleandrieninspoorvlakke waargeneemwordinweefselmonsterswatindieverledegeenpositieweresultateopgelewerhet nie. Bowiea volubilis wordalgemeenas‘nmedisinaleplantgebruik,maarisookbaietoksies.Ditis vrylikbytradisionelegenesermarktebeskikbaareniseenvandieplantewatdiemeesteverkoop wordopdieDurbansemark.Tenspytevansyalgemenegebruikisditnognooitvoorheendeur enige van die forensiese laboratoriums in SuidAfrika waargeneem nie. Bovosied A, ‘n bufadienolied, is die hoof hartglikosied in die bol van B. volubilis . Die hartglikosied metode is suksesvol toegepas op die analise van die bolekstrak van B. volubilis en bovosied A is geïdentifiseerasdiehoofbufadienoliedindiebol.BovosiedAisgefraksioneerengekarakteriseer metbehulpvanLCMS.Vierekstraktevanplantaardigeoorsprongkanmetsuksesvanmekaar onderskeiworddeurdiehoofmassasvanbovosiedA,oleandrienenthevetienAenthevetienB temonitor.Hierdiemerkerkomponenteisbaiegoedvanmekaargeskeiendieidentifikasievan dieplantaardigeekstraktewasmaklik,terwyldieidentiteitvanelkeekstrakbevestigisdeurdie massaspektrumvanelkepiek.

xxiv Created by Neevia Personal Converter trial version http://www.neevia.com CHAPTER1 AIMOFSTUDY Thisstudyisthefirstphaseofanongoingresearchprojectinitiatedto promoteandenhance Forensic Chemistry in South Africa. It is a multidisciplinary investigation combining forensic investigation, chemistry and botany to create a unique platform needed by the forensic community of South Africa for the identification of poisonous plants especially those that are known to cause fatalities in humans from time to time. The main customer of the Forensic ChemistryLaboratoryofJohannesburg(FCLJHB)istheSouthAfricanPoliceService(SAPS), and any procedures developed, or data produced by such methods, must comply with the stringentrequirementsoftheSAPS(e.g.foruseasevidenceincourtcases). Theprojectencompassestheidentificationofthosemedicinalandpoisonousplantsthatwere previouslysubmittedtotheFCLJHB,thedevelopmentofextractionandanalyticalprocedures fortheirpoisonouscomponents,andifpossible,theapplicationofthedevelopedproceduresto forensicinvestigations. VariousplantderivedcompoundshavebeendetectedinforensicsamplessubmittedtotheFCL JHB.Mostofthetimethesecompoundsweredetectedusingageneralextractionandscreening procedure,butthesemethodswerenotdevelopedoroptimisedtoselectivelyextractanddetect thecompoundsofinterest.Afewmedicinalplants,forexample Callilepis laureola, areimplicated infatalities[1]buthaveneverbeendetectedattheFCLJHB.Sometimestheforensiccasefiles submitted to the Laboratory request the screening for a specific plant or plantderived component,whichmightormightnotbepresent.Mostforensiccasefilesthatrequestscreening forbotanicals,requestageneralscreeninganddonotsupplydetailedinformationnoraspecific request,forexample“Screenforherbaltoxins”or“Screenfor muti ”. Theidealforensicextractionprocedurewouldbeabletoextractallthecompoundspresent,orat leastallcompoundsofinterest.Similarly,theidealforensicscreeningprocedurewouldbeable to detect all the compounds present with equal sensitivity. Although general extraction and screeningproceduresexistattheFCLJHB,thesemethodshavenotbeenevaluatedastotheir applicabilitytoplantderivedcompounds. The real test of any developed method, whether an extraction procedure or a detection technique,istheapplicationofthesemethodstorealsamples.Thiswillprovetheefficacyofthe methodstodealwithmatrixeffectsandconcentrationdifferences.

1 Created by Neevia Personal Converter trial version http://www.neevia.com Theaimofthestudycanthereforebesummarisedasfollows: 1. The unambiguous identification of those plant components previously detected at the Laboratory or that have been requested by the customers, focussing on lethal plant toxins. 2. Developmentofqualitativeextractionproceduresthatwouldextractallthecompoundsof interest. This is typically not a single extraction procedure, but might be directed at classesofcompounds(alkaloids,terpenoidsorcardiacglycosides). 3. Developmentofchromatographicanddetectiontechniquesbasedonthecompoundsof interestandatthetypicalconcentrationinwhichthesecompoundswouldbepresentin theforensicsamples. 4. Theapplication(ifpossible)oftheabovementionedextractionanddetectionprocedures toforensicsamples(crimesceneexhibitsand/orviscerasamples).Ifthisisnotpossible, theabovementionedprocedureswillbeevaluatedwithinabotanicalmatrix. 5. Quantificationofforensicallyrelevantcompounds,aswellasthedeterminationofLOD andLOQ(dependingonavailabilityofreferencestandards). 6. Alloftheabovemustbedoneoncommerciallyavailableequipmentandcolumns,using offtheshelf chemicals, utilising robust and reproducible methods to detect the compoundsofinterestinbiologicalmatrices. ThisstudywillputforensicchemistryinSouthAfricaonanewlevelandwillgreatlyenhancethe capabilitytoscreenforensicsamplesforbotanicallyderivedcompounds.Mostofthecompounds ofinteresthavenotbeenroutinelydetectedinhumanviscera,andthedevelopedmethodswill makeauniquecontributiontotheanalyticaltechniquesusedinforensicchemistry,toxicological studiesandthescreeningofplantderivedproductsfortoxicprinciples.Itwillallowthesolvingof amuchlargerpercentageoffatalplantpoisoningcasesandsuspected muti poisoningsaswas previouslypossible.

2 Created by Neevia Personal Converter trial version http://www.neevia.com CHAPTER2

INTRODUCTION

2.1 FORENSICSCIENCE The field of forensic science has come a very long way since its recorded beginnings in the 700s, when the Chinese used fingerprints to establish the identity of documents and clay sculptures.Thisfieldisoneofthefewareasoflawenforcementwherescience,technologyand crimesolvingmeet.ThiscombinationsupportstheTheoryofTransfer:“Whentwoobjectsmeet, someevidenceofthatmeetingcanlaterbefoundandverified”. Afewsignificantadvancesoccurredintheyearspriorto1800.In1248,abook Hsi Duan Yu (The Washing Away of Wrongs) published by the Chinese, describing how to distinguish drowning from strangulation. It was thefirstrecorded application of medical knowledge to the solvingofcrime.Paracelsus(1493–1541)introducedtheuseofdrugsmadefromminerals[2]. Onthesubjectofpoisons,Paracelsussaid“Allsubstancesarepoisons:thereisnonewhichis notapoison.Therightdosedifferentiatesapoisonfromaremedy”[3].In1609,thefirsttreatise on systematic document examination was published in France. In 1784, one of the first documentedusesofphysicalmatchingsawanEnglishmanconvictedofmurderbasedonthe tornedgeofawadofnewspaperinapistolthatmatchedapieceremaininginhispocket[4]. Forensicscienceisascientificmethodofgatheringandexaminingevidence.Crimesaresolved bythesystematicevaluationofthecrimescenefollowedbythegatheringoffingerprints,palm prints,footprints,andanyphysicalpiecesofevidencethatcouldproveusefulintheinvestigation. Thisisfollowedbyapathologicalexaminationduringwhichtoothbiteprints,physicalscarsor woundsareexaminedandrecorded,followedbyadetailedautopsyofthedeceasedleadingto the collection of various biological samples like blood, urine, hair and other body tissues. Handwritingandtypewritingsamplesaswellasballisticstechniquesareoftenusedtoidentify criminalsorcriminalacts,butalloftheforensicsamplesortechniquesmentionedbeforehave onethingincommon–theyallneedsophisticatedinstrumentationandhighlyskilledstaff.

2.2 FORENSICTOXICOLOGY Toxicologyisthefundamentalscienceofpoisons.Apoisonisgenerallyconsideredtobeany substancethatcancausesevereinjuryordeathasaresultofaphysicochemicalinteractionwith livingtissue.However,allsubstancesarepotentialpoisonssinceallofthemcancauseinjuryor deathfollowingexcessiveexposure[5].

3 Created by Neevia Personal Converter trial version http://www.neevia.com Toxicity(theamountofpoisonordose)isconsideredasabiologicalconcept,andistherefore usuallydeterminedbysomeformofbioassay,butbioassaysarehardlyeverusednowadaysin forensictoxicology.Chemicalanalysesareusedtodetectthepresenceofthetoxin,measureits concentrationandrelatethistoitsknowntoxicity.Untilthe19 th century,physicians,lawyersand lawenforcementofficialsharbouredextremelyfaultynotionsaboutthesignsandsymptomsof poisoning. It was traditionally believed that if a body was black, blue or spotted in places or “smelledbad”,thedeceasedhaddiedduetoapoison.Othermistakenideaswerethattheheart ofapoisonedpersoncouldnotbedestroyedby fire,orthatthebodyofapersondyingfrom poisoningwouldnotdecay.Unlessapoisonerwasliterallycaughtintheact,therewas no way to establish that the victim died from a poison. In the early 18 th century, a Dutch physician, Hermann Boerhave, theorised that various poisons in a hot, vaporous condition yieldedtypicalodours.Heplacedsubstancessuspectedofcontainingpoisonsonhotcoalsand testedtheirsmells.WhileBoerhavewasnotsuccessfulinapplyinghismethod,hewasthefirst tosuggestachemicalmethodforprovingthepresenceofpoison[6]. During the Middle Ages, professional poisoners sold their services to both royalty and the commonpopulace.Themostcommonpoisonswereofplantoriginsuchashemlock,aconite, and belladonna or toxic inorganic substances such as arsenic and mercury salts. During the FrenchandItalianRenaissance,politicalassassinationbypoisoningwasraisedtoafineartby Pope Alexander VI and Cesare Borgia. The 1800’s witnessed the development of forensic toxicology as a scientific discipline. In 1814, Mathieiv JB Orfila (1787 – 1853), the “father of toxicology”, published Traité des Poisons – the first systemic approach to the study of the chemicalandphysiologicalnatureofpoisons[6]. Thefirstsuccessfulisolationofanalkaloidpoisonwasperformedin1850byJeanServialsStas, aBelgium,usingasolutionofaceticacidandethylalcoholtoextractnicotinefromthe tissuesofthemurderedGustaveFougnie.ModifiedbytheGermanchemist,FriedrichOtto,the StasOtto method was quickly applied to isolation of numerous alkaloid poisons, including colchicine,conine,,narcotineandandthismethodisstillusedtoday. In the second half of the 19 th century, European toxicologists were in the forefront of the development and application of forensic sciences. Procedures were developed to isolate and detectalkaloids,heavymetalsandvolatilepoisons.InAmerica,RudolphAWitthaus,Professor ofChemistryatCornellUniversityMedicalSchool,mademanycontributionstotoxicologyand calledattentiontothenewsciencebyperforminganalysesforNewYorkCityinseveralfamous poisoningcases:themurdersofHelenPottsbyCarlyleHarrisandofAnnieSutherlandbyDr Robert W Buchanan, both of whom used morphine. In 1911, Tracy C Becker and Professor Witthaus edited a fourvolume work on medical jurisprudence, Forensic Medicine and

4 Created by Neevia Personal Converter trial version http://www.neevia.com Toxicology ,thefirststandardforensictextbookpublished intheUS.In1918,theCityofNew Yorkestablishedamedicalexaminer’ssystem,andtheappointmentofDrAlexanderOGettler astoxicologistmarkedthebeginningofmodernforensictoxicologyinAmerica[6]. In1949,theAmericanAcademyofForensicScienceswasestablishedtosupportandfurtherthe practiceofallphasesoflegalmedicineintheUS.Severalotherinternational,nationalandlocal forensicscienceorganisationssuchastheSocietyofForensicToxicologistsandtheCalifornia Association of Toxicologists, offer forums for the exchange of scientific data pertaining to analytical techniques and case reports involving drugs and poisons. The International AssociationofForensicToxicologists(TIAFT)foundedin1963,withover1400membersinat least45countries,permitsworldwidecooperationinresolvingtechnicalproblemsconfrontingthe toxicologist.In1975,theAmericanBoardofForensicToxicologywasorganisedtoexamineand certifyforensictoxicologists[6].Comparedtothetoxicologicalworkdoneinindustryoracademic research, the task of the forensic toxicologist is compounded by limitations placed on the availability of analytical material, the time constraints usually placed on the process and the limitedresourcesusuallyavailableatthegovernmentlaboratories.Forensictoxicologydemands anoverallanalyticalsystemdesignedtoexcludeorindicatethepresenceofanypoisonineach of the chemical groups shown in Figure 2.1 [7]. Most of the numerous screening procedures reportedintheliteraturearetoolimitedtopermitaconfidentnegativereport.Alltoooftenthese screeningproceduresareclass/groupdirected,forexampledrugoriented,eventhoughmany criminalpoisoningsresultfromcompoundsotherthandrugs[5]. FIGURE2.1 Chemicalgroupingofpoisons

5 Created by Neevia Personal Converter trial version http://www.neevia.com Apartfromtheseanalyticalproblems,thelegalaspectoftheworkdemandsscrupulousattention todetail.Failuretomakefulldescriptivenotesontheitemsreceived,asimpleerrorinthedate the analysis was performed or neglecting to check reagent purity can become evidence of carelessworkinthehandsofanastutelawyer. The lawyer may, with justification, explore the extent of the toxicologist’s experience and knowledge,demandadetailedaccountoftheanalyticalmethodsandchallengetheintegrityof any opinion. The crucial evidence of identification and quantification of the poison may be faultlessandtheconclusionscorrect,butifthecourt’sconfidenceintheforensictoxicologistas anunbiasedscientificexpertisdestroyed,thecasemaybelost.Asecurechainofcustodyofall theexhibitssubmittedalsohastobeproved[5]. Despiteallthisdevelopmentandtheformationofvariousforensictoxicologicalorganizations,the basicprinciplesofforensictoxicologystillapplies.Orfila[5]waswellacquaintedwiththebasic principlesofforensictoxicology,andtheguidingprinciplesheestablishednearly200yearsago arestillapplicable.Thesemaybesummarisedasfollows:

• Allwhoundertakethisworkmusthavetoxicologicalexperience. • Theanalystmustbegivenacompletecasehistorythatcontainsalltheinformation available. • Alltheevidentialmaterial,suitablylabelledandsealedincleancontainers,mustbe submittedandexamined. • Alltheknownidentificationtestsshouldbeappliedandadequatenotesmadeatthetime. • Allthenecessaryreagentsusedforthesetestsshouldbepure,andblanktestsshouldbe performedtoestablishthisfact.

Alltestsshouldberepeated,andcomparedwithcontrolsamplestowhichtheindicatedpoison has been added. Strict adherence to these principles makes forensic toxicology one of the slowest and most expensive forms of analysis. However, this must be accepted not only to ensurejusticeforthepoisonedvictimandfortheaccused,butalsotoprotecttheintegrityand reputationoftheanalystandthelaboratoryheorsherepresents[5].Itisgoodadvicetoany forensictoxicologisttorememberOrfila’smotto“Thepresenceofapoisonmustbeprovedinthe blood and organs before it can be considered as a cause of death”. The four stages of any toxicologicalexaminationare:

1. Detection–todetectanydrugsorpoisonsinthesamplessubmittedbymeansof screeningprocedures. 2. Identification–toidentifyconclusivelyanydrugs,metabolitesorpoisonspresentby meansofspecificrelevantphysicochemicaltests.

6 Created by Neevia Personal Converter trial version http://www.neevia.com 3. Quantification–toquantifyaccuratelythosedrugs,metabolitesorpoisonspresent.The quantificationmaybehamperedbytheavailabilityofsuitablestandards. 4. Interpretation–tointerprettheanalyticalfindings(identificationandifapplicable– quantification)inthecontextofthecase,theinformationgivenandthequestionsaskedby theinvestigatingofficer.

Thedetectionofadrugorpoisonisthemostdifficultpartoftheanalyticaltoxicologyprocess,as the nature of the poison is seldom known. Screening tests for any possible drugs or poisons shouldbeusedwherethereisnoinformationavailablepertainingtotheidentityofthedrugor poison. General screening methods are usually more flexible than special methods and can therefore be applied to a wide variety of materials. They are essential for the investigation of unknown poisonings, and have some advantages even when the toxic agent is known or suspected.Thedeathsinvestigatedbytoxicologistsincludedeathsfromdrugabuse,accidental poisoning,suicidalpoisoningandhomicidalpoisoning. 2.2.1 Deathsfromdrugabuse Drugabuse,thenonmedicaluseofdrugsorotherchemicalsforthepurposeofchangingmood orinducingeuphoria,isthesourceofmanypoisonings.Drugabusemayinvolvetheuseofillicit drugssuchasorphencyclidine,theuseofrestrictedorcontrolleddrugssuchascocaine, barbiturates and amphetamine, or use of chemicals in a manner contrary to the intended purpose–suchasinhalingsolventsandaerosolproducts[6].Inabroadersense,drugabuse mayalsoincludetheexcessiveuseoflegalsubstancessuchasalcoholandprescriptiondrugs. Alcohol is a selflimiting poison as people usually lose consciousness before a lethal dose is ingestedandthereforeoverdosedeathsduetotheingestionofexcessivequantitiesofalcohol areuncommon.However,numerousaccidentaldeathsoccurfromtheconcurrentingestionof potentprescriptiondrugsandalcohol[6].Itmustbenotedthatmanydrugswereinitiallyderived fromplantmaterial(crudemorphinefrom Papaver somniferum L.,cocaineobtainedfromcoca, thedriedleavesof Erythroxylum coca andotherspeciesof Erythroxylum )orareplantproducts chemicallymodifiedtoproducemorepotentdrugs(morphineacetylatedwithaceticanhydrideto produceheroin)[5]. 2.2.2 Accidentalpoisoning Mostoftheaccidentalpoisoningsoccurinthehome.Themaincauseofaccidentalpoisoningin childrenoccurduetothecarelessnessofadultswhodonotstorepoisonouscompoundssuchas prescriptiondrugs,detergents,pesticidesandhouseholdcleanersinsuchawaythattheycan notbereachedbychildrenwhoaregenerallycuriousandadventurousinnature.Adultpoisoning occur usually as a result of mislabelling of products, which are not stored in their original containers.Inindustry,accidentalpoisoningisusuallytheresultofcarelessnessormishapsthat

7 Created by Neevia Personal Converter trial version http://www.neevia.com exposethe workerstotoxicsubstances[6].Anotheragentthatcommonly leadstoaccidental poisoningiscarbonmonoxide,whichisquitefrequentlygeneratedbyfossilfueldevicesthatis usedinenclosedspaceswithoutadequateventilation.Afewexamplesofsuchdeviceswouldbe primus(paraffin)stovesandcoalfiresthatarecommonlymadewithininformaldwellingsduring coldwinterspells. 2.2.3 Suicidalpoisoning Insuicide,poisoningisacommonmannerofdeath.Themostcommonsuicidalagentiscarbon monoxide, which is usually generated from automobile exhausts. While cyanide, arsenic and otherwellknownpoisonsmayoccasionallybeusedassuicidalagents,mostdeathsresultfrom prescription drugs. Nowadays, most suicidal poisonings involve multiple drug ingestion. By analysingthegastricandintestinalcontents,blood,urineandthemajororgansofthebody,the toxicologist can establish beyond doubt that the deceased could not have taken such a dose accidentally [6]. In South Africa a new trend has developed among the black population to commitsuicidebytheingestionofanematicidecalledAldicarb(Temik): 2Methyl–2(methylthio)propanalO[(methylamino)carbonyl]oxime. Theuseofplantsorplantbasedmaterialtocommitsuicidehasnotbeenreported,largelydueto theuncoordinatedcollectionofforensicandtoxicologydatainSouthAfrica.Thereluctanceof theSouthAfricanpopulationtoreporttheabuseormisuseoftraditionalmedicineor muti also contributestothelownumberofcasesthatareactuallyreportedanddocumented. 2.2.4 Homicidalpoisoning Accidentalandsuicidalpoisoningsarecommontoday,butmurderbypoisonisrareinthefirst worldcountries.However,inthirdworldcountriessuchasinAfricaandtheEasternPacificrim, murderbypoisonisnotuncommon.Todeterminethatapersondiedasaresultofhomicidal poisoningisoneofthemostdifficulttypesofinvestigation.Thegeneralevidenceofpoisoningis obtainedfromknowledgeofthesymptomsdisplayedbythedecedentbeforedeath,thepost mortem examination of the body by the pathologist and the isolation and identification of the poison by the toxicologist. Murder by poison most commonly occur within the home and the physicianwillseldomsuspectabereavedfamilymember.Also,therearerarelyanysymptomsof poisoning that cannot equally well be caused by disease. The pathologist can recognise the effectsofcertainpoisonsatautopsy,butmostpoisonsdonotproduceobservablechangesin body tissue and in most cases, toxicological analysis produces the evidence for murder by poison[6].

8 Created by Neevia Personal Converter trial version http://www.neevia.com ThetrueincidenceofpoisoninginSouthAfricaisnotwelldocumented.Thisismainlycausedby fragmented reporting, some reporting only covers certain regions of the country or refer to a specifichospitalorpoisoncentre[8].Anothercauseisthepoorevaluationofthecrimescene, thelackofknowledgeastowhichsamplesshouldbetakenandsubmittedforanalysis,anda generalunwillingnessofpeopletogetinvolvedbysupplyingcrucialinformation.Poisoningdue toplantmaterial(herbalpoisoning)isalsopoorlyreported,partlybecauseoftheunwillingnessof peopletoadmitusingtraditionalmedicinederivedfromplantmaterial,butalsobecauseofthe fearthattheculturalheritageofthepeoplewillbe“stolen”andcommercialised. Themodernforensictoxicologistutilisesavarietyofanalyticalinstrumentationandtechniquesto carryouthisorhermission.InSouthAfrica,theforensicanalystisoftenconfrontedwithunique analysisduetotheuseoftraditionalmedicines( muti ),whichhavemedicinalvaluebutcancause deathorinjurywhenusedincorrectly.Inmostofthecases,themethodsrequiredfortheanalysis ofthesecompoundsdonotexistandhavetobedeveloped. Generally,themostdifficultpartofanytoxicologyanalysisistheprocessofisolatingthetoxic substancefromthebiologicalmatrix.Thismustbeaccomplishedinamannerthatprovidesa concentrated sample that contains the compound(s) of interest, but is relatively free of interference by naturally occurring substances. Once the compound is isolated, purified and concentrated,identificationandquantificationbecomepossible. Inordertoprovidethepathologistorinvestigatingofficerwithsoundinformationastothestateof intoxicationorpoisoning,degreeofimpairmentorcontributiontoafatality,thetoxicologistmust be informed as to the nature and circumstances of the intoxication as well as the quantity or concentrationofthesubstanceinvolved[6].OnceagainthetoxicologistinSouthAfricaisoften facedwithasituationwherethepossiblecauseofdeathisunknown,especiallywhere muti was involvedassome muti doesnotproduceimmediateeffectsorshowimmediatesymptoms,and some pathologists are not familiar with the pharmacological action nor the organ / cellular damagecausedbysomeplantsusedastraditionalmedicine. The procedure utilised in a typical toxicology section of a laboratory may include preliminary examinationofmaterialsfollowingitsextractionandisolationbyusingchemicalspottests,which bycolourproductionmayindicatethepresenceofatypeofdrugorpoison.Moresophisticated techniques include radioimmunoassay (RIA), thinlayer chromatography (TLC), ultraviolet (UV);infraredspectroscopy(IR);highperformanceliquidchromatography(HPLC) and gas chromatography (GC). The application of mass spectrometry (MS) is now commonly utilisedforpositiveidentificationofdrugsandtoxiccompounds[9].

9 Created by Neevia Personal Converter trial version http://www.neevia.com 2.3 MEDICINALPLANTS It is estimated by the World Health Organisation (WHO) that approximately 75 – 80% of the world’s population uses plant medicines either in part or entirely. For many this is out of necessity because they cannot afford the high cost of pharmaceutical drugs or do not have access to universitytrained medical practitioners. Growing numbers of American health care consumers are turning to plant medicines for many reasons – low cost and seeking natural alternatives with fewer side effects are commonly cited [10]. In Africa, traditional healers and remediesmadefromplantsplayanimportantroleinthehealthofmillionsofpeople.Therelative ratiosoftraditionalpractitionersanduniversitytraineddoctorsinrelationtothewholepopulation inAfricancountriesarerevealing.InGhanaforexample,inKwahudistrict,foreverytraditional practitionerthereare224people,comparedtooneuniversitytraineddoctorfornearly21000 people.ThesameappliestoSwaziland,wherethereare110peopleforeverytraditionalhealer whereasforeveryuniversitytraineddoctorthereare10000people[11,12,13]. Inthepast,modernsciencehasconsideredmethodsoftraditionalknowledgeasprimitiveand duringthecolonialeratraditionalmedicalpracticeswereoftendeclaredasillegalbythecolonial authorities.Consequently,doctorsandhealthpersonnelhaveinmostcasescontinuedtoshun traditional practitioners despite their contribution to meeting the basic health needs of the population,especiallytheruralpeopleindevelopingcountries.However,recentprogressinthe fields of environmental science, immunology, medical botany and pharmacognosy, have led researcherstoappreciateinanewwaytheprecisedescriptivecapacityandrationalityofvarious traditionaltaxonomiesaswellastheeffectivenessofthetreatmentsemployed[11]. The importance of medicinal plants in South African traditional healing systems cannot be overemphasized.ThesemedicinalplantsknowninSouthAfricaas muti ,playanindispensable roleinthehealingpracticeoftraditionalhealersinthecountry.Thereareapproximately200000 traditionalhealersinSouthAfrica,with70–80%oftheblackpopulationconsultingthesehealth practitioners. Many of these customers or patients obtain plant medicines from the traditional healers. The muti industry is a multi million Rand industry in South Africa and is continually growing[14].SouthernAfrica,andinparticularSouthAfrica,isrichinplantdiversitywithsome 30 000 species of flowering plants. This represents nearly 10% of the world’s higher plants. Greatculturaldiversityalsoexistwithinthisregionandmanypeoplearedependentontheplant diversityanduseplantsintheirdaytodayactivitiesthatincludefood,water,fuelandmedicine tomentionafew.TakingintoconsiderationthisbroadanddiverseplantbaseofSouthAfrica,itis notsurprisingtofindthatapproximately3000speciesofplantsareusedasvariousmedicines and muti .Oftheseplants,some350speciesareregularlyusedandtradedasmedicinalplants orherbalpreparations.[15].

10 Created by Neevia Personal Converter trial version http://www.neevia.com Extreme pressures on wild reserves of plants have come about mostly in the last 10 years. Factors,amongothers,thathavecontributedtowardstheriseincommercializationof muti are the rapid growth and urbanization of the black population as well as the affordability of these plantmedicines.In1992thenumberofgatherersselling muti plantsinJohannesburgwasfewer than 10 gatherers on Soms Traditional Healer’s market. Today, Soms is a sprawling market overflowingwithroots,barksandbulbswithwellover100gathererssellingtheirproductsthere. Muti traders,whichincludethetraditionalhealers,usedtoobtaintheirplantsfromgathererswho wouldsupplydoortodoor.Atpresent,however,thegatherersprefertoselltheirplantsdirectlyto anyinterestedpartyontheopenairmarketssuchasSoms.Althoughtheharvestingofmedicinal plantsusedtobethedomainoftrainedandecologicallyresponsiblehealers,manyofthecurrent gatherersinSouthAfricahaveapoorknowledgeofwhattheplantstheygatherareusedforand theypracticenonsustainableanddestructiveharvestingtechniques[14]. Currently traditional African medicine supplied by sangomas, nyangas and other informal vendors do not fall under the National Drug policy. On the other hand, marketed labelled medicines,internationallyestablishedherbalformulationsandnutritionalsarecurrentlyregulated orwillsoonberegulated. Medicinesregulation,inthepublicinterest,comprisesofthreeintegralaspects:quality,safety andefficacy.Intermsofqualitythehygienicandcontaminationsituationrelatingtothetraditional medicinesisaconcernastheyaresoldonpavementsandmarketswhichareoftentaintedwith sputum, urine and faeces, contrasting with the GMP pharmaceutical manufacturing standards whicharenecessaryforproductionandpackagingofothermedicines.Regardingefficacyand safety,itisimperativetoevaluatetherelativeriskfromtraditionalAfricanherbsandsubstances, sincesome75%oftheAfricanpopulationisestimatedtousetraditionalsubstances,usuallyin combinations.AccordingtotheelectronicdatabaseestablishedbyNoristanLaboratories,now withtheMedicalResearchCouncil(MRC),ofthe350plantextractsassayed,some79%showed definitepharmacologicalactivity,and12%definitetoxiceffects[16]. AccordingtoJ.Kaufman et. al [17],“InformationoncauseofdeathamongadultsinsubSaharan Africa is essentially nonexistent”. The author of this report estimates that annually several thousanddeathsfromtraditionalAfricanmedicinesoccur.Dr.M.Stewart,recentlyretiredfrom the Department of Chemical Pathology, S.A. Institute for Medical Research, concurs with this assessment,havingpreviouslyconfirmed“70traditionalAfricanmedicinedeathsin8monthsat the Coronation Hospital in Johannesburg”. It is significant that the majorpoisoning symptoms andcausesofdeathfromtraditionalAfricanmedicinescloselymirrorthemajorsymptomsand causes of death (besides infections) among the black population: diarrhoea, vomiting, hypoglycaemia,renaland/orhepaticfailure,respiratorydistressandcardiacfailure[16].

11 Created by Neevia Personal Converter trial version http://www.neevia.com ThecrudedeathrateinSouthAfricais8.9per1000[18],meaningthatapproximately400000of 40millionSouthAfricansdieeachyear.IntheRSA20%ofalldeathsareofunknowncauses. DeathsfromtraditionalAfricanmedicinescouldconstituteaportionofthisapproximately80000 deaths. Prof.PieterJoubertexMedunsa,whoseworkiswidelyrespected,publishedandcitednationally andinternationally,hasdeterminedthat“indevelopingcountries,besidesinfectiousconditions, acute poisoning with pesticides, paraffin (kerosene) and traditional medicines are the main causes of morbidity, whilst acute poisonings with traditional medicines is the main cause of mortality ” [19]. In a project covering 1981 – 1982 at GaRankuwa Hospital, Pretoria, Joubert determinedthatwhilstonly18%ofallacutepoisoningswereduetotraditionalmedicines,most (86%)ofalldeathsfromacutepoisoningwereasaresultofpoisoningswithtraditionalmedicines [20].Inacontinuingprojectcovering1981–1985,alsoatGaRankuwaHospital,Joubertonce again determined that “the main poisoning causes were paraffin (59%),but with low mortality (2%),whilstpoisoningwithtraditionalmedicinesresultedinhighmortality(15%)andaccounted for51%ofalldeathsasaresultofacutepoisoning,alwaysaccidental.Vomiting,diarrhoeaand abdominalpainswerethemostfrequentencounteredsymptoms,whilstlungs,liverandcentral nervous system were commonly affected. The traditional healer was the main source (83%), while11%wasboughtfromAfricanmedicineshops[21].Theplantsmostfrequentlyimplicated inthepoisoningsatGarankuwaHospitalwere Jatropha curcas,Ricinus communis and Datura stramonium [22]. TheZulupopulationusesawidevarietyoftoxicplantsformedicinalpurposes[23].Amedicinal plantassociatedwithmanyfatalitiesis Callilepis laureola ,alsoknownas Impila whichironically means“health”inZulu[24].Withapproximately50%ofthepopulationusing Impila inKwaZulu Natal,itisthesecondmostwidelyusedmedicinalplantandhasbeenextensivelyreported[25]. Impila inducesseveretoxicityandcausethefollowing:acuterenalfailureandfatallivernecrosis. Thus, it is nephrotoxic, hepatotoxic and also causes hypoglycaemia. It causes alteration in consciousness, vomiting, diarrhoea, convulsions and the rootstock is toxic and can be fatal if ingestedinsmallquantities[16]. Many black South African women use traditional African herbal remedies as antenatal medicationsortoinduceoraugmentlabour.Verylittleisknownabouttheand potentialtoxicityofplantsusedinherbalremedies,butseveraloftheseplantsareknowntobe poisonous.Someoftheherbsaretoxicinlargedoses,andthereareabout36plantsinSouth Africausedtoinducelabour,ofwhich15aretoxic[26,27,28].

12 Created by Neevia Personal Converter trial version http://www.neevia.com Traditional medicines can be beneficial, dangerous or useless in a pharmacological or psychological capacity, their dangers being mainly as direct irritants or as hepatic, renal or cardiactoxins.Mildtomoderatetoxicityfromshortorlongtermuseisdifficulttoseparatefrom the symptoms of the original illness. Greater absorption from enemas, coupled with irritant proctitis and perforation of the rectal / colon membranes during administration, indicate that enemasresultinahighmortality[25].Traditionalmedicines(or muti )areusuallyadministered orallyorasanenemabyatraditionalhealer.Gastrointestinalirritationwasthemostcommon syndrome (54%) experienced after traditional medicine administration. Cardiac glycosides are often suspected (44%) in autopsies (FCL JHB data base) where death was presumed to be caused by herbal medicine. It is concluded that in patients with gastrointestinal symptoms, traditionalmedicinecontainingcardiacglycosidesshouldbeexpected[29].Itmustbetakeninto considerationthatthishighpercentageofpositivesforcardiacglycosideswerelinkedtoHPLC PDA results, which based the identification of cardiac glycosides on the nonspecific PDA spectraofthesecompounds. ToxicityrelatedtotraditionalAfricanmedicinesisbecomingmorewidelyrecognized.Accidental herbal toxicity occurs not only as a result of the lack of pharmaceutical quality control in harvesting and preparation, but also because these remedies are believed to be harmless. Treatmentinmostcasesofplantpoisoningremainssymptomatic,withfewantidotesavailable [30]. To fully understand the active ingredients in the different plant species which may have beneficialeffectsorwhichmaybepoisonous,reliableanalyticalmethodshavetobedeveloped tostudytheremediesoftraditionalhealersandtohelpthemindevelopingsafemedicinefortheir patients. Very few analytical methods currently exist to identify the active ingredients in the differentplantsofinterest. 2.4 ANALYTICALMETHODSUSEDINFORENSICTOXICOLOGY When tablets or capsules are found in the immediate vicinity of /or in the possession of an unconscious patient, it is reasonable to assume that a drug overdose has been taken. If the patientrespondstosupportivetreatmentandnoactivemeasuresarecontemplated,toxicological analyses are of historical interest only. However, when circumstantial evidence is lacking, a diagnosis of poisoning may be difficult to sustain simply on the basis of clinical examination, sincecomaordeathinducedbydrugsisnotreadilydifferentiatedfromthatcausedbydisease processes. The role of the laboratory is important in the case of poisoning cases. While numerouschemicalmethodsareavailabletothetoxicologist,onlyafewofthemorecommon

13 Created by Neevia Personal Converter trial version http://www.neevia.com proceduresarediscussed.Allofthesemethodscanbeappliedtoqualitative(identification)and quantitative(concentration)analysis. 2.4.1 Colourtest Acolourtestisachemicalprocedureinwhichthesubstancetestedisactedonbyareagent, which causes a change in the reagent, thereby producing a characteristic colour or colour change. The greatest utility of colour tests in toxicology is the rapid screening of urine specimens,astheurinemaybeanalyseddirectlywithouttimeconsumingextractionprocedures. A false positive result, that is the development of a colour when the correct compound is not present, is one of the drawbacks of this method. The forensic analyst must be aware of the limitationsofthismethodandparticularlythesourcesoffalsepositivereactions[6]. 2.4.2 Microdiffusiontest Microdiffusionanalysisisusedfortherapidisolationanddetectionofvolatilepoisons.Numerous volatile poisons and gases may be detected by microdiffusion techniques; they include acetaldehyde,carbonmonoxide,hydrogencyanide,ethanol,fluoride,halogenatedhydrocarbons andmethanol[6]. 2.4.3 Immunoassays Immunoassayisatechniquewhichrequiresantibodiesthatbindtightlytothedrugofinterest and only weakly or not at all to other substances. At present, there are three commercially availablesystems,widelyusedinforensictoxicology:enzymemultipliedimmunoassaytechnique (EMIT), fluorescent polarisation immunoassay (FPIA) and radioimmunoassay (RIA). An immunoassayconsistsofamixtureofthedrugspecificantibodyanda“labelleddrug”forwhich theantibodywasprepared.The“label”maybearadioactive(RIA),orchemicallyattached fluorescent compound (FPIA), or an enzyme (EMIT). When a sample containing the drug of interestisaddedtothemixture,itcompeteswiththe“labelleddrug”forbindingtotheantibody. Thepresenceofthedrugsoughtisindicatedbyachangeinradioactivity(RIA),fluorescence polarization (FPIA) or enzyme reaction rate (EMIT). These techniques may be used for both quantitativeandqualitativeanalysis.Thetechniquesarerapidandoftensimpletoapply[6]but sufferfromfalsepositivereactions. 2.4.4 Chromatography Chromatographyisaseparationtechniqueandisatermthatliterallymeans“colourwriting”and theoriginofthewordisattributedtotheRussianbotanistTswett[31]whocoinedthetermto identify the method by which he successfully separated plant extracts into different coloured zonesintheearly1900s[32].Thetermhaslostitsoriginalmeaninginthewealthofseparations

14 Created by Neevia Personal Converter trial version http://www.neevia.com performed on colourless substances. The components of a sample mixture are distributed between two phases, one of which is stationary while the second one, the mobile phase, percolates through a matrix or over the surface of a fixed phase. Although there are many varieties of chromatographic analysis the three most commonly applied by toxicologists and forensic analysts are thinlayer chromatography (TLC), gas chromatography (GC) and high performanceliquidchromatography(HPLC)[6]. 2.4.4.1 Thinlayerchromatography(TLC) InTLC,thestationaryphaseisa“thinlayer”ofanabsorbent,usuallysilicagel,whichisspread onasolidsupport.Concentratedsampleextractsanddrugstandardsareappliedasaseriesof spotsalongthebottomoftheplateand placed inaclosedtankin whichtheabsorbent layer makescontactwiththe“developingsolvent”(mobilephase)belowtheappliedspots.Thesolvent movesuptheplatebycapillaryaction,dissolvingandseparatingthecomponentsoftheextracts. The presence of drug is visualised by spraying or dipping into the various reagents, which producecolouredreactionswithparticularcompounds.TherearenumerousTLCsprayreagents tochoosefrom,butthetoxicologistmustbeguidedbythechemicalnatureofthecompoundsof interest.Ifacompoundfromtheextractmigratesthesamedistanceandreactstotheapplied sprays in the same manner as the reference drug / compound, the toxicologist then has a tentative identification of the compound, which must be confirmed by another chemical or analyticaltest. 2.4.4.2 Gaschromatography(GC) In GLC, or more commonly called GC, the mobile phase is an inert carrier gas for example heliumornitrogenwhichflowsthroughacolumnpackedwithasolidsupportcoatedwithaliquid stationary phase (packed column) or over a stationary (liquid) phase coating the walls of a narrow column (capillary column). Numerous types of liquid materials are available, and the forensic analyst varies the stationary phase depending upon the nature of the compounds or groups of compounds he wishes to separate and identify. An extract of a specimen chromatographedunderthesameconditionsasreferencedrugsandproducingapeakatthe same time would be tentatively positive for the reference drug in the spectrum. Gas chromatographyisparticularlysuitablefortheanalysisofvolatilesubstancessuchasalcohols [6]. The analysis of natural products, herbal formulations and muti samples by GC is usually hampered by various problems. The analysis of the volatile fraction of these type of samples usually do not pose too great a challenge – as long as the compounds of interest can be efficiently volatilised from the matrix without contaminating the inlet, analytical column or detector.Thelessvolatilefraction,however,requiresderivatisationtoenhancethevolatilityof

15 Created by Neevia Personal Converter trial version http://www.neevia.com thecompound(s)ofinterest.AnotherlimitationofGCandultimatelyGCEIMSsystemsisthe molecular size of the compound(s) of interest. These systems work well when analysing compoundslessthan600amu(maximum1000amu)butfailtoeffectivelyseparateanddetect larger.Althoughnewermassdetectorsarecapableofdetectingmacromolecules,the inletsystems(GC)stillsufferfromtheinitiallimitations.AnotherlimitationofusingGCorGCMS for the analysis of herbal products and muti is the thermal instability of many of the active compoundsfoundinthesesamples. Although HPLC and HPLCMS (especially HPLCEIMS) are not suited for the analysis of volatilecompounds,itisideallysuitedfortheanalysisofthelessvolatiletononvolatilefraction ofthesesamples,andtypicallydonotsuffertheabovementionedproblems. 2.4.4.3 HighPerformanceLiquidChromatography The modern form of column chromatography has been called high performance chromatography, highpressure, highresolution and highspeed liquid chromatography. However,theabbreviationHPLCisnowuniversallyunderstoodtodescribethetechniquethat separatesmixturesoncolumnsfilledwithsmallparticles(typically10morlessindiameter)by withaliquidunderpressure.Theessentialequipmentconsistsofaneluentreservoir,a highpressurepump,aninjectorforintroducingthesample,astainlesssteelcolumncontaining thepackingmaterial,adetectorandadatarecordingdevice.ThusHPLCissimilartoothertypes ofchromatographyinhavingastationaryphase(packingmaterial)andamobilephase(eluent) [5]. HPLCoffersmanyadvantagesovertraditionalLC: (a) Speedofanalysis (b) Drasticimprovementinresolution (c) SensitivityvarioushighlyspecificandsensitivedetectorsareHPLCcompatible (d) Reusablecolumns (e) Idealforlargemoleculesandionicspeciesaswellasnonvolatilecompounds (f) Easysamplerecovery (g) Easilyautomatedforunattendedoperation HPLCColumns Thecolumnistheheartofthechromatographicsystemandthesuccessorfailureofananalysis depends on the choice of column and proper operating conditions which include the proper selection of mobile phase and the pH of the mobile phase (Figure 2.3). Columns are almost invariably made from high quality stainless steel but can also be constructed from PEEK material. Columns are generally operated at ambient temperatures, but elevated or lowered

16 Created by Neevia Personal Converter trial version http://www.neevia.com temperaturesmaybeusedtoaffordadifficultseparation.Toensurestablechromatographyand reproducible retention times at any time of the day, the column is usually electrically thermostatedatatemperature5 oChigherthanthehighestambienttemperature.

FIGURE2.2 Factorsaffectingchromatographyandselectivity

Gradientelution Gradient elution is defined as increasing the strength of the mobile phase during a chromatographicanalysis.Theneteffectofgradientelutionistoshortentheretentiontimeof compoundsstronglyretainedoncolumns.Gradientelutionoffersseveraladvantages: (a) Totalanalysistimecanbereducedsignificantly (b) Overallresolutionperunittimeofamixtureisincreased (c) Peakshapeisusuallyimproved(lesstailing) (d) Effectivesensitivityisincreasedsincethereislittlevariationinpeakshape (e) Removalofwellretainedcompoundsthatmightbleedoffinthenextanalysis (Thisisextremelyimportantwhenworkinginabiologicalmatrix). Gradientsmaybeintroducedinastepwisemannerorcontinuouslybygraduallyincreasingthe solventstrength(organiccontent)accordingtoapreprogrammedgradientprofile. Themobilephase(eluent) Inliquidchromatographythecompositionofthesolventormobilephaseisoneofthevariables influencingtheseparation.Themobilephaseshould:

17 Created by Neevia Personal Converter trial version http://www.neevia.com (a) Bepure–itshouldnotcontainanycontaminants–especiallymetals (b) Notdegradeordestroythepacking(highpHeluentsdegradesilicabasedstationary phases) (c) Be compatible with the detector (especially in coupling HPLC systems to mass spectrometers) (d) Dissolvethesample (e) Havealowviscosity (f) Permiteasysamplerecovery,ifdesired (g) Becommerciallyavailableatareasonableprice (h) Shouldnotchemicallyreactwiththestationaryphase,therebyalteringthestationary phaseandcreatinganuniquestationaryphase. 2.4.5 COLUMNTHEORY The successful chromatographic separation involves making a compromise between chromatographicresolution,samplecapacity,andanalysistime.

Resolution Thegoalofchromatographyistoseparatecomponentsofasamplewithinareasonableperiod of time into separate bands or peaks as they migrate through the column. The resolution, R, betweentwopeakscanbequantitativelymeasuredusingthefollowingequation:

R=(t R2 –t R1 )/((w 2+w 1)/2)=2t/(w2+w 1) Where

• tR2 and t R1 are retention times of the retained components measured at the

peakmaximum

• tisthedifferencebetweent R2 andt R1

• w2andw 1arethepeakwidthsinunitsoftimemeasurementatthebaseofthepeaks. Generally, a resolution value of 1.0 or greater is required for good quantitative or qualitative work.Improvingcolumnefficiencybydecreasingthewidthofthebandisthemostdesirableway ofimprovingresolutionsinceitsavestime.Columnefficiencyisafunctionofcolumnparameters, such as solvent flow rate and viscosity, the particle size of the column packing, the type of columnpackingaswellasthemethodofpackingthecolumn,andthechemicalprocessesused tolimitunwantedchromatographicprocessesduetounwantedactivesites(silanolactivity).Itis alsopossibletoimprovetheresolutionbychangingthecolumnselectivity,butiftheefficiencyis constant,increasingtheresolutionusuallyinvolveslongerelutiontimesforaparticularsystemor theuseofanalternativecolumnchemistry(packing)ormobilephasesystem.

18 Created by Neevia Personal Converter trial version http://www.neevia.com Column efficiency Columnefficiencycanbemeasuredquantitativelybythefollowingequation:

N=16(t R/w)=5.5(t R/w 1/2 ) Where

• wisthepeakwidthatthebaseline,w 1/2 thewidthat½peakheight

• tRistheretentiontimeofretainedcompound Thisequationcomparesthewidthofthepeaktothelengthoftimethecomponenthasbeenon thecolumn.Thus,anefficientcolumnkeepsthebandsfromspreadingand/orgivesverynarrow peaks.ThevalueforNiscalledthenumberoftheoreticalplates.Itisausefulmeasureofthe performanceofthechromatographiccolumnbecause,toafirstapproximation,thevalueofNis independentoftheretentiontime.Thatis,thenumberoftheoreticalplatescalculatedforapeak at3minuteswillbethesameasthevaluecalculatedforpeaksemergingat10minutesfromthe samecolumnifextracolumneffectsareabsent.Generally,themeasurementinvolvingthepeak

widthat½height(w 1/2 )hasbeenfoundtobemostusefulsinceitcanbecarriedoutonpeaks thatarenotcompletelyresolvedordisplayaslighttailing. Thenumberoftheoreticalplatesisproportionaltocolumnlength.Generallylongercolumnshave more plates, butthe pressure drop is greater. The height equivalent to theoretical plate, H or HETP,isthepreferredmeasureofcolumnefficiencybecauseitallowsacomparisonbetween columnsofdifferentlengths: H=HETP=L/N Where

• Listhelengthofthecolumn(usuallyinmillimetres)

• Nisthenumberoftheoreticalplates. Columnsforhighspeedliquidchromatographygenerallyhaveplateheightsintherangeof0.01 to1.0mm.ThevalueofHcanalsobeusedasanevaluationcriterionforcolumnsasthebetter columnshavesmallervaluesforHthanlessefficientcolumns. Band broadening can also occur in the injector, detector and interconnecting tubing. It is extremely important to keep the system volume and length of interconnecting tubing to a minimum and to ensure proper connections with negligible dead volume at each connection

19 Created by Neevia Personal Converter trial version http://www.neevia.com point.AnotherwaytoimprovetheresolutioninanHPLCseparationistochangetheselectivity ofthecolumn.Thismaybedonebychangingthestationaryphase,thecolumnchemistryused orthemobilephasecomposition.Thenewesttrendistodecreasetheparticleto1.7mandto increase the flow rate to afford ultrafast chromatography with unparalleled resolution and sensitivity. This trend unfortunately requires special hardware that can produce and withstand pressuresupto20000psiandspeciallydesigneddetectorswithstateoftheartelectronicsto detecttransientchromatographicpeaks. Distribution coefficient Thedistributioncoefficientequalstheconcentrationofsoluteinthestationaryphasedividedby theconcentrationinthemobilephase.Thedistributioncoefficientisoftencalled: Partition coefficient inliquidchromatography Permeation coefficient inexclusionchromatography Adsorption coefficient inliquidadsorptionchromatographyand Distribution coefficient inionexchangechromatography Column selectivity is improved by changing the distribution coefficient K and/or the stationary

phasevolumeV s.Thedistributioncoefficientischangedasfollows: (1) Changing mobile phase – this can be done by increasing polarity, pH and/or ionic strength.Thisisusedingradientelution (2) Changingstationaryphase–thismaybeachievedbychangingporesizeofthegels, modifyingsurfacesofadsorbents,changingliquidusedasstationaryphase (3) Changing temperature – in certain instances such as ionexchange and exclusion chromatography, the selectivity of the column can be changed by changing the temperature (4) Changingnatureofsolute–anexamplehereistoeliminatethechargeonanaminoacid by changing pH of the mobile phase to reduce affinity for ionexchange resins or by forminganionpair(alsocalledionpairingchromatography). Choosingcolumnparameters Three critical qualities of chromatographic separations are resolution, speed and sample capacity, and usually results in a compromise between these factors (Figure 2.2). Generally, resolutionisimprovedbysacrificingspeedandsamplesize.Incomplexanalysisgoodresolution betweenpeaksarecriticalandisusuallyimprovedbychangingtheselectivityoftheanalytical column(Figure2.2).

20 Created by Neevia Personal Converter trial version http://www.neevia.com Thelengthofthecolumnisaveryimportantparameterinseparation,anddoublingofthelength results in doubling of the retention and separation of the zones. High speed is achieved by making the column as short as possible consistent with the resolution required, as well as operatingathighsolventflowrates. A second important parameter is the column diameter and typical column diameters for analyticalseparationsarebetween2and4mm,whileforpreparativework,diametersof8to50 mm are more appropriate. The sample capacity of a column increases as the square of the diameter,butflowinequalitiesandpackingdifficultiesmayprohibitindefiniteincreases. Theparticlesizedependsonthetypeofsupportused.Smallporousparticlesofferrelativelyhigh surface area and if uniformly packed, give columns with small interparticle void spaces and excellentefficiency.Samplesizecapacityofthesecolumnsisrelativelyhigh.Thedisadvantages of small particles are high resistance to liquid flow and manufacturing as well as packing difficulties.Resolutionandcapacityareimprovedbyusingthesmallestparticlespossible. Thechoiceofthecorrectstationaryphaseisveryimportantforthebestpossibleseparationand analysis.Thestationaryphasemustbeinsolubleinthemobilephase.Forexample,silicaisvery solubleinalkalinewithapHgreaterthan7.5,andacidswithapHlowerthan2.This led to the development of hybrid (siliconcarbon) particle technology that combined the best characteristics of silica and polymer packing (Xterra column technology by the Waters Corporation). This stationary phase is a great improvement of the traditional silica stationary phaseoreventhemoreresentpolymericphasesduetothefollowingcharacteristics:

• pHstabilityfrompH1to12(Xterracolumnslast7timeslongeratextremepHconditions)

• stabletorapidmobilephasecompositionchanges

• stabletorapidflowratechanges

• displayunique“dualmode”retentionmechanismforpolarimbeddedstationaryphases. Other parameters which are also important in choosing the best conditions for separation include: Gradientelution thegradientprofileshouldbekeptassimpleaspossible; Flowrate this will influence resolution and speed of separation and column efficiency; Columnpressure this is generated by the resistance of the column to liquid flow and manycolumnparameterscaninfluencethepressure; Columntemperature changingthetemperaturecanhaveaninfluenceontheresolution,but mayalsoincreasetheofthesample[33].

21 Created by Neevia Personal Converter trial version http://www.neevia.com 2.4.6 HPLCMSSYSTEMS(LCMS) The major technical challenge in liquid chromatographymass spectrometry is interfacing the chromatographic and mass spectrometric components. The mass spectrometers used with HPLC systems are virtually the same as those used with GC systems but with a different interface.Understandingthedifferentworkingprinciplesandtechnicalpropertiesofthedifferent MSinstrumentsgivesinsightintothepossibilitiesandlimitationsthatdoexistwhencouplingLC andMS.Fivedifferentmassspectrometers(analysers)havebeensuccessfullyinterfacedwith

LCsystems,namelyQuadrupole(alsocalledsinglequadrupoleorQ 1)analysers,IonTraps(IT), TimeofFlight (TOF) analysers, Sector Instruments (SI) and Fourier Transform Instruments (FTI).VarioustandeminstrumentshavealsosuccessfullybeencoupledtoLCsystems.These

includeTripleQuadrupoleInstruments(Q 3),QuadrupoleTOF(QTOF)andvariouscombinations of sector and quadrupole systems. The following discussion of some of the more commonly encounteredsystemsisabriefsummaryofeachtypeofdetectorwiththeaimofhighlightingthe basictheoryofoperationandtheuniquenessofeachsystem. Quadrupole systems: Bothquadrupoleandiontrapsystemsuseradiofrequency(rf)anddirectcurrent(dc)voltages

(V rf andV dc ,respectively)fortheseparationofions.Inaquadrupoleinstrumenttherfanddc potentialsareappliedtofourround(preferablyhyperboliccrosssectioned)rodsarrangedina squarelayout.Oppositerodsareelectricallyconnectedandtheapplicationofvoltagestothese pairsofrodscreatesahyperbolicfieldwithintherods.Bycarefulmanipulationandcontrolofthe

Vrf andV dc voltagesastabilitywindowcanbecreated.Generally,theratioV dc /V rf ischosensuch thata1Dawindowisselected,resultinginunitresolutionovertheentiremassrange.Although modern quadrupole instruments have an upper mass limit between 3000 and 4000 Da, the typical benchtop instrument is limited to an effective 1000 Da upper limit. For quadrupole systemstheenergyandspatialdistributionofionsproducedinthesourceandenteringthemass analyzer are not critical. This is very important for coupling to LC systems because LCMS interfaces generally produce ions with a relatively wide energy and spatial distribution. These systemsrequirerelativelysimplevacuumsystems,areeasytouseandareusuallylowincost. Thedrawbacksofthesesystemsarelowmassresolution(1Da)andlimitedmassrange. Ion Trap systems: Quadrupoleandiontrapinstrumentsarethemostabundantandwidelyusedmassanalysers becauseoftheirrelativelylowcostandbenchtopdesign.Thefundamentalworkingprinciplesof theiontraparethesameasdescribedforquadrupolesystems.Somedescribeaniontrapasa linearquadrupolebenttoaclosed loop[34].Theouterrodformsaring,andtheinnerrodis reducedtoamathematicalpointinthecentreofthetrap.Thetopandbottomrodsformend

22 Created by Neevia Personal Converter trial version http://www.neevia.com capsaboveandbelowtheringelectrode.Theseendcapsareperforatedtoallowtheinjection anddetectionofions.Withinthisthreedimensionalquadrupole,theionstravelonaLissajous figureshapedpath.Ionsofdifferentmassarestoredtogetherinthetrapandreleasedoneata timebyscanningtheappliedvoltagesandejectingtheselectedmassthroughtheendcaps.By allowinga10 3torrpressureofheliumintothetrap,themotionofionsinthetrapisdampened andtheionsmovecloselyaroundthecentreofthetrap.Thispreventsionlossbycollisionswith theelectrodesandimprovestheresolutionduetolimitingthespatialdistributionoftheions.As forquadrupolesystems,theenergyandspatialdistributionofionsproducedinthesourceand entering the mass analyzer are not critical. These systems require relatively simple vacuum systems,aretypicallybenchtopindesign,lowincostandhaveinherenttandemMScapabilities. Themajordrawbackofthesystemisthelowresolutionoftypically1Da. Time-of-Flight analysers: TheinitialideaofmeasuringthemassofanionbyitsflighttimewasputforwardbyStephensin 1946[35].TheverysimpleconceptmakesTOFanattractivemethod,butplaceshighdemands onthesupportingelectronics.Thetechniquewasimprovedbytheintroductionofelectrostatic reflectors,enhancedionopticstofocustheionbeamtowardsthepusherandfasterelectronics. ThebasicworkingprincipleofaTOFmassspectrometerinvolvesmeasuringtheflighttimeofan ionthroughthemassspectrometer.Becauseoftheknowndimensionsofthemassspectrometer andtheenergyoftheion,the m/z valueoftheioncanbecalculated.Theioninputispulsedto provide a well defined start/stop signal that is essential for the time measurement. This also effectivelyconvertsthecontinuousflowoftheLCsystemintoadiscreteseriesofionpackets.A newdevelopment wasthefocusingoftheionbeamorthogonaltotheflighttubeandusinga pulsedelectricfieldtopushtheionsintotheTOFanalyzer.Theadditionoffocusingopticstothis typeofarrangementcreatesahighlyfocusedbeamwithminimalspatialdistributionandawell defined position. These parameters are crucial to ensure accurate mass assignment as any variationinthespatialdistributionorpositionofanionenteringtheTOFanalyzerwoulddirectly affectthismeasurementandcalculation. ElectronicsplayavitalroleinTOFdetectorsasthewholemassrangemustbescannedwithin theflighttimeoftheions(typically1–100s).Evenwithcurrentstateoftheartelectronicswith GHz sampling rates, the detectors of TOF systems are still the limiting factor in obtaining resolutionhigherthanthetypical10000to20000.WellconstructedTOFsystemsarecapable ofveryhighscanrates(upto20000scans/s),havehighresolutionwhenusingsingleordouble reflectrondesignsandultrafastelectronics,andhavevirtuallynolimitonthedetectablemass range.ThehighresolutionofTOFsystemsisvitalindeterminingexactmassthatwouldallow theaccuratecalculationofempiricalformulae.Thisisvitalifworkingwithunknowncompounds orconfirmingthestructureofaknowncompound.

23 Created by Neevia Personal Converter trial version http://www.neevia.com

Sector Instruments: Themodernsectorinstrumentsarebasedonthefirstmassspectrometer(andthetheory)used by Sir. J.J. Thomson who applied magnetic and electrical fields to a beam of electrons and obtainedanestimateforthem/evalueofthechargedparticlesinthebeam[36].Therearetwo typesofsectorinstruments:magneticandelectric.Ifanionmovesthroughamagneticfield,the ionwillmoveonacircularpathwiththecentrifugalforceequaltotheforceofthemagneticfield ontheion.Themagneticfieldfunctionsasamomentumseparatorandmustbekeptconstantif ionsofequalmassandchargemustfollowthesamepaththroughthemagneticfield.Thekinetic energyoftheionsdependsontheirinitialenergyandspatialdistributionpriortoacceleration. Theintroductionofanelectrostaticsectorallowsfortheaccelerationofionswithaknownkinetic energy. Doublefocusing magnetic sector mass spectrometers make use of both a magnetic and electrostaticsector.Thesetypesofinstrumentstypicallyproducehighresolutionmassspectra(> 10 000) and are capable of scanning large mass ranges –greater than15 000 Da. Both the resolution and mass range can be increased but will lead to a loss in sensitivity due to instrumentalparameters(reducedvoltagesandsmallerslitopenings.Theionsourceofasector instrumentisoperatedatveryhigh voltages–ashighas10kV,which canleadtoproblems wheninterfacedwithaLCsystemduetoarching.Althoughthesesystemsarecapableofhigh resolutionandmassaccuracyandabletodohighenergyCIDexperiments,thesystemshave limitedsensitivity,arecomplexindesignandareveryexpensive. 2.5 DEVELOPMENTOFEXTRACTIONPROCEDURES The success of any screening procedure is directly related to the efficacy of the extraction procedureforthecompound(s)ofinterest.Theidealgeneralscreeningproceduresrequirethat the extraction process extract all the compounds of interest present. The use of solvent extractionprocedurestypicallytargetcompoundsofsimilarpolarityandsolubility,andmultiple extractions with various solvents would have to be performed to cover all the compounds of interest.Thedangersandcostsassociatedwithsolventextractionhavelimitedtheusethereof. Another extraction procedure that has come of age is solid phase extraction. The initial cartridgeswereavailableonlywithsilicaandC18functionalityandfunctionedwellinextracting allpolarorapolarcompounds.Theintroductionofthetrifunctionalligandsbroadenedthescope oftheprocedurebysimultaneouslytrappingcationic,anionicandneutral(apolar)compounds.A fewlimitationsofthistechniquearethepHstabilityofthesilicastationaryphase,andthealmost completelossofefficiencyofthesecartridgeswhenallowedtorundry.Mostoftheselimitations wereovercomebytheintroductionofthehybridpolymericsilicacolumns(WatersOasisHLB)

24 Created by Neevia Personal Converter trial version http://www.neevia.com thatdonotsufferlossofefficiencywhenallowedtodryout,andhaveawidepHstabilityforthe hybridpolymericsilica(pH112)stationaryphase.Althoughpolarcompoundsareretainedon thisstationaryphase,thepHofthesample,washsolventandeludingsolventmustbecarefully selectedandcontrolledorwillleadtolowrecoveries.OtherpositiveaspectofSPEislowsolvent consumptionandtheeaseofautomatingtheprocess. 2.6 DEVELOPMENTOFCHROMATOGRAPHICSCREENINGMETHODS The three primary tasks of a forensic analyst are to detect, identify and quantify potentially harmful substances in biological and other samples of forensic interest. The task of the unambiguousidentificationofacompoundisthemostchallengingandcrucialone,butmostof the time neglected [37]. Often great emphasis is placed on the extraction and detection of a specificcompound,buttheidentificationislefttoasinglemassspectralanalysisofthesample using SIM or MSMS analysis techniques to differentiate the compound from the matrix and interferingcompounds.AccordingtodeZeeuw[37]thechromatographicseparationofasample prior to detection is essential – even when using a triple quadrupole mass detector (MSMS experiments).Theselectionofthemostsuitedanalyticalcolumniscrucialanditmustbeableto separatemostofthecompoundsdetected.InHPLCPDAanalysisthechoiceofmobilephase andbufferisonlylimitedtothosethatdonotdisplaydetectorresponseinthe200to600nm range.TheadditionofaMSdetectorintandemlimitsthechoiceofmobilephaseandbufferto thosecompatibletotheMSdetectorandnecessitatestheuseofvolatilebuffersoflowmolecular mass. ThepHofthemobilephaseplaysaveryimportantroleinLCMSanalysis.Thefirsteffectisthe stabilisation of the ionic state of the compounds to enable reproducible chromatography with goodseparationandpeakshape.Thesecondeffect,whichmainlyaffectsAPI/APCIinterfaces, is to ensure that the compounds of interest are ionised in solution (API) or that gas phase ionisation will occur due to the presence of suitable mobile phase components (APCI). The mobile phase can also have a very detrimental effect on the mass spectral detection of a compound if ion suppression occurs or if the mobile phase contributes to a high background signal.Asaruleofthumbthemobilephaseiskeptassimpleaspossiblewiththeadditionofthe lowestpossibleconcentrationofbuffer. 2.7 SCREENINGOFVISCERAAND MUTI SAMPLESOFFORENSICINTEREST Due to the diverse nature of the samples submitted to the FCL JHB (viscera, plants, environmental, crime scene related, pharmaceutical preparations, industrial formulations and muti ),anyscreeningprocedureandinstrumentmustberobustandcapableofdetectingawide

25 Created by Neevia Personal Converter trial version http://www.neevia.com rangeofcompounds.Thefactthatanyresultproducedbytheforensicanalystmightbeusedin a court of law necessitates the use of threedimensional (3D) detectors to ensure correct identification and confirmation of compounds detected. Many forensic laboratories rely on primaryscreeningprocedurestoindicatethepresence/absenceofclassesofcompounds.These techniques (immunoassay, TLC, etc.) are not capable of conclusively proving the absence or presenceoridentityofaspecificcompound.Anypositive(aswellasnegative)resultmustbe confirmedbyanothermoreselectivetestandwasthereasonwhyIdidnotimplementthesetype ofscreeningprocedures. The“ideal”screeningmethodforthistypeofresearchmustcomplywiththefollowingcriteria: 1. combineahighresolutionchromatographicmethodwitha3Ddetector 2. combinemultiple3Ddetectorsinseries(destructivedetectorsplacedlastinline) 3. showgoodsensitivityforallcompoundsofinterest 4. havearchivinganddatamanipulationsoftware 5. mustbeabletousecommercialorusercreatedlibrariestoidentifydetectedcompounds 6. beabletofunctioninanautomatedmanner. Chromatographic systems that would be able to function in this manner is HPLC, Ultra high performanceliquidchromatography(UPLC),CE,GCandcomprehensivelycoupledGC(GCx GC).TheonlychromatographicsystemsavailabletomeattheFCLJHBareHPLCandGC.3D Detector systems include scanning UV detectors like photodiode array (PDA), all the mass detectorsdescribedbefore,Fouriertransforminfrared(FTIR)detectorsandnuclearmagnetic resonance (NMR) detectors. The only detectors available to me at the FCL JHB are single quadrupolemassspectrometersforHPLCandGCandPDAdetectorsfortheHPLCsystems. Thesinglequadrupolemassdetectorsincludeelectronimpact(EI)massdetectorsforHPLCas well as GC, and atmospheric pressure ionisation (API) and atmospheric pressure chemical ionisation(APCI)detectorsforHPLC.Theonlydetectorsthatcanbeutilisedinseriesarethe PDAandHPLCMSmassselectivedetectors(EIandAPI/APCI)withthePDAdetectorplaced firstinline. TheproblemsthatmightbeencounteredwhenanalysingcompoundsofbotanicaloriginbyGC havebeendiscussedbefore.AlthoughcertainbotanicallyderivedmoleculesdosurvivetheGC inlet and GC column temperatures, many degrade thermally or show too low volatility for analysisbyGCorGCMSsystems.ThiseffectivelyrulesouttheuseofGCMSsystemsasa routinescreeninginstrumentforthemajorityofbotanicalcompoundsofinterestandleavesonly the HPLCMS systems to function as primary screening instruments. The fact that HPLCMS systemsarenotsuitedforthedetectionofvolatilecompoundsnecessitatestheuseoftheGC

26 Created by Neevia Personal Converter trial version http://www.neevia.com MS system as secondary screening instrument. Certain compounds of interest are typically presentinlowconcentrationsandmaynotshowupontheprimaryandsecondaryscreen,and would require the development of more specialised screening procedures on API/APCI instruments. These instruments are usually setup for the screening of classes of compounds (alkaloids,cardiacglycosides,coumarins,ephedrines,etc.)orfortargetedanalysisofaspecific compoundlikeatractyloside,aldicarb,strychnine/brucine,etc. Theideal workflowdiagramforthisresearch,basedonthecurrentequipmentandneeds,is depicted in Figure 2.3. It must be noted that all the orangecoloured steps/instruments are currentlynotavailable,butshould beaddedtothearray ofanalytical instrumentsassoonas possible.Atpresentthetypical muti relatedcasewouldprogressthroughthefollowinganalysis path:

• Screening by HPLCEIMS for nonvolatile to semivolatile compounds (PDA screen included)

• ScreeningbyGCMSforsemivolatiletovolatilecompounds

• Screeningforselectedclassesofcompounds,especiallywhenindicated/requestedin thecasefile.ThisistypicallydoneontheZMDorZQHPLCMSsystems.

• Quantificationofdetectedcompoundsby: - GC(FID,NPD,ECDorFPD) - HPLCusingaPDAdetector(UV) - GCMS - HPLCEIMS - HPLCMS using an API/APCI ionisation source and a single quadrupole mass spectrometer(ZMDorZQ). 2.8 IDENTIFICATIONANDCONFIRMATIONOFCOMPOUNDS It has been previously stated that the detection of a poison is the most difficult part of the analytical toxicology process (Chapter 1). This is true, but another aspect of the analytical toxicologyprocessthatismostofthetimeneglectedandpoorlyaddressed,istheunambiguous identification and confirmation of compounds. In a recent publication entitled “Substance identification: the weak link in analytical toxicology” [37], the author highlighted the need for standardised procedures and methodologies when identifying and confirming the identity of compounds.Variousguidelinesexisttoevaluateanyqualitativeforensicidentificationprocedure, namelythosecompiledbyTIAFT,SOFT,AAFSandWADA.

27 Created by Neevia Personal Converter trial version http://www.neevia.com FIGURE2.3 TheidealworkflowdiagramforforensicanalysisattheForensicChemistryLaboratoryof Johannesburg Thecommonelementscanbesummarisedasfollows[37]: 1. Confirmationmustbebasedonmassspectrometry.MSMSisalsoallowed. 2. The mass spectrum of the unknown compound must be compared with a reference standardanalysedunderthesamechromatographicandmassspectralconditions. 3. SIMispreferablebutfullscanMSisalsoallowed. 4. Twotofourdiagnosticionsshouldbemonitoredwithsignaltonoiseratio’s>3. 5. Relativeabundancesmustbemonitoredandagreewithinpermittedtolerancewindows. 6. Onlinechromatography(GCandLC)mustbedonepriortoMSanalysis. Theseguidelineshoweverdiffersubstantiallyastotheircriteriaforconfirmationandinaccepting orrejectingthematchingofanalyticalresults[37]. 28 Created by Neevia Personal Converter trial version http://www.neevia.com Forthisstudy,thefollowingcriteriawillbeused: a) Onlinechromatographywillbedonepriortoanydetectiontechnique(GCandLC). b) FullscanMSwillbepreferredbutSIMwillbeusedinlowconcentrationanalysis. c) The mass spectrum of the unknown compound must be compared with a reference standardanalysedunderthesamechromatographicandmassspectralconditionsandon thesameday.Ifareferencestandardisnotavailable,acommercialmassspectrallibrary (NIST98)willbeusedasreference. d) Atleastthreediagnosticionswillbemonitoredwithsignaltonoiseratio’s>3.Preference willbegiventothemonitoringofclustersofionsratherthanthreeindividualionsbutmore thanoneclusterofionsmightbeused. e) Relativeabundancesmustbemonitoredandagreewithinpermittedtolerancewindows. f) Aconfirmationwillbeacceptedas“positive”ifanytwoofthefollowingcriteriaaremet:

i. RtandUVspectrum(PDA)ifthecompoundisUVactive;

ii. RtandMSspectrum(EI)ifthecompoundisstableduringEIionisation;

iii. RtandunfragmentedMSspectrum(ESI);

iv. RtandfragmentedMSspectrum(ESIusingCID). The confirmation will be considered as unambiguous if the two criteria are met on different

chromatographic systems, e.g. R t and MS (EI) spectrum on the TMD system and the R t and unfragmentedMSspectrum(ESI)ontheZQsystem. Amajorchallengeistheprocurementofreferencestandards.Manyoftheknowncompounds foundinthemedicinalandtoxicplantsofSouthAfricaarenotcommerciallyavailable.Thisis mainlyduetothelowdemandforthesecompoundsinternationally,butalsoduetothefactthat manyoftheplantsareindigenoustoSouthAfricaandnotwellcharacterised.Theabsenceofa referencestandardrulesoutquantificationofthecompoundofinterestandnecessitatestheuse of a spectral reference library like NIST 98, assuming that the particular compound has been addedtothelibrary.IfthecompoundhasnotyetbeenaddedtoNIST98,itmustbeisolated fromtheplantextractandcharacterisedbymeansof 1Hand 13 CNMRand/oraTOFaccurate massdeterminationandaddedtotheuserlibraries. 2.9 SELECTIONOFTHEMEDICINALANDPOISONOUSPLANTSFORTHESTUDY The most frequent request to the FCL JHB is to “Detect all toxic substances”. This is often accompanied by requests like “Identify herbal toxin” or “Identify unknown exhibit” and usually statethecauseofdeathas“Unknown”,“Herbalmedicine”,“Allegedherbalingestion”or“ Muti ”.

29 Created by Neevia Personal Converter trial version http://www.neevia.com AreterospectiveevaluationoftheFCLJHBdatabaserevealedthatthefollowingcompounds werepreviouslydetectedattheLaboratory: • Anabasine • Atropine • Buphanidrin • Buphanamine • Ricinoleicacid • Oleandrin/oleandrigenin ReferencetothefollowingplantswasfoundintheFCLJHBdatabaseandforensiccasefiles: • Ricinus communis • Callilepis laureola • Nerium oleander • Abrus precatorius

This study was initiated to develop the expertise to not only detect various compounds of botanical origin, but to be able to relate the compounds back to their botanical origin. This necessitatedtheinclusionofafewrelatedplantsandtwoplantsthatarewidelyusedas muti,but thathavenotbeendetectedbeforeattheLaboratory.Thefollowingplantswereselectedforthis study: • Nicotiana glauca • Datura stramonium / Datura ferox • Callilepis laureola • Boophone disticha / Ammocharis coranica • Abrus precatorius • Ricinus communis • Nerium oleander / Thevetia peruviana • Bowiea volubilis. The availability of reference standards are usually one of the major stumbling blocks in developingorvalidatingmethodsforplantderivedcompounds.Althoughtheactivecompounds areknownforthegroupofplantsmentionedabove,onlyafewarecommerciallyavailable.This willlimittheextenttowhichsomemethodscouldbevalidated,asLODandLOQvaluesaswell asthequantificationofcompoundscanonlybeaccomplishedwithcertifiedreferencestandards. 30 Created by Neevia Personal Converter trial version http://www.neevia.com Thethesisiswritteninmonographstylewherebyeachplantmonographformsitsownchapter. Certainmethodsweredevelopedduringtheresearchthatformedthebackboneofthescreening methodologyusedfor muti relatedforensiccases,andareincludedinmostofthemonographs. Thisduplicationisunavoidableifthemonographsareintendedtobeusedascompleteportions of research and to facilitate easy reference to the methodology used for each plant. Any adaptation or modification to these standard methods was clearly indicated in the relevant chapters.

31 Created by Neevia Personal Converter trial version http://www.neevia.com CHAPTER3

Nicotiana glauca

3.1 BOTANICALDESCRIPTION Nicotiana glauca R.A.Grah.(FamilySolanaceae),isavirgateshruborsmalltree(Figure3.1)of up to five meters high with glaucous leaves and tubular yellow flowers (Figure 3.2). The fruit capsule with its numerous small, brown seeds develops within the persistent calyx [38]. It is commonlyknownasthewildtobacco,treetobaccoortabaka bume (SouthernSotho).

Figure3.2 Flowersof Nicotiana glauca Figure3.1 Typicalhabitandhabitatof Nicotiana glauca 3.2 ORIGINANDDISTRIBUTION Nicotiana glauca is indigenous to Argentina and was most likely introduced into in contaminatedhorsefeedduringtheGermanoccupation(1884–1914),fromwhereitspreadto South Africa. It is closely related to commercial tobacco, Nicotiana tabacum L., and is widespreadthroughoutSouthAfricaindisturbedplacessuchasroadsidesandriverbanks[39].

32 Created by Neevia Personal Converter trial version http://www.neevia.com 3.3 TYPEOFTOXIN Nicotiana glauca contains a pyridinetype alkaloid anabasine (Figure 3.3) also called neonicotine,withamolecularmassof162.23.Anabasineiscloselyrelatedtonicotine(Figure 3.3) and shares the same molecular mass of 162.23. Both anabasine and nicotine have

teratogenicpropertiesandexposuretoitmaycausereproductivedefects.TheLD 50 (gpg,scu)of

anabasineislistedas22mg/kg,whiletheLD 50 (rat,orl)ofnicotineisgivenas50mg/kg[40]. N N H CH3 N N Anabasine Nicotine Figure3.3 Chemicalstructuresofanabasineandnicotine 3.4 ACTIVECOMPONENTSANDPHARMACOLOGICALEFFECTS Ingestion of sufficient amounts of plant material containing anabasine will result in increased salivation, vertigo, confusion, disturbed vision and hearing, photophobia, nausea, vomiting, diarrhoea,respiratorydepression,spasms,neuromuscularblockageandfinallydeath[41,42]. These effects are result of blocking of the autonomic ganglia, neuromuscular junctions and acting as a cholinesterase inhibitor. Nicotine has a similar effect and causes irreversible cholinesterase inhibition whereas anabasine displays reversible cholinesterase inhibition [43, 44]. 3.5 ETHNOPHARMACOLOGICALIMPORTANCE The smoking of N. glauca has been reported [45, 46, 47] and the plant has also been used medicinally[45]andinethnoveterinarymedicine[48].Warmedleavesareappliedtotheheadto relieve headache, on the throat to relieve pain and put in shoes for painful feet [49]. Animal deaths,mainlyofostriches,havealsobeenreported[45].Ithasbeenusedasaninsecticide[40, 41,50],butitsusehasbeendiscontinuedduetothedevelopmentofmorespecificandlesstoxic insecticides. The medicinal use of N. glauca has also been reported, mainly administered to people,inalltheprovincesofSouthAfricaandneighbouringstates[51].Themagicaluseof N. glauca hasbeenreportedinNamibia,theProvince,aswellasEasternandWestern Cape[51].

33 Created by Neevia Personal Converter trial version http://www.neevia.com 3.6 POISONING 3.6.1 Accidental Inhumans,accidentalingestionof N. glauca doesoccur[42,52,53,54,55]andusuallyresults in death of the unsuspected user if sufficient plant material is ingested. In southern Africa a traditional meal is prepared consisting of porridge and marog ( Amaranthus hybridus , Amaranthaceae), but juvenile N. glauca plants are sometimes inadvertantly collected with the marog (or as marog), resulting in poisoning (Figures 3.4 and 3.5). Three confirmed cases of accidentalpoisoninghavebeensubmittedtotheFCLJHBsince2001,resultinginthedeathof atleast15people.Oneofthesecaseswillbediscussedinsection3.7.

FIGURE3.4 FIGURE3.5 Juvenile Nicotiana glauca plants(Fig.3.4) Juvenile A. hybridus plant andAmaranthus hybridus plant(Fig.3.5) showingthemarkedvisualsimilarity betweenthetwoplants 3.6.2 Deliberate Noreferencecouldbefoundtoindicatedeliberatepoisoningwith N. glauca . 3.7 FCLJHBINVESTIGATION Nicotiana glauca isoneoftheplantsthatwerefoundintheFCLJHBdatabase.Anabasinehas alsobeendetectedinaplantsampleusingGCMS(EI).Asmentionedin3.6.1, N. glauca has beenimplicatedinthemortalityofpeopleduetoaccidentalexposure.IntheLimpopoProvinceof SouthAfricasomecommunitieshaveapproachedtheirlocalhealthinspectorsandcomplained about“foodpoisoning”afterpreparingtheirtraditionalmeal.Inallthereportedcasespoisoning werecausedbymisidentification–juvenile N. glauca plantswerecollectedinsteadof A. hybrida.

34 Created by Neevia Personal Converter trial version http://www.neevia.com InoneofthetragiccasessubmittedtotheFCLJHB,amotherpreparedatraditionalmealforher and her son after collecting marog. After the meal, both began to vomit, became confused, collapsedanddiedsoonthereafter.Thevisceraandabotanicalsamplefoundatthescenewere submittedtotheFCLJHBforchemicalanalysis. 3.8 EXPERIMENTALPROCEDURE 3.8.1 Standardsandreagents (±)Anabasine (90%), potassium chloride, sodium chloride, potassium dihydrogen phosphate and sodium monohydrogen phosphate (> 99.5%) were obtained from Sigma Chemical Company, USA. Ammonium acetate (98%) was obtained from BDH Laboratory Supplies, England.Sulfuricacid(Suprapur96%)andammonia(GR25%)ProAnalisiwasobtainedfrom EMerck,Darmstadt,Germany.Acetonitrile(gradientquality190nmUVcutoff)andmethanol (gradientquality205nmUVcutoff)wereobtainedfromRomil,England.HPLCgradewater(20 M)wasobtainedfromaMilliQ/reversedosmosissystem(Millipore,USA).OasisHLBsolid phase extraction (SPE) cartridges (60 mg) were obtained from Waters Corporation, Milford, USA.Thephosphatebufferedsalinesolution(PBS)waspreparedaccordingtotheprescribed methodsuppliedbyWaters,Milford,USA[56]. 3.8.2 Instrumentsandconditions AWaters2690HPLCsystemequippedwithbotha996photodiodearray(PDA)detectoranda Termabeammassselectivedetector(TMD)[electronimpact(EI)mode;maximummass1000 m/z ]fromWaterswasusedforinitialscreeningandhighconcentrationstudies.AWaters2690 HPLCsystemequippedwitha996PDAdetectorandaZspraymassselectivedetector(ZMD) (Micromass,UK)(electrospraymode;maximummass2000 m/z )wasusedforlowconcentration studies. A Waters Xterra RP C18 HPLC column (150 mm x 2 mm, 5 m) was used for all experiments. A Harvard syringe pump (Model 11) was obtained from Harvard Apparatus, Holliston,USAandwasusedforalldirectinjectionexperimentsontheZMDdetector. Toensurethemaximumretentionofbasicalkaloids,theinitialchromatographicconditionswere 100%watercontaining10mMammoniumacetate,thepHadjustedto9.5withammonia(25%). Afterinjection,thechromatographicconditionsweregraduallychangedthroughalineargradient profileto90%acetonitrileand10%oftheoriginalaqueousmobilephasein40minutes.These conditions were kept stable for five minutes where after the HPLC system reequilibrated the analytical column to the initial conditions. Theflow rate was kept constant at 0.2 ml/min.The nebuliseroftheTMDdetectorwasoptimisedwithatestsolution(100g/ml)toensure efficientnebulisationanddropletformation.Theelectrosprayionization(ESI)probeoftheZMD detectorwasoptimisedbydirectinjectionviaasyringepumpusingananabasinetestsolution (10g/ml).

35 Created by Neevia Personal Converter trial version http://www.neevia.com 3.8.3 Chemicalfingerprintingof N. glauca trees To investigate the alkaloid variation in N. glauca , materials from three isolated trees were collected in Gauteng Province (South Africa). The first tree was found near the Kingsway CampusoftheUniversityofJohannesburginHursthill,Johannesburg(calledUJHBplant);the second tree in an industrial site in Meadowbrook Extension 8, Germiston (called Germiston plant),andthethirdtreeinanindustrialareainWitfield,Boksburg(calledWitfieldplant).Leaves andflowerswerecollectedfromeachtreeanddriedseparatelyat40 oCtoconstantweight.The leavesandflowerswerefinelygroundusinganIkaWerkA10watercooledmill(Janke&Kunkel, Straufen,Germany)and0.5gofeachspecimenwasmixedwith25ml0.02Msulfuricacid.The acidifiedplantmaterialwasextractedat40 oCfor30minutesusingashakingwaterbath.The plant material was filtered off and reextracted with 25 ml 0.02 M sulfuric acid. The aqueous extractswerecombinedandthepHadjustedtoapproximately9.5withammoniasolution(25%). TheaqueousextractofeachplantwaspassedthroughanOasisHLBSPEcartridgeandthe absorbedmaterialstrippedfromthesolidphase material with1.5mlmethanol.Themethanol extractswereinjectedintoeachHPLCsystem(2lintoTMD;1lintoZMD)usingtheoptimised HPLCmethoddescribedabove. 3.8.4 Chemicalextractionandanalysisofvisceraandcaseexhibit AstwoofthefatalitiesunderinvestigationweresubmittedtoourLaboratoryasapossiblefood poisoning case, a general extraction procedure was followed. An aliquot of liquefied stomach wallandcontents(3g)wasmixedwith20mlofPBSsolutionandsonicatedforthirtyminutes. Afterfiltrationthroughfilterpaper(WhatmanNo41),theaqueousphasewaspassedthroughan OasisHLBcartridgeandtheabsorbedcompoundsstrippedfromthesolidphasematerialwith 0.4mlmethanol.Themethanolsolutionwasinjected(10l)directlyintoeachHPLCsystemand analysedusingtheoptimisedHPLCmethoddescribed. Asampleoftheflowers(3g)submittedwiththecase,wastreatedasdescribedfortheviscera samples. The methanol solution, obtained by stripping the bound compounds from the Oasis cartridge,wasinjected(1l)directlyintoeachHPLCsystemandanalysedusingtheoptimised HPLCmethoddescribedabove. 3.9 RESULTSANDDISCUSSION 3.9.1 Chromatographyanddetectionofanabasine

Anabasine is a diprotic base with a pK a2 of 3.21 [40]. At a neutral pH,more than 75% of the anabasinewillbeinaprotonatedstate,resultinginstronginteractionwithresidualsilanolgroups thatwillresultinpoorpeakshapeandseverepeaktailing.Thechromatographycanbeimproved byloweringthepHto2,butthisagainwillleadtoprotonationofanabasine,andvariousother

36 Created by Neevia Personal Converter trial version http://www.neevia.com basic alkaloids, thereby becoming unretained on the HPLC column. Alternatively, a base deactivatedreversedphasecolumncanbeusedwiththeadditionoftriethylamine(TEA)tothe mobilephase[57],butthiswillleadtounnecessarycomplications when interfacingtheHPLC systemtoamassselectivedetector,especiallytheZMDdetector.Ionpairingreagentswillalso improvethepeakshape,reducethetailingandincreasetheretentionofanabasineandother basic alkaloids [58], but commonly used ionpairing reagents such as hexanesulfonic acid or octanesulfonic acid will render any interfaced mass selective detector inoperative due to the involatile nature of the eluent components. Ammonium acetate displays ion suppressing characteristicsandisalsovolatile,andcanthereforebeincludedinaneluenttobeintroduced intoamassspectrometer. Aconcentrationof10mMammoniumacetate,adjustedtoapHof9.5withammonia,wasfound tobesufficienttoaffectreproducibleretentiontimes14.93±0.03(TMDsystem),14.72±0.03 (ZMDsystem)butlowenoughnottointerferewithionformationduringnebulisationintothe mass spectrometers. A typical chromatogram of an anabasine standard (1000 g/ml) on the TMD/PDAHPLCsystem(Figure3.6)showsanabasinewitharetentiontimeof14.92minutes and characteristic UV and mass spectra. Likewise, a typical single ion monitor (SIM) chromatogram of an anabasine standard (10 g/ml) on the ZMD HPLC system (ESI + mode) + (Figure3.7)showsanabasinewitharetentiontimeof14.77minutesresultinginanESI “mass spectrum”. The mass ion observed at 163 m/z relates to the protonated species [M+H] + that normallyformundertheseconditions. On the TMD HPLC system a calibration curve was prepared covering the 100 1000 g/ml concentration range. A linear curvefitting algorithm that produced a 0.997 coefficient of determination(r=0.998;r 2 =0.997)wasapplied.Asecondcalibrationcurve,coveringthe500 ng/ml–10g/mlconcentrationrange,producedidenticalresultstothecalibrationcurveatthe higher concentration range. On the ZMD HPLC system a calibration curve was prepared covering the 100 10 000 ng/ml concentration range. The coefficient of determination was 0.9997andwasobtainedusingasecondordercurvefittingalgorithm(r=0.9997;r 2 =0.9994). Thelimitofdetection(LOD)andthelimitofquantitation(LOQ)forthethreedetectorsusedare summarizedinTable3.1.TheLODwasdeterminedexperimentallytheLODwastakenasthe concentration that produced a detector signal that could be clearly distinguished from the baseline noise (±3 times baseline noise), and the LOQ was taken as the concentration that producedadetectorsignal±10timesgreaterthantheLODsignal. 3.9.2 Chemicalfingerprintingof N. glauca trees Theextractionprocedureusedwasdevelopedtoextractalkaloidsselectivelyfromplantmaterial. Thechromatogramsobtainedfromtheflowerandleafextractsofeachplant(Fig.3.8)clearly

37 Created by Neevia Personal Converter trial version http://www.neevia.com showthatanabasineisthemainalkaloidextractedfromtheflowersandleavesofeachplant. Someauthors[59,60,61]havereportedthepresenceofnicotinein N. glauca ,butnicotinecould notbedetectedinthesamples.Ithasalsobeenreportedinliterature[60]thatonlytheleaves containanabasine,butitwasfoundthatbothleavesandflowerscontainedanabasine,although the alkaloid concentration were higher in leaves that in flowers (Table 3.2). The three trees studiedweresufficientlyuniform(bothqualitativelyandquantitatively)intheiralkaloidcontentsto allowareliablecharacterizationofthespecies(Fig.3.8). TABLE3.1 TheLODandLOQforanabasinewiththePDA,TMDandZMDdetectors DETECTOR LOD LOQ

PDA (200600nm) 250ng/ml 500g/ml

TMD (50550amu) 10g/ml 50g/ml

ZMD (100300amu) 1ng/ml 50ng/ml

To ensure that nicotine was not overlooked in the extracts analysed, or that anabasine and nicotinecoeluted,analkaloidcocktailcontaininganabasine,nicotine,scopolamineandatropine wasinjectedintotheTMDHPLCsystem.Fromthechromatogramobtained(Figure3.9)itwas

clear that anabasine [Rt = 15.52; (1)] was well resolved from nicotine [Rt = 16.72; (2)],

scopolamine [Rt = 18.89; (3)] and atropine [Rt = 20.25; (4)]. The optimised electrospray conditionsforanabasinealsoproduceddistinctivelydifferentfragmentation/adductspectrafor anabasineandnicotine. 3.9.3 EvaluationofSPEextractionandanalysisofvisceraandexhibit ThePDA/TMDchromatogramobtainedfromthe10linjectionsofeachstomachhomogenate extraction,aswellasthe1linjectionoftheextractoftheflowersampleisdepictedinFigure 3.10.Smallamountsofanabasineweredetectedinbothviscerasamplesandalargeamountof anabasinewasdetectedintheflowerexhibit(Table3.2).Theexhibitalsodisplayedanalkaloid profilesimilartothoseobtainedfromtheflowersoftheWitfield,GermistonandUJHBplants(a majoranabasinepeakwithtracelevelsofothercomponents).

38 Created by Neevia Personal Converter trial version http://www.neevia.com FIGURE3.6 Chromatogram,UVandEIspectrumofa1000g/mlanabasinestandard(TMDsystem) FIGURE3.7 ChromatogramandESImassspectrumofa10g/mlanabasinestandard(ZMDsystem)

39 Created by Neevia Personal Converter trial version http://www.neevia.com FIGURE3.8 ComparisonoftheUVchromatogramsofthreegeographicallyisolated N. glauca trees ontheTMDsystem(leavesandflowersanalysed–seeTable3.2) FIGURE3.9 HPLCUVanalysisofanabasine(1),nicotine(2),scopolamine(3)andatropine(4)

40 Created by Neevia Personal Converter trial version http://www.neevia.com Created byNeevia Personal Converter trial version TABLE3.2 AnabasinecontentsofvisceraandplantsamplesanalysedontheTMDandZMDsystems

Anabasine Anabasine %Match concentration concentrationZMD Rt(min) Rt(min) SAMPLE TMD (Anabasine) (Anabasine) PDAdetector detector (g/ml) (g/ml) (n=3) NIST PDA/TMD PDA/ZMD [g/gwetweight] [g/gwetweight] Library {g/gdryweight} {g/gdryweight}

StomachMother 15.20±0.49 NM 17.4±0.5 19.1±0.6 14.67±0.06 (NoMatch) [2.3] [2.6]

StomachSon 14.87±0.08 5.1±0.4 9.3±0.3 15.11±0.52 NM [0.8] [1.0]

FlowerExhibit 15.02±0.31 14.76±0.05 85±2 {1840±60} {1883±95}

Witfieldtree Leaves(1) 14.73±0.09 NQ 14.95±0.11 91±1 {1991±75} Flowers(2) 14.72±0.08 (NotQuantified) 14.99±0.09 86±2 {1467±58}

http://www.neevia.com Germistontree Leaves(3) 15.62±0.14 15.05±0.16 83±6 {1851±82} NQ Flowers(4) 15.68±0.11 15.01±0.14 79±7 {1408±67} NQ UJHBtree Leaves(5) 14.71±0.08 14.98±0.08 90±1 {1924±71} NQ Flowers(6) 14.74±0.06 15.11±0.11 89±2 {1517±51} NQ

41 FIGURE3.10 HPLCUVanalysisofthestomachcontentsofmother,childandtheflowersample. Anabasineindicatedwithanastrix(*)

42 Created by Neevia Personal Converter trial version http://www.neevia.com The PDA/ZMD chromatograms obtained from 10 l injections of each stomach homogenate extractionandthe1linjectionoftheflowerexhibitextractaregivenbyFigure3.11.Theresults obtained correlated very well with those from the PDA/TMD HPLC system as anabasine was detected in both viscera samples and the flower exhibit. The characteristic ESI + spectrum of anabasinewasobservedinallsamplesanalysed.

FIGURE3.11 HPLCESI +analysisofthestomachcontentsofmother,childandtheflowerexhibit 3.10 FORENSICAPPLICABILITY AnabasinewassuccessfullydetectedandquantifiedbymeansoftheHPLC–PDAorHPLCMS system.Thecompoundwassuccessfullyionisedinelectronimpactmode(TMDsystem)orAPI mode (ZMD system: single quadrupole operated in ESI + mode). However, the API mode produced a much stronger signal and facilitated the detection of anabasine at the low ng/ml

43 Created by Neevia Personal Converter trial version http://www.neevia.com level.ThelowmolecularmassofanabasinemadetheuseofISCIDimpracticalasnosignificant fragmentationwasobservedabove100amu. Althoughtheanabasineconcentrationinthestomach(andcontents)ofboththemotherandson appearedtobetoolowforafatalpoisoning,itmustbetakenintoconsiderationthatboththe motherandsonvomitedextensivelybeforetheydiedfromaneuromuscularblockaderesultingin respiratory suppression. Orfila’s motto could not be fully satisfied in this case as no blood samplesweresubmittedfortoxicologicalevaluation. ThismethodisagoodalternativetoGCMSforthedetection,identificationandquantificationof anabasineinbiologicalsamplesinasingleanalysisrun,butwilloutperformmostGCMS(single quadrupole in EI mode) systems in the ng/ml concentration range when using electrospray technology.

44 Created by Neevia Personal Converter trial version http://www.neevia.com CHAPTER4

Datura stramonium / Datura ferox

4.1 BOTANICALDESCRIPTION Datura stramonium L. (Family Solanaceae), also called Apple of Peru, Devil’s Apple, Devil’s Trumpet, JamestownWeed, Jimson weed, Madapple, Stinkweed, Thorn apple, Moon flower, Stinkblaar,Olieboom, ijoyi (Xhosa)or iloyi (Zulu)isanerect,subherbaceousannualupto1.5m highwithdarkgreenorpurplishleaveswhichareusuallypalerbelow.Flowersarewhite,mauve orpurplishwithanarrowfunnelshape(Figure4.1).Theerectfruitcapsulesaregreenbutturning brownincolour,50mmlongandcoveredwithslenderspikesupto10mmlong[62](Figure4.2). Thesecapsulesarefilledwithnumerousbrowntoblack,kidneyshapedseedsofapproximately 3mminlengthwithapittedexterior[63](Figures4.3and4.4). Datura ferox iscloselyrelatedto D. stramonium andisoftenmistakenforit,butthecapsuleshavefewer,largerandmuchthicker spines[64].Theflowersof D. ferox arealsonarrowlyfunnelshapedbutareonlywhiteincolour.

FIGURE4.2 Developingunripefruitof Datura stramonium Figure4.1 Typical Datura ferox plant

45 Created by Neevia Personal Converter trial version http://www.neevia.com 4.2 ORIGINANDDISTRIBUTION Certainauthorsreportedtheoriginof D. stramonium asuncertain [62],butmostagreedthatthis plantoriginatedfromthetropicalareasofCentralandSouthAmerica[62,63,64]anditisnowa cosmopolitanweedintemperateregions.Itiscommonlyfoundalongriverbanks,roadsidesand disturbed sites and is widely distributed through South Africa [62, 63, 64] with its first documentedappearancein1714[65].

FIGURE4.3 FIGURE4.4 Ripefruitof Datura ferox Seedsof Datura stramonium 4.3 TYPEOFTOXIN Thetoxicityof Datura speciesiswellknownandhasbeenlinkedtodeathsandpoisoningsfor centuries; some authors consider it responsible for the losses suffered by the army of Mark Anthony in 36 B.C. [65]. The main toxic principles are tropane alkaloids: hyoscyamine, which formsadiastereomeric(epimeric)mixtureknownasatropineuponisolation,andscopolamine [66].Atropine(Figure4.5)hasamolecularmassof289.37.Scopolamine(alsocalledhyoscine, Figure4.5)hasamolecularmassof303.36. 4.4 ACTIVECOMPONENTSANDPHARMACOLOGICALEFFECTS Atropine has anticholinergic activity and causes blurred vision, suppressed salivation, vasodilation,arelaxationofthebronchialsmoothmuscles,increasedheartrateanddelirium[63, 64,67,68,69].ItalsoreducesrigidityinParkinsonismandisusedasanantidotetopoisoning with parasympathomimetic agents, e.g. nerve gases and organophosphorus insecticides [69].

46 Created by Neevia Personal Converter trial version http://www.neevia.com Scopolamine is an antimuscarinic agent and a smooth muscle relaxant. It is used as an antispasmodicagentwithantinauseantproperties,andisextensivelyusedforthepreventionof motionsicknessandinpreoperativemedication[63,64,69]. CH3 CH3 N N O O OH O OH O O Atropine Scopolamine FIGURE4.5 Chemicalstructuresofatropineandscopolamine 4.5 ETHNOPHARMACOLOGICALIMPORTANCE Although D. stramonium and D. ferox arelistedinSouthAfricaasdeclaredweeds[62],theyare widelyusedasmedicinalplantsforthetreatmentofasthmaandtoreducepain.Weakinfusions areusedashypnoticsbytheelderlyandasaphrodisiacsbyadults.Othermedicinalusesinclude thetreatmentofgout,boils,abscessesandwounds[63]. Datura species havealsobeenusedas medicinal plants in Argentina and by the American Indians. The native populations of the western Amazon, Andes, Colombia, Ecuador, Bolivia and Chile have used various Datura speciesashallucinogens[65,70].Datura stramonium isalsowidelyusedinthemythicalcontext inSouthAfricaanditsneighbouringstates[71].Datura specieshavealsobeenusedincriminal activities[67,72].InEurope,theseedsandplantextractsof D. stramonium wereusedinthe treatmentofmania,epilepsy,melancholy,rheumatismandconvulsions[70]. 4.6 POISONING 4.6.1 Accidental Accidental Datura poisoning is quite common and various cases have been reported: Datura poisoningfromeatingahamburger[73],scopolaminepoisoningfromhomemade“moonflower” wine [74], atropine poisoning after drinking contaminated Indian tonic water [75], atropine poisoningaftereatingporridgecontaminatedwith D. stramonium [76],atropinepoisoningafter drinkingtaintedcomfreytea[77],drinkingofateablendcontaining D. stramonium leaves[78] andatropinepoisoningaftereatingcontaminatedhoney[79].In,alargenumberof

47 Created by Neevia Personal Converter trial version http://www.neevia.com peoplewereaffectedafterconsumingsorghumflourcontaminatedwith Datura seeds[80].Many fatalitieshaveoccurred,especiallyamongchildrenwhoareattractedtothecapsulesandseeds [70]. 4.6.2 Deliberate Intentionalpoisoningwith D. stramonium hasalsobeenreportedinseveralcases,namelyafatal poisoningwith D. stramonium [81]and D. ferox [82],thesmokingandingestionof D. stramonium for its mindaltering properties [83] and the eating and chewing of Datura seeds in a suicide attempt[84]. 4.7 FCLJHBINVESTIGATION AtropineisoneofthecompoundsregularlydetectedattheFCLJHB,buthasnotbeenlinkedto an exposure to atropinecontaining plants. Scopolamine has not been successfully detected probablyduetoitsrelativelypoorUVcharacteristicsandinstabilitywhenanalysedbyGCorGC MS.Although D. stramonium and D. ferox arelistedintheFCLJHBdatabase,theyhavenot beenpositivelylinkedtoanypoisoningordeathduetoexposuretobotanicallyderivedproducts (muti).Agoodmethodthatwoulddetectatropineandscopolaminein asinglerunandatthe ng/mllevelwasdearlyneededandpromptedthedevelopmentofthismethod. Thedevelopedmethodwassuccessfullyappliedtoasuspectedheartattackcase.ACaucasian malewasrushedtohospitalafterapparentlysufferingofamildheartattack.Hewasstabilised andsenthomeonlytoberushedbackacoupleofdayslaterafteranotherheartattack.Hecould notbestabilisedanddiedthesameday.AnanonymousphonecalltothePolicewarnedofthe possibility that the deceased was murdered and a post mortem was done and the samples submittedtotheFCLJHBforchemicalanalysis. 4.8 EXPERIMENTALPROCEDURE 4.8.1 Standardsandreagents (±)Atropine (99%), ()scopolamine hydrochloride (98%), potassium chloride, sodium chloride, potassium dihydrogen phosphate and sodium monohydrogen phosphate (> 99.5%) were obtainedfromSigmaChemicalCompany,USA.Ammoniumacetate(98%)wasobtainedfrom BDHLaboratorySupplies,England.Sulfuricacid(Suprapur96%),hydrochloricacid(Suprapur 96%) and ammonia (GR 25%) Pro Analisi was obtained from EMerck, Darmstadt,Germany. Acetonitrile(gradientquality200nmUVcutoff)andmethanol(gradientquality205nmUVcut off)wereobtainedfromRomil,England.HPLCgradewater(20M)wasobtainedfromaMilliQ /reversedosmosissystem(Millipore,USA).OasisHLBsolidphaseextraction(SPE)cartridges

48 Created by Neevia Personal Converter trial version http://www.neevia.com (60mg)wereobtainedfromWatersCorporation,Milford,USA.Thephosphatebufferedsaline solution(PBS)waspreparedaccordingtotheprescribedmethodsuppliedbyWaters,Milford, USA[56].Accordingtothismethod,PBSispreparedbyaddingtheanhydroussaltsofKCl(200

mg),NaCl(8000mg),KH 2PO 4(200mg)andNa 2HPO 4(1150mg)toa1literflask.Oneliterof deionizedwaterisaddedandstirredtodissolve.FinallythepHwasadjustedto7.0with10% phosphoricacid.HCLPBSwaspreparedasdescribedabove,butthepHwasloweredto5with hydrochloricacid. 4.8.2 Instrumentsandconditions AWaters2690HPLCsystemequippedwitha996PDAdetectorandaZspraymassselective detector(ZMD)(Micromass,UK)[electrospraymode(ESI);maximummass2000m/z]wasused intheESI +mode.VariousWatersXterraHPLCcolumnswereevaluated(RPC18,MSC18and Phenyl),buttheWatersXterraPhenylHPLCcolumn(150mmx2.1mm,5m)performedthe bestandwasusedforallexperiments.AHarvardsyringepump(Model11)wasobtainedfrom HarvardApparatus,Holliston,USAandwasusedforalldirectinjectionexperimentsontheZMD detector.SamplemixingwasdoneonaHeidolphrotatingsamplemixer,andsamplecleanup wasdonebycentrifugingallsamplesat4000rpmusingaCentronicS577centrifuge. Toensurethemaximumretentionofbasicalkaloids,theinitialchromatographicconditionswere 10%acetonitrileand90%watercontaining10mMammoniumacetate,thepHadjustedto10.5 with ammonia (25%). After injection, the chromatographic conditions were gradually changed through a linear gradient profile to 80% acetonitrile and 20% of the original aqueous mobile phasein20minutes.TheseconditionswerekeptstableforfourminuteswhereaftertheHPLC system reequilibrated the analytical column to the initial conditions. The flow rate was kept constant at 0.2 ml/min. The electrospray ionization (ESI) probe of the ZMD detector was optimisedbydirectinjectionviaasyringepumpusinganatropinetestsolution(10g/ml).The desolvation temperaturewas set to 400 oC and the source block temperature to 120 oC. The capillary voltage was set to 0.4 V, the extractor to 2.0 V, the RF lens to 0.5 V and the cone voltageto25V. 4.8.3 Chemicalfingerprintingof D. stramonium and D. ferox plants Toevaluatethevariationinalkaloidprofileofseedsfromthetwo Datura species,fourplantsof eachspecieswerecollectedfromgeographicallyisolatedareas.For D. stramonium ,fourplants from each colour variety (white flowers and purple flowers) were collected. Table 4.2 gives sampledetailsofthe12 Datura plantsevaluated.Fiveseedsfromthedrycapsulesofeachplant weredriedat40 oCfor48hours.Theseedsweregroundwithapestleandmortarandthepulp wasextractedwiththree5mlaliquotsofHClPBSbufferfor15minutes.TheHClPBSbuffer extracts of each plant were combined and were eluted through an Oasis HLB (60 mg) solid

49 Created by Neevia Personal Converter trial version http://www.neevia.com phase extraction cartridge and washed with 5 ml deionized water. The SPE cartridges were driedusingvacuumandthealkaloidselutedwith5mlmethanol.Themethanolfractionswere evaporatedunderreducedpressureandreconstitutedin1mlofmethanol. 4.8.4 Chemicalextractionandanalysisofvisceraandcaseexhibit As the fatality under investigation was submitted to the Forensic Chemistry Laboratory as a suspectedheartattackcase,ageneralextractionprocedurewasinitiallyfollowed.Analiquotof liquefiedstomach(includingcontents),liverandkidneycontents(3geach)weremixedwith20 ml of PBS solution and shaken for thirty minutes on the rotating sample mixer. After centrifugationfor15minutestheaqueousphasewaspassedthroughanOasisHLBcartridge andtheabsorbedcompoundsstrippedfromthesolidphasematerialwith5mlmethanol.The methanolwasevaporatedunderreducedpressureandreconstitutedin0.5mlofmethanol.The sample(inmethanol)wasinjected(10l)directlyintotheHPLCsystemandanalysedusingthe optimisedHPLCmethoddescribed. 4.9 RESULTSANDDISCUSSION 4.9.1 Chromatographyanddetectionofatropineandscopolamine Due to the unstable nature of scopolamine [40, 41], atropine was used in the initial

chromatographicstudies.ThehighpKa value(10.2)foratropineposedsomeproblemsasmost analyticalcolumnscannotfunctionatpHvalueshigherthan9duetodegradationofthesilica supportstructureofthereversedphaseanalyticalcolumns.LoweringthepHwillreducecolumn bleed, but results in poor peak shape and markedly reduced sensitivity. To enable direct couplingoftheHPLCtotheZMDdetector,amobilephasecontainingammoniumacetateinthe aqueousportionwasevaluated.TheXterrarangeofcolumnsfromWaters,USA,(RPC18,MS C18andPhenyl), whichcanbeusedatapHhigherthan9,wereevaluatedandfoundtobe suitableforthechromatographyofatropine.Theintroductionofscopolaminetothetestmixture resultedinincreasedtailingoftheatropinepeak.Thishamperedthebaselineresolutionbetween atropineandscopolamineasscopolamineelutedjustaftertheatropinepeak.TheXterraPhenyl stationaryphasedidnotsufferfromthisproblemastheelutionorderreversed–scopolamine elutedfirstfollowedbyatropinewithamuchimprovedpeakshape. Amobilephasecontaining10mMammoniumacetate,adjustedtoapHof10.5withammonia, was found to result in reproducible chromatography without reduction in sensitivity. A typical chromatogramofanatropine/scopolaminetestmixture(50ng/mlofeachanalyte)(Figure4.6) showsscopolaminewitharetentiontimeof20.02minutesandatropinewitharetentiontimeof 21.63 minutes. Under these chromatographic and mass spectrometric conditions, atropine produced an ESI + massspectrum with a (M+H) + = 290.4 amu (which is also the base peak),

50 Created by Neevia Personal Converter trial version http://www.neevia.com whilescopolamineproducedanESI +massspectrumwitha(M+H) +=304.4amu(alsothebase peak) (Figure 4.7). Atropine displayed very little dissociation under these conditions, while scopolaminedisplayedminorinsourcecollisioninduceddissociation(massfragmentsat138.3 and156.4amu).Insourcecollisioninduceddissociation(ISCID)canbeinducedbyincreasing theconevoltagefrom25Vto50V.Thisresultedinacharacteristicfragmentationpatternfor eachalkaloidthatcanserveasasecondconfirmationoftheanalyte.

FIGURE4.6 AtypicalESI +chromatogramof50ng/mlatropine/scopolaminetestmixture(ZMDsystem) Thelimitofdetection(LOD)andthelimitofquantitation(LOQ)forthetwodetectorsusedare summarized in Table 4.1. The LOD was determined experimentally, and was taken as the concentration that produced a detector signal that could be clearly distinguished from the baseline noise (±3 times baseline noise). The LOQ was taken as the concentration that produced a detector signal ±10 times greater than the LOD signal. The poor LOD and LOQ valuesofthePDAdetectorcanbeascribedtothepoorchromophoricpropertiesofatropineand scopolamine(Figure4.8),whichrenderedUVdetectionunusable,andthisdetectiontechnique was not further utilized. A calibration curve was prepared covering the 100 – 10 000 ng/ml concentration range. The coefficient of determination was 0.9987 and was obtained using a secondordercurvefittingalgorithm(r=0.9987;r2 =0.9982).

51 Created by Neevia Personal Converter trial version http://www.neevia.com FIGURE4.7 ESI +spectraofatropineandscopolamineasanalysedontheZMDsystem

FIGURE4.8 UVspectraofatropineandscopolamineasanalysedontheZMDsystem

52 Created by Neevia Personal Converter trial version http://www.neevia.com TABLE4.1LODandLOQresultsforatropineandscopolamineonthePDAandZMD detectors.

LOD LOD LOQ LOQ DETECTOR Scopolamine Atropine Scopolamine Atropine PDA 1g/ml 1g/ml 10g/ml 10g/ml (200600nm) ZMD 100pg/ml 10pg/ml 100ng/ml 1ng/ml (100400amu) 4.9.2. Chemicalfingerprintingof D. stramonium and D. ferox populations The extracts of the seeds from the eight D. stramonium plants (Table 4.2) produced similar chromatogramswithatropineasmaincomponentandscopolamineasminorcomponent(Figure 4.9).Theratiobetweenscopolamineandatropinewasonaverage1:7forbothcolourvarieties, butitmustbenotedthattheratiovariedbetweenpopulationsandbetweencolourvarieties(1:8 average for purple and 1:6 average for white) (Table 4.1). The results differ from published results (plant material was basified with sodium hydroxide prior to extraction with dichloromethane)thatstatedthatthescopolamineatropineratiois1:2[66].Theextractsofthe seedsfromthefour D. ferox plants(WFDFW,ZRDFW,EBDFWandEDVFW)producedsimilar chromatograms, but with scopolamine as the main component and atropine as the minor component. Theratio between scopolamine and atropine was on average 7:1, but itmust be notedthattheratiovariedbetweenpopulations(Table4.2). Visualdifferentiationbetweentheseedsof D. ferox and D. stramonium washamperedbythe largevariationinsizeandcolourbetweenthespeciesaswellaswithinspecies.Thechemical profile, however, clearly distinguished between the two species and was sufficiently uniform (both qualitatively and semiquantitatively) in their alkaloid contents to allow a reliable characterizationofthespecies. 4.9.3 EvaluationofSPEextractionandanalysisofviscerasamples DuetothefactthattheforensicsamplesweresubmittedtotheForensicChemistryLaboratory asanunknowncase,ageneralextractionoftheviscerawasperformed.Tracesofatropinewas detectedontheLCMSsystemintheliquefiedstomachsample,butcouldnotbeconfirmedon theGCMSsystem.Acloserinspectionofthemincedstomachrevealedseveralbrowntoblack kidneyshapedseeds,whichwasremovedfromthesampleforseparateanalysis.Amethanol extractoftheintactseedsproducednosignificantresults,butanextractofthegroundseeds testedpositiveforatropineandscopolamineasthemajorandminorcomponents,respectively (Figure4.10).

53 Created by Neevia Personal Converter trial version http://www.neevia.com TABLE4.2. Datura speciesused,theirgeographicallocationsandthealkaloid ratiooftheseeds.

Atropine: Species Collectionsite Referencein scopolamine text Ratioinseeds Datura stramonium Witfield,Boksburg,Gauteng WFDSW 6:1 (Whiteflowers) Province MellvilleKoppies, MVDSW 4.6:1 Johannesburg,GP EastRandMall,Boksburg,GP ERMDSW 4.8:1 Zeerust,NorthWestProvince ZRDSW 6.9:1 Datura stramonium Elsburg,Germiston,GP EBDSP 8.4:1 (Purpleflowers) Witfield,Boksburg,GP WFDSP 8.6:1 Edenvale,KemptonPark,GP EDVDSP 6.9:1 Zeerust,NWP ZRDSP 7.6:1 Datura ferox Witfield,Boksburg,GP WFDFW 1:8.4 (Whiteflowers) Zeerust,NWP ZRDFW 1:6.9 Elsburg,Germiston,GP EBDFW 1:5.6 Edenvale,KemptonPark,GP EDVDFW 1:7.2 Thechromatographicandmassspectralprofilesobtainedwereidenticaltothatofthe D. ferox seedextracts.Theliquefiedstomachsample,withoutanyvisibleseedspresent,aswellasthe liquefiedliverandkidneysampleswereextractedutilizingtheHClPBSbuffermethod.Atropine (majorcomponent)andscopolamine(minorcomponent)weredetectedinthestomachsample (Figure4.11)butnotintheliverorkidneysample.Theseresultswereinitiallyconfusingasthe samealkaloidprofileastheintactseedsfromthestomach(typical D. ferox alkaloidprofile)was expected (scopolamine: atropine = 7:1).The obtained profile was morecomparable with a D. stramonium alkaloidprofile(scopolamine:atropine=1:7).Inanattempttomimictheconditions in the stomach, a few D. ferox seeds were ground as before, but the HClPBS buffer was acidified to pH 1.5 with hydrochloric acid. The extract obtained from this experiment was analysedwiththeoptimisedHPLCZMDmethodandaverygoodmatchwasobtainedwiththe liquefiedstomachsamplethatcontainednoseeds.

54 Created by Neevia Personal Converter trial version http://www.neevia.com FIGURE4.9 Thechromatogramsoftheseedextractsfromthetwelve Datura plants(ZMDsystem)

FIGURE4.10 HPLCESI +MSanalysis,aftergrinding,oftheintactseedsfoundinthestomach (ZMDsystem)

55 Created by Neevia Personal Converter trial version http://www.neevia.com

FIGURE4.11 HPLCESI +MSanalysisoftheliquifiedstomachsamplewithoutvisualseedspresent (ZMDsystem)

Thisconfirmedthehypothesisthat D. ferox seedswereadministeredtothepatient,andthatthe scopolaminereleasedfromthemaceratedseedswashydrolyzedatstrongacidicpH,butthat themorestableatropineremainedintact.

Asafinalconfirmationofatropineandscopolamineintheseedsandliquefiedstomachsample, thesampleswerereanalysedbyutilizingadualfunctionMSmethod:Function1usedacone voltageof25VwhileFunction2usedaconevoltageof50VtoinduceISCID.Theresultsclearly confirmed the presence of atropine and scopolamine in the stomach and its contents (Figure 4.12).

4.10 FORENSICAPPLICABILITY Atropineandscopolamineweresuccessfullyionisedinelectronimpactmode(TMDsystem)and API mode (ZMD system: single quadrupole operated in ESI + mode), but both compounds displayed superior sensitivity when using the API interface. Both compounds could also be confirmed on the ZMD system by ISCID and produced characteristic fragmentation mass spectra.

56 Created by Neevia Personal Converter trial version http://www.neevia.com

FIGURE4.12 HPLCESI +MSanalysisoftheliquefiedstomachcontents(withseeds)usingadualscan functionandISCID(ZMDsystem) The detection of these compounds by means ofa HPLCPDA system is not advised as both compoundsdisplayedrelativelypoorUVcharacteristics.ItisclearthatHPLCcoupledtoanESI mass selective detector offers a reliable and very sensitive method for the identification and confirmation of atropine and scopolamine in biological samples. By using the optimised techniquedescribedabove,theseedsof D. stramonium canbedistinguishedfromthoseof D. ferox bycomparingtheiratropinescopolamineratios.

Theabsenceofatropine/scopolamine(page54)intheliverandkidneysamples(theorgansof metabolismand/orexcretion)werepuzzling.Thismightbeduetothefactthatthepersondied soonaftertheingestionofthe D. ferox seeds,resultinginminimalmetabolismand/orexcretion. Another explanation might be found in the sampling technique used at the mortuary – only a smallportionoftheliverandonekidneywasremovedandsubmittedforanalysis.

57 Created by Neevia Personal Converter trial version http://www.neevia.com CHAPTER5

Callilepis laureola

5.1 BOTANICALDESCRIPTION Callilepis laureola DC.(Asteraceae)isanattractivesuffrutexofapproximately60cminheight witherect,leafyannualbranchesarisingfromapermanentwoodybase[85,86](Figure5.1). Theflowers are borne in large heads comprising blackish disc florets surrounded by a single seriesofwhiterayflorets.TheplantiswellknownbytheZuluname impila ,whichmeans‘health’ [85],butisalsocalledthe“Oxeyedaisy”,“Wildemagriet”orihlmvu (Zulu). 5.2 ORIGINANDDISTRIBUTION Callilepis laureola iswidelydistributedthroughtheeasternpartofSouthAfrica,and easternAfrica.Therearefivespeciesof Callilepis whichareallindigenoustosouthernAfrica. HO MO SO O H3C CH2 3 O MO3SO O H O H OH R COOH Atractyloside(KATR):M=K,R=H Protonatedatractyloside(ATR):M=H,R=H Carboxyatractyloside(CATR):M=H,R=COOH

HO CH HO O H3C 2 HO3SO O O H

O H OH COOH Atractylosidemonodesulfate FIGURE5.2 ChemicalstructuresofKATR,ATR

and[ATRSO 3] Figure5.1 Typicalhabitof Callilepis laureola

58 Created by Neevia Personal Converter trial version http://www.neevia.com 5.3 TYPEOFTOXIN Thetoxicprinciplesof C. laureola areatractyloside(KATR)(Figure5.2),thedipotassiumsaltofa sulfonatedkaureneglycoside, and carboxyatractyloside (CATR) (Figure5.2),the carboxylated analogueofatractyloside[87,88].Carboxyatractylosidewasalsoidentifiedasthetoxicprinciple of Atractylis gummifera L. (Asteraceae), a plant linked to human fatalities in Mediterranean countriessinceancienttimes[89,90,91,92] 5.4 ACTIVECOMPONENTSANDPHARMACOLOGICALEFFECTS The active components are atractyloside and carboxyatractyloside. Atractyloside has a strychninelikeaction,producingconvulsionsofahypoglycaemictype[93].Itactsasaspecific inhibitorofoxidativephosphorylationbyblockingADPtransportatthemitochondrialmembrane

andassuchitisoftenusedasabiochemicaltool[91,94].NoLD 50 couldbeobtainedfromthe

manufacturersofKATR(Calbiochem,USA),butthecalculatedLD 50 (orl)ofcarboxyatractyloside in rats is 13.5 mg/kg [95]. The onset of the first symptoms begins after 6 to 36 hours and includes nausea, vomiting and epigastric pain. This is very rapidly followed by a coma that deepens with time and may coinside with convulsions. The presence of a nephrotoxin and/or hepatotoxinhasbeenfrequentlysuggestedbythepathologistsoftheJohannesburgmortuary due to simultaneous detection of severe liver and kidney damage during autopsies (personal communicationswiththepathologistsoftheJohannesburgmortuary). 5.5 ETHNOPHARMACOLOGICALIMPORTANCE Thetuberousrootoftheplant(Figure5.3)isusedintraditionalmedicinebytheZuluandXhosa peopleofSouthAfrica[85,96,97,98].Theapplicationof impila rangefromalleviatingstomach complaints,tapeworminfestations,itisutilisedasavermifuge,usedforpurgativeapplications, asacoughexpectorant,forthetreatmentofwhoopingcough,forenemasandasanemetic.Itis alsousedinspiritualcontexttowardoffevilspirits[97,99]anditsspiritualuseinpeoplehave been reported in Swaziland, , Free State, KwaZuluNatal and the Eastern Cape [100].Atractylis gummifera isalsousedasatraditionalmedicineandtopicaluseasacausticon abscessesandboilshasbeenreported[101]. 5.6 POISONING 5.6.1 Accidental Callilepis laureola hasbeenimplicatedinthedeathofnumerouspatientswhousedmedication (muti )preparedfrom impila [85,96,98,102,103,104,105,106].

59 Created by Neevia Personal Converter trial version http://www.neevia.com 5.6.2 Deliberate Deliberatepoisoningwith C. laureola hasnotbeenreportedinliterature,butthecriminaladdition of A. gummifera root,withtheintentiontokill,hasbeenreported[90]. FIGURE5.3 Tuberousrootsof Callilepis laureola 5.7 FCLJHBINVESTIGATION Callilepis laureola isoneoftheplantssometimesmentionedincasefilessubmittedtotheFCL JHBandreferencetoitwasalsofoundintheFCLJHBdatabase.Accordingtosomeauthors C. laureola is one of the more commonly used medicinal plants in South Africa (see §5.5). NumerousforensiccasefilesstudiedattheFCLJHBindicatedthepossibilitythatanephrotoxin and/orahepatotoxinwasresponsibleforthedeathoftheperson,butchemicalanalysisdidnot revealanytoxicsubstances. Noreliablemethodexistedfortheanalysisoftheintactatractylosideusingmassspectrometry, andtheFCLJHBdidnothaveanymethodfortheextractionordetectionofthecompound. 5.8 EXPERIMENTALPROCEDURE 5.8.1 Standardsandreagents Atractyloside (>99% by TLC), potassium chloride, sodium chloride, potassium dihydrogen phosphate and sodium monohydrogen phosphate (> 99.5%) were obtained from Sigma

Chemical Company, USA. Ammonium acetate (98%) (NH 4OAc) and acetic acid (99%) were obtained from BDH Laboratory Supplies, England. Sulfuric acid (Suprapur 96%), hydrochloric acid(Suprapur96%),phosphoricacid(Suprapur96%),formicacid(98100%)andammonia

60 Created by Neevia Personal Converter trial version http://www.neevia.com (GR 25%) were obtained from Merck, Darmstadt, Germany. Acetonitrile (gradientquality, 200 nmUVcutoff)andmethanol(gradientquality,205nmUVcutoff)wereobtainedfromRomil, England.HPLCgradewater(20Mcm 1)wasobtainedfromaMilliQ/reversedosmosissystem (Millipore,USA).Thephosphatebufferedsalinesolution(PBS)waspreparedaccordingtothe prescribedmethodsuppliedbyWaters,Milford,USA[56].TheanhydroussaltsofKCl(0.20g),

NaCl(8.00g),KH 2PO 4(0.20g)andNa 2HPO 4(1.15g)weredissolvedin1Ldeionisedwaterand

the pH adjusted to 7.0 with 10% phosphoric acid. HClPBS and NH 3PBS were prepared as described above, but the pH was adjusted to 4.5 with hydrochloric acid and to 10.0 with ammonia,respectively. OasisHLBsolidphaseextraction(SPE)cartridges(3mlwith60mgofsorbent)wereobtained fromWatersCorporation,Milford,USA.A12portvacuummanifoldwasusedforallextractions. 5.8.2 Instrumentsandconditions 5.8.2.1 LC–MSconditions AWaters2695SeparationsModule(SM)equippedwitha996photodiodearray(PDA)detector andaZspraymassselectivedetector(ZQ)(Micromass,UK)[MultimodeESCi,maximummass 4000 m/z , ESCi (+/)mode] was used. The ESCi interface was only used in the negativeion electrospraymode.VariousreversedphaseHPLCcolumnsfromPhenomenex(LunaC18,Max RP,PolarRP),ThermoHypersilKeystone(Hypercarb,Duet),andWaters(XterraRPC18,MS C18andPhenyl)wereevaluated.Allthecolumndimensionswere250x2.1mmexceptforthe XterraPhenylcolumnthatwas150x2.1mm.Thebuiltinsyringepumpwasusedforallflow injection and optimisation experiments on the ZQ detector. For optimal chromatography, the following conditions were used: a linear gradient mobile phase consisting of buffer (25 mM

NH 4OAc,pH6.7):acetonitrile,startingat90%buffer:10%acetonitrileandendingat10%buffer: 90%acetonitrileafter20minutes.Thecolumnwasallowedtoflushatthehighorganicmobile phasefor5minuteswhereafterthemobilephasecompositionwaschangedtoinitialconditions and allowed to equilibrate for 10 minutes. The flow rate was 0.2 ml/min without splitting. However,theseconditionswerenotoptimalforthemassspectraldetectionoftheatractyloside standard or the separation and detection of atractyloside in a biological matrix. The best compromisedconditions forthedetectionofatractylosidebyLCMSaresummarisedinTable 5.1.TheHPLCcolumnwaskeptat40 °Cforallexperiments.PreliminaryMSoptimisationwas performedusinganAPCIinterfaceinESI +,ESI ,APCI +andAPCI modes.Highpuritynitrogen gas (Air Products) was used as nebulising gas at a flow rate of 450 L/h while cone gas was utilised at a flow rate of 30 L/h. In later experiments, the cone gas was found to reduce the efficiencyoftheionisationofatractylosideand wasdeactivated.Theoptimised MSconditions arecollatedinTable5.2.Optimisationexperimentsweredoneinscanmode( m/z 200–900) andquantitativeworkwasdoneinsingleionmonitoring(SIM)modewithadwelltimeof0.6s

61 Created by Neevia Personal Converter trial version http://www.neevia.com andaspanof0.4Dalton.TheionsusedforSIMexperimentswerethedeprotonated ionat m/z 725 andthemainfragmentionat m/z 645. TABLE5.1OptimisedHPLCconditionsforthedetectionofatractyloside(ZQsystem)

VARIABLE OPTIMISED WatersXterraPhenyl300x2.1mm(3m) Column (2x150mmcolumnsinseries) Columntemperature(°C) 40±1 Methanol Mobilephasecomponents Acetonitrile

H2O(10mMNH 4OAcpH4.5)

Initialconditionsof90:10H 2O:MeOHfor2minutes

Lineargradientto10:90H 2O:ACNfor18minutes

Gradientprofile Isocraticconditionsof10:90H 2O:ACNfor5minutes Returntoinitialconditionswithin5minutes Equilibratefor5minutes Mobilephaseflowrate 0.2ml/min Degassing Inline(normalmode) Sampletemperature(°C) 5±1 TABLE5.2OptimisedESIMSconditionsforthedetectionofatractyloside(ZQsystem)

CONDITION ATR ATRSO 3 Modeandpolarity ESInegative ESInegative Capillaryvoltage(KV) 3.00 3.50 Conevoltage(V) 27 65 Desolvationtemperature(°C) 400 450 Extractorvoltage(V) 1.0 1.0 RFlens(V) 1.0 3.5 Sourcetemperature(°C) 120 120 Conegasflow(L/h) 0 0 Desolvationgasflow(L/h) 450 450 IonEnergy 0.5 0.5 Multiplier(V) 650 650 Resolution(LMR&HMR) 15.8 15.8

62 Created by Neevia Personal Converter trial version http://www.neevia.com 5.8.2.2 Flowinjectionanalysisexperiments Flowinjectionanalysis(FIA)experimentswereinitiallydonebyinfusing10 µl/minof10g/ml atractylosidestandarddirectlyintotheMSinterface.Thishowever,producedaveryunstableMS signal.SubsequentFIAexperimentsweredonebyinfusingtheatractylosidestandardintothe HPLCmobilephaseof0.2ml/min50:50buffer:methanol.ThisgreatlyimprovedtheMSsignal strengthaswellasthestabilityofthesignal.However,inthepresenceofmethanol,atractyloside was poorly ionised and in later experiments, the mobile phase was changed to 50:50 buffer (10mMammoniumacetate,pH4.5withaceticacid):acetonitrile. 5.8.2.3 Evaluationoftheanalyticalprocedure Thelimitofdetection(LOD)forthestandardwasdeterminedexperimentally,andwastakenas the concentration of the standard that produced a detector signal that could be clearly distinguishedfromthebaselinenoise(±3timesbaselinenoise).Thelimitofquantitation(LOQ) wastakenastheconcentrationofthestandardthatproducedadetectorsignal±10timesgreater thantheLODsignal.Thepracticallimitofquantificationwasdetermined byspikingoldimpila tuberandextractingthespikedsampleasdescribed.Acalibrationcurvewaspreparedcovering the 1 ng/ml – 160 g/ml concentration range. The precision of the instrumental method was determined by multiple injections (n=10) of the atractyloside standard at three concentration levelscoveringtheanalyticalrangeofthemethod. 5.8.3 Extractionof Callilepis laureola tubersandunknownpowderedsamples Tubersof C. laureola wereobtainedfromthelocaltraditionalhealer’smarketinJohannesburg.A second, fresh sample came from the muti market in Durban, South Africa. The unknown powdered samples were submitted to the Forensic Chemistry Laboratory as part of Police ForensicexhibitslinkedtotencasessubmittedtotheLaboratoryfortoxicologicalscreeningand possibleidentification.Thetubersweregentlycleanedwithabrushpriortoextractiontoremove soil and bulk surface contaminants and were then grated by hand and thoroughly mixed to provideahomogeneoussample. Five1galiquotsofthegroundtuberwereplacedinseparate50mlpolypropylenescrewtop centrifugesampletubes.Thirtymilliliters(30ml)ofthethreePBSbuffermixtures(phosphate, HCl and ammonia), deionised water and methanol, respectively, were added to the sample tubes. Samples were mixed on a Heidolph rotating sample mixer for 30 minutes, and the supernatant recovered by centrifugation at 4000 rpm using a Hermle Z 300 centrifuge for 15 minutes.FiveSPEcartridgeswerepreparedbywashingconsecutivelywith6mlofmethanol, waterandtheextractingbufferused.ThesupernatantswereappliedtotheSPEcartridgesby handanddrawnthroughthecartridgesatapproximately1ml/minbyapplyingamildvacuum.

63 Created by Neevia Personal Converter trial version http://www.neevia.com Thecartridgeswerewashedwith3mlextractingbufferanddriedundervacuumfor10minutes. They were then eluted with 3 ml methanol, 3 ml acidic methanol (10 ml formic acid per liter methanol),3mlbasicmethanol(10mlammoniaperlitermethanol)and3mlacetonitrileandthe eluatesofeachcartridgecombinedintoonecollectiontube.Thecollectiontubeswereplaced intoaZymarkTurbovapandevaporatedat40 ○Cunderaregulatedstreamofnitrogengas.The dry residues were reconstituted with 1 ml of a 50:50 methanol: water mixture. The powdered samples, of unknown origin, were extracted as described above, but by using the standard WatersSPEmethod(PBSbuffer)[56]andadjustingthepHofthebufferto4.5withphosphoric acid. 5.8.4 Chemicalextractionandanalysisofvisceraandcaseexhibit Analiquotofeachliquefiedviscerasample[stomach(includingcontents),liverandkidney](3g each) wereplaced inseparate50mlpolypropylenescrewtopcentrifugesampletubes.Thirty milliliters (30 ml) of PBSHCl buffer was added to each sample and the tubes shaken on a Heidolph rotating sample mixer for thirty minutes. After centrifugation at 4000 rpm using a HermleZ300centrifugefor15minutestheaqueousphaseofeachsamplewaspassedthrough an Oasis HLB cartridge and the absorbed compounds stripped from the solid phase material with5mlmethanol.TheSPEcartridgeswerepreparedbywashingconsecutivelywith6mlof methanol,waterandtheextractingbufferused.Thecartridgeswerewashedwith3mlextracting bufferanddriedundervacuumfor10minutes.Theywerethenelutedwith3mlmethanol,3ml acidicmethanol(10mlformicacidperlitermethanol),3mlbasicmethanol(10mlammoniaper liter methanol) and 3 ml acetonitrile and the eluates of each cartridge combined into one collectiontube.ThecollectiontubeswereplacedintoaZymarkTurbovapandevaporatedat40 ○Cunderaregulatedstreamofnitrogengas.Thedryresidueswerereconstitutedwith1mlofa 50:50methanol:watermixture. 5.9 RESULTSANDDISCUSSION 5.9.1 Chromatographyanddetectionofatractyloside Atractyloside (KATR, Figure 5.2), first isolated by M. Lefranc in 1868 [14], has an empirical

formulaofC 30 H44 K2O16 S2andamolecularmassof802.13[protonatedformATR(Figure5.2):

C30 H46 O16 S2, molecular mass 726.22]. The compound contains multiple polar groups and is solubleinwaterbuthasrelativelypoorsolubilityinorganicsolvents.Underthenormalreversed phasechromatographicconditions,theacidicformofatractyloside(ATR)isvirtuallyunretained on all the Phenomenex, Waters and HypersilKeystone columns we tested, except for the Waters Xterra Phenyl and Hypersil Hypercarb columns. The Hypercarb column showed excessive retention, as ATR is strongly attracted to the graphite surface and displayed pronouncedtailing.RetentionontheWatersXterraPhenylcolumn(150mmx2.1mm,5m)

64 Created by Neevia Personal Converter trial version http://www.neevia.com depended on the buffer concentration and pH. This column outperformed the other HPLC columns evaluated and was used for all experiments. The best chromatographic effects were observed using an eluent containing ammonium acetate buffer (25 mM at pH 6.7) and acetonitrile.Theseconditionshowever,werenotconducivetotheMSdetectionofATRdueto ionisationsuppression.Byloweringthebufferconcentrationto10mMandadjustingthepHto 4.5withaceticacid,stablechromatographyandionisationwereobservedforATR. ATRwaspoorlydetectedontheUV(PDA)detectorduetothechromophoricpropertiesofthe compound, and this detection mode was discontinued in subsequent experiments. To obtain optimalMSconditions,flowinjectionanalysisexperimentswereperformed.Theresultsobtained fromFIAexperimentsdiffered,asexpected,fromthoseobtainedbyinjectingtheatractyloside standard with the 2695 SM. Therefore, only those results that had an impact on the LCMS separation and detection of ATR, were further investigated and discussed. ATR was only observedintheESI negative(ESI )modeandallotherdetectionmodesweredeactivated.Itwas foundthataconevoltageof27VwasoptimalforthedetectionoftheunfragmentedATR[ATR H] ( m/z 725).Increasingtheconevoltageto65VresultedinthefragmentationofATRandthe formationofadesulfatedspecies[ATRSO 3H] (m/z 645).Underchromatographicconditions,at a low cone voltage (27 V), the full scan spectrum of ATR (Fig. 5.4) was dominated by the deprotonated ion [ATRH] ( m/z 725). Other ions observed were [ATR2H+Na] at m/z 747 , a fragmentduetothelossofSO 3[ATRSO 3H] at m/z 645,aswellastwodoublychargedions, 2 2 [ATR2H] and[ATRSO 32H] ,at m/z 362and322,respectively. As mentioned before, ATR was only observed in the ESI negative mode, and was very susceptibletochangesintheeluentcomposition,MSparametersandnebulisationprocess.In FIAexperiments,a100 µg/mlatractylosidestandardproducedpoordetectorresponseonthe ZQ detector. The use of a 1000 µg/ml atractyloside standard for experimental work led to excessive contamination of the MS inlet. Deactivation of the cone gas resulted in a dramatic improvementindetectionandallowedtheuseofa10 µg/mlstandard.Theeluentcomposition alsoaffectedtheionisationofATR.InFIAexperiments,methanol:bufferwasusedaseluent,but thepresenceofmethanolintheeluentsuppressedtheionisationofATRandacetonitrilewas usedinsubsequentexperiments.Thischangeinchromatographicconditionsnotonlyenhanced the detection of ATR in LCMS analysis, but also improved peak shape and shortened, as expected,theretentiontimeofATR.However,thepresenceofacetonitrileintheinitialmobile phaseresultedincoelutionofthevariouscompoundsdetectedinthetuberextracts.Astarting mobilephaseofbuffer:methanol,followedbya replacementofthemethanol withacetonitrile aftertwominutes,restoredtheresolutionneededwithoutanycompromiseintheionisationof

ATR.Undertheseconditions,ATRproducedasinglechromatographicpeakatR t18.18minutes (Figure5.4)displayingthecharacteristicfragmentationdescribedabove(Figure5.4).

65 Created by Neevia Personal Converter trial version http://www.neevia.com FIGURE5.4 ESI chromatogramsandspectraofa10g/mlATRstandardobtainedunderoptimised conditions(ZQsystem) 5.9.2 Evaluationoftheanalyticalmethod TheLODwasdeterminedbyusingvariousdilutionsoftheatractylosidestandard.TheLODof ATRinSIMmode,usingthemainfragmentationion(m/z 645)wasfoundtobe100pg/mland theunfragmentedion( m/z 725)wasusedasconfirmation.Thecalibrationcurvecoveringthe1 ng/ml–160g/mlrange,wasbestdescribedbyasecondorderpolynomialfunction(r 2 =0.998). For the range 100 – 1000 ng/ml, the calibration curve was linear with a coefficient of determination of 0.999. The precision of the method was determined and the results are summarisedinTable5.3.TheRSD’softhepeakareasforthestandardswereonaveragebelow 3%(n=10),whiletheRSD’sinthebiologicalmatricesincreasedto3.5%(n=8)inthefresh impila tuberand5.2%intheunknownpowderedsample#207.

66 Created by Neevia Personal Converter trial version http://www.neevia.com TABLE5.3EvaluationofRSDvaluesinvariousmatricesforATRanalysis(ZQsystem) %RSDONPEAK SAMPLE CONCENTRATION N AREAOFATR 10ng/ml 10 2.9 ATRStd 1 µg/ml 10 2.2 100 µg/ml 10 3.8 FreshTuber N/A 8 3.5 Unknownpowder#207 N/A 8 5.2 5.9.3 SolidphaseextractionofATR, C. laureola tuberandpowderedherbalsamples Initial SPE experiments with an atractyloside standard indicated that the compound could be successfullyretainedandelutedfromtheOasisHLBcartridgeswithanyofthePBSbuffersas wellaswater.However,extractionofatractylosidefromthetuberproducedmixedresults.Ofthe

fiveextractionsolventsevaluated(PBSPhosphate,PBSHCl,PBSNH 3,MeOHandH 2O),the

MeOH extracted the least atractyloside, followed by H 2O, PBSPhosphate and PBSNH 3.

Although the PBSHCl yielded the most atractyloside, the PBSNH 3 produced the cleanest extractbutfailedtoextractallthecompoundsofinterest(CATRwasnotdetectedinthisextract). ThePBSHClbufferwasselectedasthebufferofchoiceforallfurtherextractionsasitextracted allthecompoundsofinterest. Unknown powdered samples are regularly sent to our laboratory as part of forensic investigations.Thesesamplesareusuallyofbotanicalorigin,sometimesfortifiedwithmetalsalts tocreatea“stronger muti ”,ormightevencontainhumanoranimalremains.Tencasesinvolving unknownpowderedsampleswerepreviouslyextractedaccordingtooursystematictoxicological screeningprocessandfoundtocontainnotoxicsubstances.Astheoriginalsampleswereno longeravailable,theoriginalextractsofthepowderedsampleswereused. 5.9.4 Analysisof C. laureola tuberandunknownpowderedsamples Theextractofthe impila tuberobtainedfromthelocaltraditionalhealer’smarketwasanalysed with the method described above. The masses of interest, namely 725, 645 and 322 were monitored simultaneously. In initial experiments with a 150 mm column, it was clear that co elutionpreventedobtainingacleanspectrumforeachcompoundeluted.Thecolumnlengthwas doubled(twocolumnsusedinseries)andthemobilephasechangedtoaffordbetterseparation without drastically altering the retention times of those compounds detected (see 5.8.1). The optimisedHPLCconditionsaresummarisedinTable5.1andtheoptimisedMSconditionsare listed in Table 5.2. These conditions were found to give nearbaseline resolution of the

67 Created by Neevia Personal Converter trial version http://www.neevia.com compounds detected. The impila tuber extract was reanalysed with the optimised HPLC conditions(Figure5.5).Fromtheresults,itwasclearthatATRwasnotpresent,butthatthemain

constituent was a monodesulfated derivative of carboxyatractyloside (R t 17.44). Also detected

wasthemonodesulfatedderivativeofatractyloside(R t21.16),acompoundthatcouldalsobe produced by insource collisioninduced dissociation (ISCID) of atractyloside. The absence of atractyloside was most likely caused by ageing, as these tubers were stored at room temperaturefortwoyears. Fresh C. laureola tuberswereobtainedandsamplepreparationwasdoneasdiscussedabove. TheextractwasanalysedwiththeoptimisedHPLCmethod.Theresults(Fig.5.6)weresimilarto thoseobtainedwiththeoldtubers.Althoughthemonodesulfatedderivativesofatractylosideand

carboxyatractyloside were still present, atractyloside (R t 18.25) was detected as the major componentinthetuberextract(8.8±0.4g/g;n=5).Itispossiblethatintheplantmaterial atractylosideandcarboxyatractyloside losesone sulfategroup withageing.Astubersusedin traditional medicine may be harvested and stored for extended times before utilisation, the possible degradation of atractyloside should always be taken into account in forensic cases. Therefore,screeningmethodsshouldbedevelopedthatdonotonlyscreenforATRandCATR, butalsofortheirmonodesulfatedderivatives. Thetencasesinvolvingunknownpowderedsampleswereanalysedwiththeoptimisedmethod. ATRwasdetectedinfourofthecasesintracelevels,butcase#207containedsufficientATR levelstoenablequantification(10.1±0.6ng/g;n=5)(Figure5.7).ThelowATRlevelsmaybe due to degradation of the sample (assuming the whole sample was impila tuber), or might indicatethatthepowderwasformulatedfrommorethanoneplantsourceandthat impila was butoneofafewplantsusedtoformulatethe muti . 5.9.5 Solidphaseextractionandanalysisofviscerasamples Duetoalackofasuitablechromatographicseparationandmassspectraldetectiontechnique forATRandCATRintheFCLJHB,extractedviscerawerenotscreenedforthepresenceof thesetwocompoundspriortothedevelopmentofthemethoddescribedhere.Aselectionof70 cases, previously analysed and found to be negative (no toxic substances detected), were analysedwiththefullscanmethod.TheresultsweredisappointingasnoATR,CATRoranyof the monodesulfated compounds could be detected. The samples were reanalysed with the moresensitiveSIMmethodbyusingthemainfragmentationion( m/z 645).Theresultsindicated that65%ofthecasescontainedcompoundswiththem/z 645massion.Thesampleswerethen reanalysed with a dualfunction method using both the SIM masses ( m/z 725 and 645). The newsetofresultsindicatedthatonly45%ofthecasescontainedcompoundswithbothmass ions,thecorrectmassionratiosandwithintheretentiontimewindow.

68 Created by Neevia Personal Converter trial version http://www.neevia.com FIGURE5.5 ESI chromatogramandspectraofthemaincompoundsdetectedintheagedtuber extract.Overlaidthechromatogramofa10 µµµg/mlATRstandard(ZQsystem)

69 Created by Neevia Personal Converter trial version http://www.neevia.com FIGURE5.6 ESI chromatogramandspectraofthemaincompoundsdetectedinthefreshtuber extract(ZQsystem)

70 Created by Neevia Personal Converter trial version http://www.neevia.com FIGURE5.7 ESI chromatogramandspectraoftheanalysisoftheunknownpowderedsampleofCase 207(ZQsystem)

71 Created by Neevia Personal Converter trial version http://www.neevia.com FIGURE5.8 ESI SIManalysisoftheunknownpoweredsampleofCase1294(ZQsystem)

72 Created by Neevia Personal Converter trial version http://www.neevia.com FIGURE5.9 ESI chromatogramsoftheSIManalysisofthestomachandcontentsofCase283 (ZQsystem) 5.9.6 Optimisationofmassspectralconditionsfortraceanalysis IfSIMresultsmustbepresentedanddefendedinacourtoflaw,itistheexceptednormtouse three to four unique mass ions to monitor. It is also preferable to use collisioninduced dissociation,asmassionsproducedunderthoseconditionscanserveasaconfirmationofthe initialresults.Duetothefactthattheresultswerenotsufficientlyconclusive,anewMSmethod wasdevelopedutilisingthetwoscanfunctionsatdifferentconevoltages(27Vand65V)but also monitoring the 4 mass ions in each of the isotope clusters at m/z 725 and 645. The 70 cases were reanalysed with the new method resulting in 30% producing positive results, of

which6%wereconclusivelypositiveforthepresenceofATRand/orATRSO 3.Theresultsfrom oneofthepositivecases(unknownpowderedsampleofCase#1294)aredepictedinFigure5.8 andclearlyshowthetypicalisotopeclustersat m/z 725and645withintheexpectedretention timewindow.Thenewlydevelopedmethodwasexpandedevenfurthertoenablethedetection

ofCATRandCATRSO 3 byalsomonitoringthefourmassionsineachoftheisotopeclustersat

m/z 769and689,respectively . ThisadaptationoftheMSmethoddidnotimprovetheresultsof

the 70 “historic” cases evaluated as no CATR or CATRSO 3 could be detected. Although the newMSmethodisveryspecificandversatileindetectingthemaintoxicprinciplesof impila and their monodesulfated derivatives, it showed a decrease in sensitivity due to the long cycling timesnecessarytomonitorthe16massesineachofthescanfunctions.

73 Created by Neevia Personal Converter trial version http://www.neevia.com Created byNeevia Personal Converter trial version Table5.4. AnalysisofforensicsamplesusingtheoptimisedMSconditionsforthedeterminationofATR,CATRandtheirmonodesulfated derivatives.FS%andRS%referstotheForwardSearch%andReverseSearch%doneagainstthecompoundsdetectedinthe impila tuber. (DNM=Didnotmatch)

ScanFunction1 ScanFunction2 16MassesCV=27 16MassesCV=65

CATR CATRSO 3 ATR ATRSO 3 CATR CATRSO 3 ATR ATRSO 3 FS RS FS RS FS RS FS RS FS RS FS RS FS RS FS RS % % % % % % % % % % % % % % % %

91.6 98.6 99.5 100 98.3 99.5 99.8 100 85.4 DNM 98.3 100 97.4 99.8 99.7 100 STOMACH

LIVER 97.5 98.5 95.8 100 ND ND 94.9 99.9 95.8 DNM 99.3 100 ND ND 99.8 99.9

KIDNEY 97.3 DNM 94.0 100 ND ND 94.8 100 97.2 DNM 99.6 100 ND ND 96.9 99.6

http://www.neevia.com BILE 49.9 94.6 97.6 98.9 ND ND 97.5 97.5 94.7 DNM 98.3 DNM ND ND 96.7 100

BLOOD 96.2 97.1 96.8 98.5 92.1 DNM 92.9 99.9 94.8 DNM 95.8 100 95.0 99.8 97.0 99.9

74

FIGURE5.10 ESI spectraobtainedfromthe16ionSIManalysisofthestomachandcontentsofCase 283(ZQsystem)

75 Created by Neevia Personal Converter trial version http://www.neevia.com

FIGURE5.11 PredictedandactualESI spectraofthecompoundsidentifiedinthestomachand contentsofCase283(ZQsystem)

76 Created by Neevia Personal Converter trial version http://www.neevia.com

A recently received forensic case (# 283) comprising of various viscera samples, namely stomach and its contents, liver, kidney, bile and blood, was investigated. The samples were extracted with the PBSHCl method and analysed with the new MS method. All the forensic

exhibitssubmittedforanalysiswerefoundtocontainATR,ATRSO 3,CATRandCATRSO 3.The

detectedcompounds werematchedusingtheForwardSearch(purecompoundevaluation)and Reverse Search (impure compound evaluation) search routines of MassLynx software (Table 5.4). The results obtained from the analysis of the stomach and its contents (Figure 5.9 and Figure5.10)clearlyindicatedtheexcessiveuseofaherbalpreparationcontaining impila tuberor thedirectingestionofthetuber. 5.10 FORENSICAPPLICABILITY Theanalysisofatractylosideinplantmaterialhasalwaysbeenproblematic.Thedetectionand positiveidentificationofintactATRandCATRinhumanviscerahasinthepastbeenamajor challenge and is reported here for the first time. From the results of this study it seems that atractyloside poisoning is as frequent as reported [1, 102, 106]. The lack of screening proceduresforatractylosideandcarboxyatractylosideresultedinmanyforensiccasesnotbeing linkedtoexposuretoorabuseof impila orproductsderivedfromthe impila tuber. The HPLCESIMS method described here allows for the analysis of atractyloside and carboxyatractyloside in C. laureola , unknown powder samples and human viscera, and is capable of detecting various other atractyloside derivatives present in the tuber. With the proposedmethod,linearitywasobservedintherangeof100–1000ng/mlbuttheworkingrange covered the 1 ng/ml – 160 g/ml concentration range with RSD values < 3% (n = 10). The method facilitated the quantification of ATR in fresh impila tuber (8.8 ± 0.4 g/g; n = 5), an unknownpowderedexhibitofcase#1294(10.1±0.6ng/g;n=5)andtheviscerasamplesof case#283[280.1±16.5ng/g(averaged);n=8].Duetothesimplicityofthemethod,itisideally suited as a general forensic screening method for samples to detect the presence of atractyloside and carboxyatractyloside, and can be used to confirm the identity of tubers collectedformedicinaluseandtodeterminetheATRlevelsofcollectedplantmaterial. ThemethoddescribedisrobustandcanbeadjustedtodofullorSIRMSscans.Therefore,itis ideallysuitedforeitherhighconcentrationortracelevelanalysisofATRandCATRinvarious matrices. By using a dual MS scan function approach, the compounds of interest can be detectedandconfirmedusingasinglequadrupolemassspectrometerwithoutanyderivatisation orlengthysamplepreparationsteps.Thismethodwillbeusefultoanylaboratorytaskedwiththe screeningofbiologicalsamplesforthepresenceofatractyloside,carboxyatractylosideortheir monodesulfatedderivatives.

77 Created by Neevia Personal Converter trial version http://www.neevia.com

CHAPTER6

Boophone disticha

6.1 BOTANICALDESCRIPTION Boophone disticha L. Herb (Amaryllidaceae), previously known as Boophane disticha L. Herb [107],isaverydistinctivebulbousplantgrowingfromalarge,partiallysubmergedbulb(Figure 6.1).Thebulbiseasilyrecognisedbythethicklayersofpaperyscales(Figure6.2)surrounding the fleshy inner part (Figures 6.3). The symmetrically arranged straplike leaves emerge after flowering.Attractivepinktoredflowersareborneinaroundedinflorescenceinearlyspring[108, 109](Figure6.4).Thisplantdoesnotflowereveryyearandwhenrelocatedwillnotflowerfora coupleofyears.Itisalsoknownasbushmanpoisonbulb, incwadi (Xhosa)and incotha (Zulu) [64].

6.2 ORIGINANDDISTRIBUTION Boophone disticha is widely distributed throughout the southern and eastern parts of South Africa and may be found further north into tropical Africa [109]. It is usually found in open butwillgrowinmostplacesprovideditsgivenwelldrainedsoilandadequatesunlight.

Figure6.1 Figure6.2 Typicalhabitatof Boophone disticha Papery bulb scales of Boophone disticha 78 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure6.4 Inflorescenceof Boophone disticha Figure6.3 Crosssectionofa Boophone disticha bulb 6.3 TYPEOFTOXIN Thetoxicprinciplesof B. disticha areagroupofisoquinolinealkaloidsoftheAmaryllidaceaetype [108].Numerousalkaloidshavebeenisolatedfromthebulbwithbuphanidrineoneofthemain compounds (Fig. 6.5). Other alkaloids include buphanisine, buphanamine, 3-O-methyl rinamidine(originallynamedundulatine,butthenamewasrevisedbecauseanother,unrelated compound was also called undulatine) and acetylnerbowdine. Table 6.1 and Figure 6.6 are summariesofalltheknown(characterised)compoundsof B. disticha [110]. TABLE6.1Knownalkaloidsfromthebulbof Boophone disticha

ALKALOID ALTERNATIVE EMPERICAL ACCURATE NAMES FORMULA MASS

BUPHANISINE(1) C17 H19 NO 4 285.1365

LYCORINE(2) C16 H17 NO 4 287.1158

BUPHANAMINE(3) C17 H19 NO 4 301.1314

POWELLINE(4) C17 H19 NO 4 301.1314

BUPHANIDRINE(5) DISTICHINE C17 H21 NO 4 315.1471

BUPHANITINE(6) NERBOWDINE C17 H21 NO 5 319.1420

DISTICHAMINE(7) C18 H19 NO 5 329.1263

3-O-METHYLCRINAMIDINE(8) UNDULATINE C18 H21 NO 5 331.1420

79 Created by Neevia Personal Converter trial version http://www.neevia.com

6.4 ACTIVECOMPONENTSANDPHARMACOLOGICALEFFECTS

Buphanidrine(5)isapowerfulanalgesic,hallucinogenandneurotoxinwithaLD 50 (s.c.,mice)of lessthan9mg/kg[110].Symptomsofpoisoningarewelldocumented[45]andincludedizziness, restlessness, impaired vision, unsteady gait, intense visual hallucinations, coma and finally death. Large doses of the bulb extract will also induce diarrhoea, vomiting and a general weakness,whichwillrapidlyleadtodeath.Thetoxicityofthisplantiswellknownandisreflected inthename“poisonbulb”or“gifbol”anditsearlieruseasanarrowpoison[111,112]. 6.5 ETHNOPHARMACOLOGICALIMPORTANCE Boophone disticha is one of the most important medicinal bulbs of southern Africa but its extremelyhightoxicity hasledtoseveralhumanfatalities.Thehighlytoxicnatureofthebulb scalesmightbethereasonforitsearlieruse asapreservative.A discoveryof2000yearold human(KhoiSan)remainsmummifiedwith Boophone scalesisatestimonytothehistoricaland culturalimportanceofthisplant[113].Oneofthemainmedicinalusesisthetreatmentofpainful woundsandasanouterdressingaftercircumcision.Itisalsoappliedtoboilsandsepticwounds andmaybeusedasabandageormixedwithwater,milkoroil[45,114,115].Weakdecoctions ofthebulbscalesareadministeredorallyorrectally(asanenema)forvariouscomplaintssuch as headaches, chest pain, abdominal pain, weakness and eye conditions [45]. Very weak decoctionsofthebulbscalesareusedasaneffectivesedative,buthigherdoseswillinducevivid visualhallucinationswhicharesometimesusedfordivination,initiationritesandtheinitiationof diviners [109, 111, 116]. Although the dried bulb scales are most commonly used, the fresh scalesareoftenappliedtoburnsandusedtotreatrashesandskindisorders,includingeczema. Itisalsousedtorelieverheumaticpains,arthriticswelling,sprains,muscularstrainsandother inflammatory conditions [117]. An unusual practice is the ingestion of the flowers in gruel to alleviatethesensationofdizziness[118].Theplantisalsocultivatedasaprotectivecharm[119] andusedinmagicalapplications[120]. 6.6 POISONING 6.6.1 Accidental Poisoningwith B. disticha hasbeenreportedbymanyauthors[45,108,109,111,117,118,121, 122] and is usually accidental. This may be due to the underestimation of the toxicity of the particular bulb used to prepare the muti , or the administration of too large a dose of the decoction.Mildpoisoningwillproducetemporarysymptomsthatwoulddiminishwithin24hours, butacutepoisoningusuallyresultsinseverevomiting,weakness,comaanddeath.

80 Created by Neevia Personal Converter trial version http://www.neevia.com

BUPHANISINE(1) LYCORINE(2OH) OCH3 HO H O O H H N N O O 285 287 BUPHANAMINE(3) POWELLINE(4) H H HO OH O O H H N N O O OCH3 301 OCH3 301

BUPHANIDRINE(5) BUPHANITINE(6) OCH3 HO OH O O H H N N O O 315 319 OCH3 OCH3 DISTICHAMINE(7) 3OMETHYLCRINAMIDINE(8) O O OCH3 OCH3 O O H H N N O O 329 331 OCH3 OCH3 Figure6.5 Knownalkaloidsfoundinthebulbof B. disticha. Thenominalmassofeachstructureis shownbeneatheachstructure( Bluenumber )

81 Created by Neevia Personal Converter trial version http://www.neevia.com

6.6.2 Deliberate Decoctions of the bulb and bulb scales have been used to commit murder and suicide. In recordedsuicideattempts,thedecoctionisusedasanenemawhichcanbeadministeredviathe rectumorvagina[45]. 6.7 FCLJHBINVESTIGATION BuphanidrineandbuphanaminehavebeendetectedattheFCLJHBandwereidentifiedusing commercial spectral libraries like NIST on the GCMS (EI) and HPLCMS (EI) systems. The detection of the alkaloids of B. disticha in viscera samples was prior to this research only successfulincaseswherethepersonoverdosedona muti preparedfromthebulbof B. disticha . Ifsufficienttimelapsedfromexposuretosampling,thelevelsofalkaloidsdroppedtoolowfor detectionbythescreeningmethodsusedinGCEIMSandHPLCEIMS(TMD).Thefactthat standardsarenotcommerciallyavailablealsohamperedthedevelopmentofscreeningmethods andsensitiveandselectivedetectionmethodsfortargetedanalysis. Theaimsofthisinvestigationwere: Aim1: To extract the shredded bulbs of B. disticha with suitable organic solvent(s) to determinethealkaloidprofileofthemajorcomponents. Aim2: TodetermineifthestandardSPEextractionmethodcouldextractthemajoralkaloids fromtheseshreddedbulbs. Aim3: Sincesomeofthemajoralkaloidshavenotbeencharacterisedproperly,thethirdaim was to extract sufficient amounts of alkaloids to enable purification and characterisationbyLCMSandNMR. Aim4: Todevelopastandardextractionandscreeningmethodforthealkaloidsinhuman viscera. Aim5: Tocomparethealkaloidprofilesof Ammocharis coranica and B. disticha inorderto beabletoruleoutthepresenceof A. coranica in muti samplesbypatternrecognition. ThiswouldbeaccomplishedbycomparingthemassspectralBPIorTICpatternsof unknownsampleswiththemassspectralBPIorTICpatternsof A. coranica and B. disticha . 6.8 EXPERIMENTALPROCEDURE 6.8.1 Standardsandreagents No standard are commercially available for the alkaloids of B. disticha . Potassium chloride, sodium chloride, potassium dihydrogen phosphate and sodium monohydrogen phosphate (> 99.5%) were obtained from Sigma Chemical Company, USA. Ammonium acetate (98%)

82 Created by Neevia Personal Converter trial version http://www.neevia.com

(NH 4OAc)andaceticacid(99%)wereobtainedfromBDHLaboratorySupplies,England.Sulfuric acid(Suprapur96%),hydrochloricacid(Suprapur96%),phosphoricacid(Suprapur96%),formic acid (98 100%) and ammonia (GR 25%) were obtained from Merck, Darmstadt, Germany. Acetonitrile(gradientquality,200nmUVcutoff)andmethanol(gradientquality,205nmUVcut off) were obtained from Romil, England. Chloroform, cyclohexane, dichloromethane (spectrophotometricgrade)wereobtainedfromSigmaChemicalCompany,USA.HPLCgrade water(20Mcm 1)wasobtainedfromaMilliQ/reversedosmosissystem(Millipore,USA).The phosphatebuffered saline solution (PBS) was prepared according to the prescribed method supplied by Waters, Milford, USA [56]. The anhydrous salts of KCl (0.20 g), NaCl (8.00 g),

KH 2PO 4 (0.20 g) and Na 2HPO 4 (1.15 g) were dissolved in 1 L deionised water and the pH adjustedto5.0with10%hydrochloricacid. OasisHLBsolidphaseextraction(SPE)cartridges(3mlwith60mgofsorbent)wereobtained fromWatersCorporation,Milford,USA.A12portvacuummanifoldwasusedforallextractions. 6.8.2 Instrumentsandconditions AWaters2690HPLCsystemequippedwithbotha996photodiodearray(PDA)detectoranda Termabeammassselectivedetector(TMD)(electronimpact(EI)mode;maximummass1000 m/z fromWaters) was used as initial screening instrument and high concentration studies. A Waters2690HPLCsystemequipped witha 996PDAdetectorandaZ spraymassselective detector(ZMD)(Micromass,UK)(electrospraymode;maximummass2000 m/z )wasusedfor lowconcentrationstudiesandasconfirmation.APhenomenexAquaC18(250x2.1mm,5m) HPLCcolumnwasusedontheTMDsystemwhileaWatersXterraMSC18HPLCcolumn(250 mmx2mm,5m) wasusedontheZMDsystem.AHarvardsyringepump(Model11) was obtained from Harvard Apparatus, Holliston, USA and was used for all direct injection experimentsontheZMDdetector. The Phenomenex Aqua column (TMD system) was used with an acidic mobile phase of 1% formicacidinthewater,startingat95%water:5%acetonitrileandslowlyrampingtheorganic componentto50%methanol:50%acetonitrilein40minutes.Theseconditionswerekeptfor5 minutes where aftertheHPLC column was reequilibrated with the initial conditions. Theflow ratewas0.2ml/minandthecolumntemperature40 oC. ToensurethemaximumretentionofbasicalkaloidsontheXterraMSC18column,theinitial chromatographic conditions were 90% water containing 10 mM ammonium acetate, the pH adjusted to 10 with ammonia (25%) and acetonitrile. After injection, the chromatographic conditionsweregraduallychangedthroughalineargradientprofileto90%acetonitrileand10% of the original aqueous mobile phase in 20 minutes. These conditions were kept stable for 5

83 Created by Neevia Personal Converter trial version http://www.neevia.com

minutes where after the HPLC system reequilibrated the analytical column to the initial conditions.Theflowratewaskeptconstantat0.2ml/minwhilethecolumntemperaturewaskept constantat40 oC.ThenebuliseroftheTMDdetectorwasoptimisedwithacaffeinetestsolution (100 g/ml) to ensure efficient nebulisation and droplet formation. The electrospray ionization (ESI)probeoftheZMDdetectorwasoptimisedbydirectinjectionviaasyringepumpusinga cocaine test solution (10 g/ml). The optimised conditions for the TMD detector are listed in Table 6.2 and those for the ZMD detector in Table 6.3. The optimised chromatographic conditionsfortheXterraMSC18columnarelistedinTable6.4.1Hand 13 CNMRspectrawere

recordedinCDCl 3onaVarianInova300MHzNMRspectrometer. Table6.2HPLCgradientprofileofthegeneralscreeningmethod(TMDsystem)

TIME FLOW %A %B %C %D CURVE

min ml/min H2O MeOH Buffer ACN 1 0.20 0 0 95 5 6 2 1.00 0.20 0 0 95 5 4 3 10.00 0.20 0 0 80 20 6 4 12.00 0.20 0 0 80 20 4 5 20.00 0.20 0 30 50 20 5 6 35.00 0.20 0 10 0 90 6 7 37.00 0.20 0 10 0 90 6 8 40.00 0.25 0 10 0 90 6 9 45.00 0.25 0 10 0 90 6 10 50.00 0.20 0 0 95 5 5 6.8.3 Chemicalextractionof B. disticha bulband A. coranica scales Boophone bulbswerepurchasedfromtheSomsTraditionalHealer’smarketinJohannesburg. Ammocharis coranica bulbscaleswereobtainedfromMr.P.Winter(collectedatHaenertsburg, Limpopo Province). The Boophone bulbs were cut into slices and dried at 40 oC to constant weightwhilethe Ammocharis bulbscaleswereonlydriedat40 oCtoconstantweight.Thebulb slices and bulb scales were finely ground using an IkaWerk A10 watercooled mill (Janke & Kunkel, Straufen, Germany). Three 5 g portions of shredded Boophone bulb were placed in threeseparate50mlpolypropylenescrewtopcentrifugesampletubes.PBSHClbuffer(pH5) (30ml)wasaddedtoonetube,PBSHClbuffer(pH7)(30ml)wasaddedtothesecondtube

whilePBSNH 3buffer(pH9)(30ml)wasaddedtothethirdtube. The tubes were capped and shaken on a Heidolph rotating sample mixer for thirty minutes. OasisHLBSPEcartridgeswerepreparedbywashingconsecutivelywith6mlofmethanol,water 84 Created by Neevia Personal Converter trial version http://www.neevia.com

andtheextractingbufferused.AftercentrifugationonaHermleZ300centrifugeat4000rpmfor 15minutes,theaqueousphases werepassedthroughtheconditionedOasisHLBcartridges, washedwith3mlextractingbufferanddriedundervacuumfor10minutes.Thecartridgeswere thenelutedwith3mlmethanol,3mlacidicmethanol(10mlformicacidperlitermethanol),3ml basic methanol (10 ml ammonia per liter methanol) and 3 ml acetonitrile and the eluates combinedintoasinglecollectiontube.ThecollectiontubewasplacedintoaZymarkTurbovap and evaporated at 40 ○C under a regulated stream of nitrogen gas. The dry residue was reconstitutedwith1mlmethanol. Theshreddedbulbscalesof A. coranica wereextractedasdescribedfor B. disticha . TABLE6.3OptimisedMSconditionsforthedetectionof Boophone alkaloidsontheTMD system

TMD BOOPHONE CONDITIONS ALKALOIDS Mode EIpositive Ionisationenergy(eV) 70 Gain 10 Nebulisertemperature(°C) 80 Expansiontemperature(°C) 90 Sourcetemperature(°C) 225 Capillarytiptemperature( oC) 160 Desolvationgasflow(L/h) 30 Samplingrate 1.0 Scanrange(amu) 50550 IonEnergy 1.0 Multipliergain(V) 1275 6.8.4 Isolationofthealkaloidsfromthebulbof B. disticha A dormant B. disticha bulb was prepared as described in §6.8.3. Due to the fact that large volumes of organic solvent can be more readily reduced in volume than similar volumes of aqueousbuffer,itwasdecidedtodoalargescaleorganicsolventextract.Theshreddedbulb wasplacedina5literSchottbottle,coveredwithcyclohexane,amagneticstirrerbaraddedand

85 Created by Neevia Personal Converter trial version http://www.neevia.com

mixed on an Ikamag RH (Janke & Kunkel, Straufen, Germany) stirrer for 1 hour. The cyclohexanewasfilteredoffthroughaBuchnerfunnelpackedwithcelite545(SMMchemicals, South Africa), the bulb residues returned to the 5 liter Schott bottle and reextracted with cyclohexane(CHEX).Thisprocedurewasrepeatedwithchloroformandmethanolasextracting solvent. The chemically similar organic filtrates were pooled and evaporated under reduced pressureat50 oConaBüchiRE111RotovaporequippedwithaBüchi461waterbath(Büchi, Switzerland). The dried residues of each solvent extraction were redissolved in the minimum amountofsimilarsolvent. Table6.4Gradientprofileofthealkaloidscreeningmethod(ZMDsystem) TIME FLOW %A %B %C %D CURVE

min Ml/min H2O MeOH Buffer ACN 1 0.20 0 0 90 10 1 2 2.00 0.20 0 0 90 10 1 3 25.00 0.20 0 0 10 90 6 4 25.00 0.20 0 0 10 90 6 5 34.00 0.20 0 0 90 10 4

ThecrudeextractswereevaluatedonaluminiumTLCplates(MerckSilicagel60F 254 )usinga mobilephaseofcyclohexane:chloroform:dietylamine(5:4:1).Theplateswereevaluatedunder

UV 254 anddisplayedcomplexmixturesofnumerouscompounds.AnalysisontheZMDsystem (ESI +)confirmedtheTLCresultsandindicatedthatcertaincompoundswerefoundinoneofthe fractions only, but that other compounds were found in more than one fraction. The crude extracts were combined and fractionated by hand on a Supelco Versa Flash system (Sigma Aldrich)undertheconditionssummarisedinTable6.5.Thesampleswerecollectedandspotted onto TLC plates and developed in the same eluent as used on the Versa Flash system. An evaluationoftheTLCplatesindicatedthatvariouscompoundsstillcoeluted–evenunderthe chromatographicconditionsusedonthepreparativeLCsystem.Eachfractionwasanalysedon theZMDsystem(ESI +)andthosefractionsofsimilarcompositionwerepooledandevaporated underreducedpressureat40 oContheZymarkTurbovapsystem. ThechromatographicconditionsusedontheWatersXterraMSC18analyticalcolumnwasfed into the Prep Calculator software of theWaters Corporation to recalculate the conditions that must be used for a Waters Xterra MS C18 column (300 mm x 7.8 mm, 10 m). The same gradientprofileasdescribedfortheanalyticalcolumndidnotgivesufficientresolutionandwas changed to the conditions listed in Table 6.6. These conditions were used to fractionate the

86 Created by Neevia Personal Converter trial version http://www.neevia.com

alkaloidsfrom100linjectionsoftheredissolvedresiduewithaLKB2211Superracfraction collectorbymonitoringtheUVspectrawiththePDAdetectorbetween200and600nm. 6.8.5 Chemicalextractionandanalysisofvisceraandcaseexhibits Analiquotofeachliquefiedviscerasample[stomach(includingcontents),liverand,kidney(3g each)]wereplacedinseparate50mlpolypropylenescrewtopcentrifugesampletubes.Thirty milliliters(30ml)ofPBSHClbuffer(pH5)wasaddedtoeachsampleandthetubescappedand shakenonaHeidolphrotatingsamplemixerforthirtyminutes.OasisHLBSPEcartridges(3ml– 60mg)werepreparedbywashingconsecutivelywith6mlofmethanol,waterandtheextracting bufferused.Aftercentrifugationofthesampletubesat4500rpm(HermleZ300centrifuge)for 15minutes,theaqueousphaseofeachsamplewaspassedthroughaconditionedOasisHLB cartridgeandthecartridgeswerewashedwith3mlextractingbufferanddriedundervacuumfor 10minutes.Thecartridgeswerethenelutedwith3mlmethanol,3mlacidicmethanol(10ml formicacidperlitermethanol),3mlbasicmethanol(10mlammoniaperlitermethanol)and3ml acetonitrileandtheeluatesofeachcartridgecombinedintoonecollectiontube.Thecollection tubeswereplacedintoaZymarkTurbovapandevaporatedat40 oCunderaregulatedstreamof nitrogengas.Thedryresidueswerereconstitutedwith1mlofmethanol.Thesolidcaseexhibits [suspected muti bottleandrubberbulb(usedtoadministeranenema)],werecarefullywashed downorrinsedoutwithmethanol.ThesolventwasevaporatedontheZymarkTurbovapsystem asdescribedabove.Thepieceofplant bulbthat wassubmitted withoneofthecases(Case 1175)waspreparedasdescribedin§6.8.4. 6.9 RESULTSANDDISCUSSION 6.9.1 ChromatographyanddetectionofAmaryllidaceaealkaloids The bulbs of B. disticha contains numerous alkaloids of the crininetype and at least eight alkaloidshavebeencharacterisedandreportedinliterature[40,41](Figure6.5).Analysisofthe crudeextract,usingthestandardacidicscreeningmethodontheTMDsystem(Figures6.6and 6.7),displayedacomplexmixturethatcouldnotbeseparatedfullyusingthePDAdetector.The TMD detector was more successful in detecting some of the compounds, but displayed, as expected,extensivetailing. AHPLCESIMSmethodwaspreviouslydevelopedfortheseparationofvariousbasicdrugsof abuseandthismethodwasusedtoseparatethevariousalkaloidsfoundinthecrudeextractof the bulb (Figure 6.8). The ESI + TIC and BPI chromatograms were complex with various compoundscoeludingoronlypartiallyseparated.ASIManalysisofthefullscandatahowever, producedadistinctivepatternof Boophone compounds(Figure6.9).

87 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure6.6 PDAchromatogramofacrudebulbextractof Boopone disticha ontheTMDsystem

Figure6.7 EIchromatogramofacrudebulbextractof Boopone disticha ontheTMDsystem

88 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure6.8 ESI +BPIchromatogramsofacrudebulbextractof Boopone disticha ontheZMDsystem attwoconevoltages(25Vand45V)

Figure6.9 ESI +Chromatogramsofacrudebulbextractof Boopone disticha ontheZMDsystem obtainedbymonitoringselectedmasses(286,288,302,316,320,330&332amu)attwo conevoltages(25Vand45V)

89 Created by Neevia Personal Converter trial version http://www.neevia.com

Table6.5PreparativeLCconditionsusedontheVersaFlashsystemfortheseparationof Boophone alkaloids PARAMETER SETTING/CONDITION Column SigmaAldrichVersaFlash 150x40mmx10m PumpSystem Accu Tm SciLog PumpHead RHOCTC(Tefzel) FlowRate(ml/min) 10

EluentComposition1 CHEX:CHCl 3:DEA(5:4:1)

EluentComposition2 CHEX:CHCl 3:DEA:MeOH(4:4:1:1)

EluentComposition3 CHEX:CHCl 3:DEA:MeOH(2:4:1:3)

EluentComposition4 CHCl 3:DEA:MeOH(4:1:5) Fractionsize(ml)andcollectionmode 15mlmanuallybyhand Table6.6GradientprofileofthepreparativeHPLCalkaloidfractionationmethodasused ontheZMDsystem TIME FLOW %A %B %C %D CURVE

min ml/min H2O MeOH Buffer ACN 1 2.76 0 60 40 0 1 2 5.0 2.76 0 60 40 0 6 3 15.0 2.76 0 70 30 0 6 4 20.0 3.00 0 90 10 0 6 5 22.0 3.00 0 90 10 0 4 6 25.0 3.00 0 60 40 0 6 7 30.0 2.76 0 60 40 0 4 TheZMDdetectorhasthedistinctadvantageofbeingselectiveduetothefactthationisationis highly dependant on the eluent chemistry. It can even be made even more selective by only monitoringthosemassescommontothealkaloidsof B. disticha . 6.9.2 Chemicalextractionandpurificationof B. disticha bulbcompounds Asmentionedbeforein§6.8.4thesolventextractsoftheshreddedbulbwasanalysedbyLC ESIMS and displayed complex chromatograms with some compounds coeluding. An evaluationofthevariousextractsatafewselectedmasses( m/z 286,288,302,316,320,330 and332)indicatedthatsomecompoundswerenotonlyfoundinoneoftheextracts,butwere

90 Created by Neevia Personal Converter trial version http://www.neevia.com

extracted by all the solvents while other compounds were only found in one of the solvent extracts. For this reason the crude solvent extracts were pooled and evaporated to an oily residue.Theresiduewasredissolvedinamethanol:chloroform(1:1)mixturebutrequiredthe additionofasmallamountoftoremainaclearsolution. ThismixturewasnotsuitableforloadingdirectlyontotheVersaFlashcolumnasithamperedthe separation of the most apolar compounds. The crude sample was dissolved in 250 ml of cyclohexane:chloroform:methanol(4:3:3)mixtureinaroundbottomflaskand30gofsilicagel (MerckSilicagel60)wasslowlyaddedwhilestirringthemixture.Theflaskwasplacedonthe BüchiRotovaporandevaporatedtodrynessunderreducedpressureat50 oC.Thecoatedsilica gelwaspackedintoa40mmx40mmprecolumnandplacedinfrontofthemainVersaFlash column.ThemainVersaFlashcolumnwasalreadyconditionedwitheluentcomposition1(Table 6.5).Thepumpwasstartedandthecompoundselutedfromtheprecolumnandseparatedon the main column. The fractions were monitored by TLC (UV 254 nm) and the solvent compositionchangedtoamorepolarcompositionwhennomorecompoundswereelutedwith thelesspolarsolventcomposition.Noneofthefractionscontainedasinglepurecompoundand those that only displayed one major and a few minor spots on TLC contained multiple compounds when analysed on the ZMD system. The fractions with similar TLC profiles were combined and two of these combined samples were fractionated on the preparative HPLC column. The UV spectrum was monitored and the main compounds fractionated on the LKB 2211Superracfractioncollector. SixcompoundswereisolatedandthestructuresconfirmedbyNMRspectroscopy: Buphanamine HO Buphanamine

O C17H19NO4 ExactMass:301.13141 O N

OCH3

δH(CDCl 3,300MHz)6.55(1H,s,H10),5.95(1H,dddd, J10.0,5.6,2.8&1.9Hz,H2),5.84,

5.82(2H,2xd, J1.5Hz,OCH 2O),5.78(1H,ddd, J10.0,4.6,2.9,H3),4.70(d, J5.6Hz,H1), 4.11(1H,d, J16.7Hz,H6α),3.92(3H,s,OMe),3.78(1H,d,J16.7Hz,H6β),3.35(2H,m,H 4a,12 exo ),2.70(1H,ddd, J13.2,8.2&8.7,H12 endo ),2.52(1H,dddd, J19.6,5.6,4.6&1.9,H 4α),1.95(1H,m,H4β),1.85(2H,m,H11).

91 Created by Neevia Personal Converter trial version http://www.neevia.com

δC(CDCl 3,75MHz)148.5(C9),140.6(C7),133.5(C8),128.6(C3),125.6(C2),117.7(C6a),

100.6(OCH 2O),98.2(C10),64.3(C1),59.1(C4a),59.0(OMe),56.8(C6),51.3(C12),48.2 (C10b),38.6(C11),28.1(C4). Untilrecently,onlythe 13 CNMRofbuphanaminewaspublished[123].However,arecentpaper [124]alsoincludedthe 1HNMRdata.OurNMRdatadifferslightlyfromthosereported,butthisis anindicationthatourspectrumwasobtainedonthesaltformofbuphanamine. Buphanisine

OCH3 Buphanisine O C17H19NO3 ExactMass:285.13649 O N

δH(CDCl 3,300MHz)6.81(1H,s,H10),6.56(1H,d, J10.2,H1),6.46(1H,s,H7),5.95(1H,

dd, J9.9and5.1,H2),5.86,5.85(1H,d, J1.4,OCH 2O),4.40(1H,d, J16.9,H6α),3.79(1H,m, H3β),3.78(1H,d,J16.9,H6β),3.40(2H,m,H4a,12α),3.33(3H,s,OMe)2.89(1H,ddd,J 13.5,9.0,6.3,H12β),2.16(2H,m,H4α,11β),1.92(1H,ddd,J12.3,10.8,6.0,H11α),1.58 (1H,td,J13.5and4.2,H4β).

δC(CDCl 3,75MHz)146.2(C9),145.8(C8),138.0(C10a),132.5(C1),125.5(C2),125.5(C

6a),106.9(C7),103.0(C10),100.8(OCH 2O),72.4(C3),63.0(C4a),61.8(C6),56.5(OMe), 53.1(C12),44.4(C10b),43.8(C11),28.3(C4). The 13 CNMRdatawasinagreementwithliteraturedata[125]. Buphanidrine

OCH3

O Buphanidrine C18H21NO4 O N ExactMass:315.14706

OCH3

δH(CDCl 3,300MHz)6.51(1H,s,H10),6.47(1H,d, J10.0Hz,H1),5.93(1H,dd, J10.0&5.2

Hz,H2),5.81–5.82(2H,2d, J1.5Hz,OCH 2O),4.27(1H,d, J17.2Hz,H6α),3.92(s,7OMe), 3.85(1H,d, J17.2Hz,H6β),3.77(1H,m,H3),3.51(1H,m,H12 exo ),3.39(1H,dd, J10.0&

92 Created by Neevia Personal Converter trial version http://www.neevia.com

4.1Hz,H4a),3.30(3H,s,3OMe),2,24(1H,m,H12 endo ),2.20(2H,m,H11),1.9(1H,m,H 4β),1.57(1H,td, J12.0&3.9,H4α).

δC(CDCl 3,75MHz)148.4(C9),140.8(C7),138.1(C10a),133.5(C8),131.6(C2),125.6(C

1),115.1(C6a),100.6(OCH 2O),98.8(C10),71.8(C3),62.5(C4a),59.0(C6),57.4(OMe), 56.5(C6),52.6(C12),44.5(C10b),42.9(C11),27.3(C4). The 13 CNMRdataagreewiththosereportedintheliterature[126],buttherearedifferencesin the 1HNMRspectrum,whichmayindicatethatourspectrumwasobtainedfromtheaceticacid saltofbuphanidrine(acetatewasobservedintheNMRspectrum). Distichamine O OCH 3 Distichamine

O C18H19NO5 ExactMass:329.12632 O N

OCH3

δH(CDCl 3,300MHz)7.17(1H,s,H10),5.85,5.83(2H,2xd, J1.2Hz,OCH 2O),5.36(1H,d, J 1.8Hz,H2),4.21(1H,d, J17.4Hz,H6α),3.94(3H,s,OMe),3.77(1H,d, J17.4Hz,H6α), 3.69(3H,s,OMe),3.67(1H,dd, J11,1&6.6Hz,H4a),2.91(1H,ddd, J??,8.7&6.6Hz,H 12 endo ),2.56(1H,dd, J17.4&6.6Hz,H4α),2.42(1H,ddd, J17.4,11.1&1.5Hz,H4β),2.35 (1H,ddd, J12.6,9.3and3.6Hz,H11 endo ),2.20(1H,ddd, J12.6,10.2&6.3Hz,H11 exo ).

δC(CDCl 3,75MHz)198.5(C1),173.2(C3),147.9(C9),140.1(C7),135.3(C10a),133.8(C

8),116.3(C6a),102.3(C2),100.6(C10),100.6(OCH 2O),66.2(C4a),59.1(7OCH 3),57.6

(C6),55.9(3OCH 3),52.4(C12),50.4(C10b),41.4(C11),30.2(C4). Theisolationofthiscompoundwasdescribedintheolderliterature[127],butthisisthefirsttime thatthestructureisreported. 3-O-Methylcrinamidine (Formelycalledundulatin.However,thereisalsoadifferentcompoundcalledundulatineandto preventconfusion,wewillusethename3OMethylcrinamidine).

93 Created by Neevia Personal Converter trial version http://www.neevia.com

O OCH3 3OMethylcrinamidine O C18H21NO5 O N ExactMass:331.14197

OCH3

δH(CDCl 3,300MHz)6.60(1H,s,H10),5.85,5.84(2H,2xd, J1.5Hz,OCH 2O),4.18(1H,d, J 17.4Hz,H6α),3.95(3H,s,7OMe),3.74(1H,d, J3Hz,H1),3.69(1H,d, J17.7Hz,H6β), 3.41(3H,s,3OMe),3.30(1H,m,H2),3.15(1H,ddd,m,H12α),3.0(1H,m,H4a),2.7(1H,m, H12β),2.3(1H,m,H11α),1.9(1H,m,H11β)1.73(1H,m,H4α),1.38(1H,td, J13.2&2.7

Hz,H4β).

δC(CDCl 3,75MHz)141.1(C7),138.9(C10a),133.3(C8),117.8(C6a),100.6(OCH 2O),96.4 (C10),74.9(C3),61.2(C4a),59.1(7OMe),58.7(C6),57.5(3OMe),55.1(d,C2),53.9(C 1),52.6(C12),41.4(C10b),39.2(C11),25.2(C4).. TheNMRdatawasinagreementwithliteraturedata[126] 6.9.3 Chromatographicfingerprintingof B. disticha and A. coranica Buphanisineisoneofthemarkercompoundsthataredetectedeverytimewhentheuseof B. disticha issuspected.Epibuphanisine,the3epimerofbuphanisineisaccordingtotheliterature also found in the bulb scales of A. coranica [40] and may lead to false identification of the biologicalsourceofexposure.TheSPEextractsofB. disticha and A. coranica wereanalysedon theZMDsystem(Figure6.10)andproducedsimilarchromatographicprofileswhenmonitoring thetypicalmassesassociatedwith Boophone alkaloids.Byoverlayingthechromatogramsand zoominginonthemostcomplexportionofthechromatogram,differencesbetweentheextracts couldbedetected. These differences might merely be concentration differences and therefore might not be significant. However, a detailed analysis of themass spectra ofthe individual peaks revealed thatthetwoextractsmightlooksimilaratafirstglance,butdifferedincompoundprofilequite substantially(Table6.7).Ofthe11massesmonitoredinbothbulbs,onlytwocompoundswith m/z 316 and 332 (M+H) + displayed identical mass spectra when analysed with the 1 st scan function[ U(CV25Vtominimisefragmentation)]andthe2 nd scanfunction[ F(CV45Vtoinisiate ISCID)]. B. disticha hadthreeuniquecompounds(m/z286,320and332)thatdisplayedunique fragmentationwiththe1 st and2 nd scanfunctions.

94 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure6.10 OverlaidESI +chromatogramsoftheSPEextractsofthebulbsofAmmocharis coranica and Boophone disticha (ZMDsystem)bymonitoringselectedmasses(286,288,302,316, 320,330&332amu) Eight of the masses monitored ( m/z 288, 302, 318, 330, 332, 346 and 374), revealed compoundsinbothextractsthatproduceddistinctivelydifferentfragmentationpatternsandare thereforedifferentcompounds. A. coranica hadtwouniquecompounds( m/z 263and346)that were not detected in B. disticha . By monitoring these differences in the mass spectra of B. disticha and A. coranica ,itwouldbepossibletodistinguishbetweenthesetwoplants. 6.9.4 Analysisofcaseexhibitsandviscerasamples Thepresenceofalkaloidsfrom B. disticha hasbeenconfirmedinnumerouscases–mainlyin theplantexhibitsor muti thatweresubmittedtothelaboratory.Thedetectionofthesealkaloids in viscera was only accomplished in cases where a massive overdose with these alkaloids occurred. Confirmation of these alkaloids was done by comparing the mass spectra of the suspected compounds with the NIST spectral library. The presence of low levels of these alkaloidscouldnotbeconfirmedpriortothedevelopmentoftheESIHPLCMSmethod.Three caseswereselectedtoemphasisetheefficacyofthetwomethodsusedtoscreenforalkaloids (TMDandZMDdetectors),namelycases1175,121and1196.

95 Created by Neevia Personal Converter trial version http://www.neevia.com

Table6.7Comparisonofthecompoundsdetectedinthebulbextractsof Ammocharis coranica and Boophone disticha (ESI +onZMDsystem)

MASS (M+H) AMMOCHARIS BOOPHONE Rt UNIQUE IDENTICAL SIMILAR 263   N/A Yes N/A U 263/209 F 263/209 286   N/A Yes No U 286 286(B) F 286/254/226/196 288   No Yes No U 288/318 288 Both F 288/226/211/181 288/270/260 302   No Yes No U 302/332/272/252 302 Both F 302/270/252/226 302/284 316   Yes No Yes U 316 316/344 F 316/284/256/226 316/284/256/226 318   No Yes No U 318/227 318 Both F 318/268/227/199 318/300/282/241 320   N/A Yes N/A U 320/287 320/287(B) F 320/302/287/232 330 (#1)   Yes Yes No U 330/298/256/225 330/302/207 Both F 330/298/244/225 330/302/207/124 330 (#2)   No Yes No U 330/270 330/271 Both F 330/270/226/211 330/320/270/255 332 (#1)   No Yes No U 332/320 332/320(B) F 332/320/300/272 332 (#2)   Yes Yes No U 332/316/300/284 332 Both F 332/300/282/241 332/307/234/232 332 (#3)   Yes No Yes U 332/252 332 F 332/300/282/271 332/300/282/271 346 (#1)   N/A Yes No U 346/329 346/329(B) F 346/329/245/230 346 (#2)   N/A Yes No U 346(8)/330/318 346(8)/330(A) F 346/330/318/270 346 (#3)   Yes Yes No U 346/315/226 346 Both F 346/268/226/209 346/329/313/207 374   No Yes No U 374/362/282 374/314 Both F 374/362/282/165 374/314/297/267 96 Created by Neevia Personal Converter trial version http://www.neevia.com

CASE1175 Twoblackmaleswenttoatraditionalhealertoobtaina muti to“cleantheirsystems”.Theywere givenaplantbulbtoboilinwater.Theyadministeredthe muti asanenemabyusingarubber bulb,anddranktherestofthedecoction.Theybothcollapsed–onediedandtheotherperson wasadmittedtoahospital.Theempty muti bottleandasmallpieceoftheplantbulbwassentfor analysisandsamplepreparationperformedasdescribedin§6.8.5.Fiveofthealkaloidscommon tothebulbof B. disticha (Table6.8)weredetectedinthepieceofplantbulbontheTMDdetector (Figures6.11and6.12),buttheanalysisoftheemptybottleonlyindicatedthepossiblepresence oftwocompoundsattracelevels( m/z 315and331).Theanalysisofthepieceofbulbonthe ZMDdetectorconfirmedtheresultsoftheTMDdetector,whiletheESIpositiveanalysisofthe empty bottle, in full scan mode (100 – 400 amu), revealed the presence of all 6 alkaloids previouslyextractedandconfirmedinthebulbof B. disticha (Figures6.13and6.14). CASE121 A black female visited a traditional healer and was given a powder to mix with water and administer as an enema. This she did and died a few hours later. The last remains of the powdered muti sampleandtherubberbulbusedtoadministertheenema,wassentforanalysis. Theamountofpowdered muti samplewasinsufficienttoyieldenoughalkaloidsfordetectionon theTMDsystem,butanalysisontheZMDsystem(Figure6.15)producedachromatogramthat displayedthecharacteristicalkaloidoftheextractofthebulbof B. disticha .Identical resultswereobtainedwhentherubberbulb,usedtoadministertheenema,wasanalysed. CASE1196 A black female consulted a traditional healer to obtain a muti to purge her system. She was handeda750mlbottleof muti andtoldtodrinkhalfofthebottleandtoadministertheotherhalf asanenema.Sheadministeredtheenemaanddrankthebottleof muti,butbecameviolently sick,vomitedrepeatedlyanddiedshortlythereafter.Stomach,liverandkidneysamplesaswell astheempty muti bottlewassentforanalysis.AnalysisonthesamplesontheTMDsystemdid notrevealthepresenceofanyalkaloids,butontheZMDsystemfivealkaloidsweredetectedin theempty muti bottlethatwereconsistent withthosedetectedinthe B. disticha bulbextracts (Figures6.16and6.17). Theanalysisofthevisceraalsoproducedpositiveresults;threealkaloidsweredetectedinthe stomachsample( m/z 302,316and332)(Figure6.18)andfouralkaloidsintheliverandkidney samples( m/z 286,302,316and332)(Figures6.19and6.20respectively)

97 Created by Neevia Personal Converter trial version http://www.neevia.com

Table6.8IdentificationofthecompoundsdetectedinthebulbextractsofCase1175by comparingtotheNIST TM MSspectrallibrary

TM TM PEAKR t(min) NIST FORWARDSEARCH NIST REVERSESEARCH 13.22 90% 91% BUPHANAMINE BUPHANAMINE 12.80 73% 74% DIHYDROHEMANTHIDINE DIHYDROHEMANTHIDINE 16.15 78% 83% EPIPOWELLINE POWELLINE 16.18 91% 91% BUPHANISINE BUPHANISINE 18.61 64% 65% 3,4DMETHOXY5,NDIMETHYL 3,4DMETHOXY5,NDIMETHYL MORPHAN6ONE MORPHAN6ONE 19.55 79% 83% UNDULATINE UNDULATINE 20.38 93% 95% BUPHANIDRINE BUPHANIDRINE Figure6.11 StackedEIchromatogramsofthebulbextractofthebulbsubmittedwithCase1175 (TMDsystem)

98 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure6.12 StackedEIspectraofthebulbextractofthebulbsubmittedwithCase1175 (TMDsystem)

99 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure6.13 ESI +chromatogramoftheSPEextractoftheempty muti bottleofCase1175.Thenominal massesofthecompoundsareindicated (ZMDsystem) Figure6.14 ESI +spectraoftheSPEextractoftheempty muti bottleofCase1175(ZMDsystem)

100 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure6.15 ESI +SIMchromatogramsoftheSPEextractofthepowderedmuti sampleofCase121. TheSIMmassesareindicatedonthebaselineofeachchromatogram Figure6.16 ESI +SIMchromatogramsoftheSPEextractoftheemptymuti bottleofCase1196. EachSIMchannelmassisdisplayedonthebaselineofthechromatogram

101 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure6.17 ESI +spectraofthemaincompoundsdetectedFigure6.17

Figure6.18 ESI +chromatogramsatselectedmassesoftheSPEextractderivedfromthestomach samplesubmittedforCase1196

102 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure6.19 ESI +chromatogramsatselectedmassesoftheSPEextractderivedfromtheliver samplesubmittedforCase1196 Figure6.20 ESI +chromatogramsatselectedmassesoftheSPEextractderivedfromthekidney samplesubmittedforCase1196

103 Created by Neevia Personal Converter trial version http://www.neevia.com

6.10 FORENSICAPPLICABILITY Thealkaloidspresentinthebulbof B. disticha wereextractedsuccessfullywithorganicsolvents, andthemajorcompounds were isolated.Fourknownalkaloids were identified[buphanamine, buphanisine, buphanidrine and 3-O-methylcrinamidine (undulatine)] and the structure of distichaminewasdescribedforthefirsttime.Theuseoforganicsolventsisnotdesirableasa generalextractionprocedure,andwillalsonotbesuitablefortheextractionofvisceraduetothe presenceoflargequantitiesoffatsandlipidsinviscerasamples.Theextractionofthealkaloids of B. disticha hasbeendoneinthepastbyusingthestandardsSPEmethodologysuppliedwith theWatersOasisHLBcartridges.However,itwasfoundthattheextractionefficiencycouldbe nearlydoubledbydecreasingthepHto5. ThedetectionofhighlevelsofthesealkaloidscanbeaccomplishedwithPDAdetectionaswell asmassspectraldetection(EI)ontheTMDsystem.Thegeneralscreeningprotocolinuseon thissystemisnotideallysuitedfortheseparationofallthecompounds,buttheTMDdetector wasabletodetectselectivelythevariousalkaloidspresent.However,theanalysisoflowlevels ofthesealkaloidsposedaproblemandwouldhavegoneundetectediftheelectrospraymethod wasnotdeveloped.TheZMDdetectorisnotthemostsensitivedetectorcurrentlyavailable,and withascanrateof500amu/sisunabletodetectsmalltransientpeaks.Thedetectorishowever ideallysuitedfortheroutinescreeningofsamplesforthepresenceofalkaloids,andwilleasily detectBoophone alkaloidsinsampleswheretheTMDdetectorfailedtodetectthem. The combination of the adapted general SPE procedure and the ZMD detector improved the capability of the Forensic Toxicology Research Unit (FTRU) to detect the presence of Amaryllidacae alkaloids. This was displayed in a botanical matrix (bulb extract and unknown powdered muti samples)aswellasinbiologicalmatrices(stomach,liverandkidneysamples). The presence of Ammocharis coranica can also be confirmed or excluded by monitoring the various masses common to Boophone ( m/z 286, 320 and 332), or those common to Ammocharis ( m/z 263and346).Itwasshownthatthealkaloidprofileof Ammocharis coranica appearedtobequitesimilartothatof Boophone disticha ,butthatascrutinyofthemassspectra revealedthatonlytwocompoundswerecommontobothplants.

104 Created by Neevia Personal Converter trial version http://www.neevia.com

CHAPTER7

Abrus precatorius

7.1 BOTANICALDESCRIPTION Abrus precatorius L.(Fabaceae)isaclimbingshrubwithwoodystemsandpinnatelycompound leaves, each with 10 to 15 pairs of small oblong leaflets (Figure 7.1) [128,129]. Pale purple, inconspicuousflowersareborneindensegroups,followedbyclustersofflatpods(Figure7.2). Eachpodproducesuptofiveseedsofabout5mmindiameter.Thepodvalvescurlbackwhen theyopentorevealpendulousseeds.Thesmoothbrightredseedshaveablackpatcharound thehilumandahardandimpermeableseedcoat(Figure7.3)[130].Commonnamesforthis plantincludeDeadlycrab’seye,Indianbead,Jequiritybead,Luckybean,Minieminie,Prayer beads,Rosarypea[131],Paternosterbean[132]and umkoka .(Zulu)[133] 7.2 ORIGINANDDISTRIBUTION Abrus precatorius has a wide distribution in the tropics, including Indonesia, India, Sri Lanka, Thailand,thePhilippineIslands,SouthChina,theWestIndiesandFlorida[128,129,132]andis indigenoustoIndonesia[132]andIndia[134].Itgrowsnaturallyintheeasternandnorthernparts ofSouthAfrica[130].

FIGURE7.2 Leavesandflowerof Abrus precatorius FIGURE7.1 LeavesofAbrus precatorius

105 Created by Neevia Personal Converter trial version http://www.neevia.com

FIGURE7.4 FIGURE7.3 Seedsof Abrus precatorius Unripepodsof Abrus precatorius 7.3 TYPEOFTOXIN Abrus precatorius containsoneofthemosttoxiccompoundsknowntoman,namelyabrin.The term“abrin”referscollectivelytofiveglycoproteinsthathavebeenpurifiedfromtheseedsof A. precatorius :Abrusagglutininandthetoxicprinciples,abrinsAD.Abrusagglutininisatetramer of134,900DawhileabrinsADhavemolecularweightsrangingfrom63,000to67,000Da[41].

Theseedsalsocontaintwoindolealkaloids:abrine,withamolecularformulaofC12 H14 N2O2and

molecular mass of 218.3, and hypaphorine, with a molecular formula of C14 H18 N2O2 and molecularmassof246.3[41,135].Althoughthesealkaloidsarenotthemajortoxinspresentin A. precatorius ,theycanbeusedaschemicalmarkersfor A. precatorius seeds. O O C O OH N+ HN CH3 CH3 H3C N N CH3 H H Abrine Hypaphorine FIGURE7.5 Chemicalstructuresofabrineandhypaphorine

106 Created by Neevia Personal Converter trial version http://www.neevia.com

7.4 ACTIVECOMPONENTSANDPHARMACOLOGICALEFFECTS Abrus agglutinin (tetramer of 134,900 Da) is nontoxic to animal cells and a potent hemagglutinator. Abrins A D are composed of two disulfidelinked polypeptide chains. The smallerAchaininhibitsproteinsynthesisandcausescelldeath;thelargerBchainbindstothe cell’splasmamembrane[41].Theintactseedisharmlessduetotheveryresistantseedcoat whichevenresistsdegradationbydigestivejuices.Thissituationchangesdrasticallywhenthe seedcoatisbreachedbychewingorpiercing,renderingtheseedhighlytoxic.Abrinisextremely

toxic with a LD 50 of 0.02 mg/kg (mouse, IP) [134]. Abrin is antigenic and has chemical and pharmacological properties similar to those of ricin. The symptoms of intoxication are very severegastroenteritis,dehydration,hypotension,weakness,confusion,convulsions,followedby comaanddeath[136]. 7.5 ETHNOPHARMACOLOGICALIMPORTANCE Despitetheirtoxicity,theseedsareusedasaphrodisiacs,oralcontraceptivesoremetics[45]. Rootorbarkdecoctionsaretakenforchestpainorpleurisy,leafinfusionsaredrunkifbloodis expectoratedanddecoctionsoftheseedaretakenforvenerealdisease[137].Theplantisalso used for snakebite, sore throats, coughs, colds and fevers and malaria [138]. The seeds are fashioned into necklaces and braces and worn as a lucky charm. Seeds are also used for mythicalpurposes[139]. 7.6 POISONING 7.6.1 Accidental The bright colour of the seeds is one of the reasons why children are often poisoned by exposuretotheseeds.Childrenhavediedfromeatingseedsandhalfaseed,chewedbefore swallowing,isreportedlyenoughtopoisonaperson[45].Asmentionedbefore,theseedsare nontoxiciftheseedcoatisleftintact,butchewingoftheseedsordrillingintothemtocreatea necklace or brace, will render seeds highly toxic. A case of nonfatal poisoning was reported where an herbal tea was contaminated after a rosary, made of A. precatorius seeds, was accidentallydippedintothetea[134]. 7.6.2 Deliberate Noliteraturereferencecouldbefoundtoindicatedeliberatepoisoningwithanypartofthisplant inSouthAfrica.Asinglecasereportofdeliberateseedingestionwasrecordedbythepoison controlcentreofAngers(France)in1995[134].

107 Created by Neevia Personal Converter trial version http://www.neevia.com

7.7 FCLJHBINVESTIGATION Reference to A. precatorius was found in the FCL JHB database and in forensic case files submittedtotheFCLJHB.Theseedsarefreelyavailableonthetraditionalhealer’smarketin Johannesburg,buthavenotbeensuccessfullydetectedorconfirmedinforensicsamples.This might be due to the unavailability of the necessary equipment and software to detect macromolecules like abrin and ricin, or equipment sensitive enough to detect the minor componentslikeabrineandhypaphorine. ThelatestinstrumentsaddedtotheanalyticalarsenalofFCLJHB,twoAPILCMSsystemsthat arecapableofdetectingsmallmoleculesattheng/mllevel,wouldbeidealfortheanalysisofthe twoindolealkaloids.However,nopublishedmethodcouldbefoundfordetectionofabrineand hypaphorine by LCMS. This necessitated the development of an extraction method and a HPLCMSdetectionmethodforabrineandhypaphorine. 7.8 EXPERIMENTALPROCEDURE 7.8.1 Standardsandreagents Nostandardsarecommerciallyavailableforabrineorhypaphorine.Potassiumchloride,sodium chloride, potassium dihydrogen phosphate and sodium monohydrogen phosphate (> 99.5%)

wereobtainedfromSigmaChemicalCompany,USA.Ammoniumacetate(98%)(NH 4OAc)and acetic acid (99%) were obtained from BDH Laboratory Supplies, England. Sulfuric acid (Suprapur96%),hydrochloricacid(Suprapur96%),phosphoricacid(Suprapur96%),formicacid (98 100%) and ammonia (GR 25%) were obtained from Merck, Darmstadt, Germany. Acetonitrile(gradientquality,200nmUVcutoff)andmethanol(gradientquality,205nmUVcut off)wereobtainedfromRomil,England.HPLCgradewater(20Mcm 1)wasobtainedfroma MilliQ / reversed osmosis system (Millipore, USA). The phosphatebuffered saline solution (PBS)waspreparedaccordingtotheprescribedmethodsuppliedbyWaters,Milford,USA[56].

TheanhydroussaltsofKCl(0.20g),NaCl(8.00g),KH 2PO 4(0.20g)andNa 2HPO 4(1.15g)were dissolvedin1LdeionisedwaterandthepHadjustedto5.0with10%hydrochloricacid. OasisHLBsolidphaseextraction(SPE)cartridges(3mlwith60mgofsorbent)wereobtained fromWatersCorporation,Milford,USA.A12portvacuummanifoldwasusedforallextractions. 7.8.2 Instrumentsandconditions AWaters2690HPLCsystemequippedwithbotha996photodiodearray(PDA)detectoranda Termabeammassselectivedetector(TMD)[electronimpact(EI)mode;maximummass1000 m/z ]fromWaterswasusedforinitialscreeningandhighconcentrationstudies.AWaters2690 HPLCsystemequippedwitha996PDAdetectorandaZspraymassselectivedetector(ZMD)

108 Created by Neevia Personal Converter trial version http://www.neevia.com

(Micromass,UK)(electrospraymode;maximummass2000 m/z )wasusedforlowconcentration studies. 1Hand 13 CNMRspectrawereobtaindedoneitheraVarianInova2000300MHzora Varian500MHzspectrometer.APhenomenexAquaC18HPLCcolumn(250x2.1mm,5m) wasusedontheTMDsystemwhileaWatersXterraMSC18HPLCcolumn(250mmx2mm,5 m) was used on the ZMD system. A Harvard syringe pump (Model 11) was obtained from HarvardApparatus,Holliston,USAandwasusedforalldirectinjectionexperimentsontheZMD detector.PreparativeHPLCwasdoneontheZMDsystembutaWatersXterraMSC18column (300x7.8,10m)wasusedtoseparatethe100linjectionsoftheseedextract. To ensure the maximum retention of alkaloids on the Xterra MS C18 column, the initial chromatographic conditions were 90% water containing 10 mM ammonium acetate, the pH adjusted to 10 with ammonia (25%) and acetonitrile. After injection, the chromatographic conditionsweregraduallychangedthroughalineargradientprofileto90%acetonitrileand10% of the original aqueous mobile phase in 20 minutes. These conditions were kept stable for 5 minutes where after the HPLC system reequilibrated the analytical column to the initial conditions. The flow rate was kept constant at 0.2 ml/min and the column temperature was stabilisedat 40 oC.The Phenomenex Aquacolumnwasused withanacidicmobilephaseof 0.1%formicacidinthewater(pH2.3),startingat95%water:5%acetonitrileandslowlyramping theorganiccomponentto10%methanol:90%acetonitrilein35minutes.Theseconditionswere keptfor10minuteswhereaftertheHPLCcolumnwasreequilibratedwiththeinitialconditions. ThegradientprofileissummarisedinTable7.1.TheHPLCcolumntemperaturewasmaintained at40 oC. The nebuliser of the TMD detector was optimised with a caffeine test solution (100 g/ml) to ensureefficientnebulisationanddropletformation.Theelectrosprayionization(ESI)probeofthe ZMD detector was optimised by direct injection via a syringe pump using a tryptophan test solution(10g/ml).TheoptimisedconditionsfortheTMDdetectorarelistedinTable7.2and thosefortheZMDdetectorinTable7.3.TheoptimisedchromatographicconditionsfortheXterra MSC18columnarelistedinTable7.4. 7.8.3 Chemicalextractionof A. precatorius seeds SeedswerepurchasedfromtheTraditionalhealer’smarketinJohannesburganddriedat40 oC to constant weight. The seeds were finely ground using an Ika Werk A10 watercooled mill (Janke&Kunkel,Straufen,Germany)and5gofpowderedseedswasplacedintwoseperate50 mlpolypropylenescrewtopcentrifugesampletubes.PBSHClbuffer(pH5)(30ml)wasadded

toonetubewhilePBSNH 3buffer(pH9)(30ml)wasaddedtothesecondtube.Thetubeswere capped and shaken on a Heidolph rotating sample mixer for thirty minutes. Oasis HLB SPE cartridges were prepared by washing consecutively with 6 ml of methanol, water and the extractingbufferused.

109 Created by Neevia Personal Converter trial version http://www.neevia.com

Table7.1HPLCgradientprofileofthegeneralscreeningmethodontheTMDsystem

TIME FLOW %A %B %C %D CURVE

min ml/min H2O MeOH Buffer ACN 1 0.20 0 0 95 5 6 2 1.00 0.20 0 0 95 5 4 3 10.00 0.20 0 0 80 20 6 4 12.00 0.20 0 0 80 20 4 5 20.00 0.20 0 30 50 20 5 6 35.00 0.20 0 10 0 90 6 7 37.00 0.20 0 10 0 90 6 8 40.00 0.25 0 10 0 90 6 9 45.00 0.25 0 10 0 90 6 10 50.00 0.20 0 0 95 5 5 TABLE7.2OptimisedMSconditionsforthedetectionofabrineandhypaphorineon theTMDdetector

TMD ABRINE CONDITIONS HYPAPHORINE Mode EIpositive Ionisationenergy(eV) 70 Gain 10 Nebulisertemperature(°C) 80 Expansiontemperature(°C) 90 Sourcetemperature(°C) 225 Capillarytiptemperature( oC) 160 Desolvationgasflow(L/h) 30 Samplingrate 1.0 Scanrange(amu) 50550 IonEnergy 1.0 Multipliergain(V) 1250 110 Created by Neevia Personal Converter trial version http://www.neevia.com

TABLE7.3OptimisedMSconditionsforthedetectionofabrineandhypaphorineon theZMDdetector ZMD ABRINE CONDITIONS HYPAPHORINE Modeandpolarity ESIpositive Capillaryvoltage(KV) 2.50 Conevoltage(V) 15 Desolvationtemperature(°C) 450 Extractorvoltage(V) 5.0 RFlens(V) 0.5 Sourcetemperature(°C) 120 Conegasflow(L/h) 40 Desolvationgasflow(L/h) 400 IonEnergy 1.0 Multiplier(V) 650 Resolution(LMR&HMR) 15.1 Table7.4HPLCgradientprofileofthealkaloidscreeningmethodontheZMDsystem TIME FLOW %A %B %C %D CURVE

min ml/min H2O MeOH Buffer ACN 1 0.20 0 0 90 10 1 2 2.00 0.20 0 0 90 10 1 3 25.00 0.20 0 0 10 90 6 4 25.00 0.20 0 0 10 90 6 5 34.00 0.20 0 0 90 10 4 After centrifugation on a Hermle Z 300 centrifuge at 4000 rpm for 15 minutes, the aqueous phases were passed through the conditioned Oasis HLB cartridges and the absorbed compounds stripped from the solid phase material with 5 ml methanol. The cartridges were washedwith3mlextractingbufferanddriedundervacuumfor10minutes.Thecartridgeswere thenelutedwith3mlmethanol,3mlacidicmethanol(10mlformicacidperlitermethanol),3ml basic methanol (10 ml ammonia per liter methanol) and 3 ml acetonitrile and the eluates combined into two separate collection tubes. The collection tubes were placed into a Zymark

111 Created by Neevia Personal Converter trial version http://www.neevia.com

Turbovapandevaporatedat40 ○Cunderaregulatedstreamofnitrogengas.Thedryresidues werereconstitutedwith1mlofa50:50methanol:watermixture. 7.8.4 Isolationofabrineandhypaphorinefrom A. precatorius seeds Aportionofthegroundseeds(see7.8.3)(20g) wasextracted withthe acidicPBSbufferas describedabovebuttheaqueousphasewaspassedthroughapreparativeOasisHLBcartridge (20ml/1g).TheSPEcartridgewaspreparedbywashingconsecutivelywith20mlofmethanol, waterandtheextractingbufferused.Thecartridgewaswashedwith20mlextractingbufferand driedundervacuumfor10minutes.Thecartridgewasthenelutedwith20mlmethanol,20ml acidicmethanol(10mlformicacidperlitermethanol),20mlbasicmethanol(10mlammoniaper liter methanol) and 20 ml acetonitrile and the eluates combined into one collection flask and evaporated to dryness at 40 oC under reduced pressure. The dry residue was reconstituted usingtheminimumamountofa50:50methanol:watermixture. ThechromatographicconditionsusedontheWatersXterraMSC18analyticalcolumnwasfed into the Prep Calculator software of theWaters Corporation to recalculate the conditions that must be used for a Waters Xterra MS C18 column (300 mm x 7.8 mm, 10 m). The same gradientprofileasdescribedfortheanalyticalcolumnwasusedbuttheflowratewasincreased to2.76ml/min.Theseconditionswereusedtofractionateabrineandhypaphorinefrom100l injectionsoftheredissolvedresiduebymeansofaLKB2211Superracfractioncollectorand monitoringtheUVspectrumofthePDAdetectorbetween200and600nm.Thestructuresof abrineandhypaphorinewereconfirmedbyNMRspectroscopy. Abrine: 1 HNMR :δ H(MeOHd4,500MHz)7.68(1H,d, J7.8Hz,H4or7),7.36(1H,d, J8.1Hz,H4or 7),7.21(1H,s,H2),7.12(1H,t, J7.5Hz,H5or6),7.05(1H,t, J7.5Hz,H5or6),3.76(1H, dd, J8.0,4.6Hz,Hα),3.49(1H,dd, J15.4,4.6Hz,Hβ),3.27(1H,dd, J15.4,8.0Hz,Hβ). 13 CNMR :δ C (MeOHd4,125MHz)138.1(C9),128.3(C8),125.1(C7),122.7(C6),120.1(C

5), 119.2 (C4), 112.3 (C2), 108.7 (C3), 65.2 (Cα), 33.1 (NCH 3), 27.5 (Cβ) (Signal of carboxylicacidwasnotobservedduetolowsignaltonoiseratio). Hypaphorine: 1 HNMR :δ H(D 2O,300MHz)7.65(1H,d, J7.5,H4or7),7.51(1H,d, J8.0,H4or7),7.23(2H,

m,H5,6),3.90(1H,dd, J11.2,3.8Hz,Hα),3.30(2H,m,Hβ),3.25[9H,s,N(CH 3)3]. 13 CNMR :δ C(D 2O,75MHz)174.4(CO 2H),139.0(C9),129.2(C8),127.5(C7),124.9(C6),

122.3(C5),121.0(C4),114.9(C2),109.9(C3),81.7(Cα),54.8[N(CH 3)3],25.6(Cβ).

112 Created by Neevia Personal Converter trial version http://www.neevia.com

7.9 RESULTSANDDISCUSSION 7.9.1 Chromatographyanddetectionofabrineandhypaphorine Abrineandhypaphorineionisedeasilyunderacidicconditionswhichrenderedthempolarand difficulttoretainonreversedphaseHPLCcolumns.ThePhenomenexaquacolumnwasstable with highly aqueous mobile phases, well suited to retain intermediate polarity compounds but unstable under basic chromatographic conditions. A 5 l injection of the acidic extract on the TMDsystem(Figure7.6)producedsevenmajorUVactivecompounds,whileasimilarvolume injection of the basic extract (Figure 7.7) produced five major UVactive compounds. Both

extractscontainedabrine(R t11.9min),hypaphorine(R t13.8min)andtwoapolarbutunknown

compounds(R t28.7minandR t30.8min). Thefractionatedabrine andhypaphorinesampleswereinjectedontheTMDsystem.TheUV andEIchromatogramsandmassspectraofabrineandhypaphorinearedepictedinFigures7.8 and7.9respectively.BothcompoundsdisplayedunspecificUVspectrathatareverysimilarto commonlydetectedindoleputrifacts.TheEImassspectraofbothcompoundswerealsoquite insignificantandnomolecularioncouldbeobserved.AlthoughtheEIspectraofthecompounds aresignificantlydifferent,thelackofastrongmolecularionpeakwillmakelowleveldetectionof bothcompoundsbymeansofEIionisationdifficult. During the optimisation of the ESI interface of the ZMD system, it was found that tryptophan ionised easily by using a gentle cone voltage of 15 V. The test compound was also readily fragmentedbyISCIDiftheconevoltagewasraisedto25Vorhigher.Abrineandhypaphorine arebothpolarcompoundsandnotwellretainedontheXterraMSC18column.Toretainthese compounds, the initial conditions were maintained for two minutes before the gradient was introduced. ThefractionatedabrineandhypaphorinesampleswereinjectedontheZMDsystemandasingle

compoundwasobservedineachfraction.Fraction1(Figure7.10)containedonlyabrine(R t6.17 min) and the mass spectrum produced by a cone voltage of 15 V was dominated by the protonatedspeciesofabrine([M+H] +=219)andsomeminorfragmentationions.

Byraisingtheconevoltageto25Vabrinewasextensivelyfragmented([M+HNHCH 3=188],

[M+HC2H3NO 2=146]and[M+HC3H5NO 2=132];Figures7.10and7.12).Fraction2(Figure

7.11) contained only hypaphorine (R t 8.25 min) and the mass spectrum produced by a cone voltageof15Vwasdominatedbytheprotonatedspeciesofhypaphorine([M+H] +=247)anda minor fragmentation ion. By raising the cone voltage to 25 V hypaphorine was extensively

fragmented([M+HC2H3O2=188]and[M+HC4H7NO 2=146];Figures7.11and7.12).

113 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure7.6 HPLCPDAchromatogramoftheacidicextractof Abrus precatorius seedsontheTMD system Figure7.7 HPLCPDAchromatogramofthebasicextractof Abrus precatorius seedsontheTMD system

114 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure7.8 UVspectraofabrineandhypaphorine(TMDsystem) Figure7.9 EIspectraofabrineandhypaphorine(TMDsystem)

115 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure7.10 ChromatogramandESI +spectraofthe1 st fractioncontainingabrine(ZMDsystem)

Figure7.11 ChromatogramandESI +spectraofthe2 nd fractioncontaininghypaphorine(ZMDsystem)

116 Created by Neevia Personal Converter trial version http://www.neevia.com

219 247 146 - NHCH3 O 188 O 132 H H2 C OH C O C HN CH CH3 3 N +N H2 N CH3 H H CH3 146 188 FIGURE7.12 ESI +ISCIDfragmentationofabrineandhypaphorine(ZMDsystem) Boththeacidicandbasicextractsofthegroundseedscontainedabrineandhypaphorine,but theacidicextract(Figure7.12)containedthemostproductanddisplayedthetwowellseparated + + peaksofmaincomponentswithR t 6.2min([M+H] =219;abrine)andR t8.3min([M+H] =247; hypaphorine). The identity of both compounds could easily be confirmed by the characteristic ISCIDfragmentationofthecompoundsataconevoltageof25V(Figures7.13and7.14). Figure7.13 ESI +chromatogramsoftheacidicextractof Abrus precatorius ontheZMDsystem atconevoltagesof15Vand25V

117 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure7.14 ESI +spectraofabrineandhypaphorineasdetectedintheacidicextractatconevoltages of15Vand25V 7.9.2 Chemicalextractionof A. precatorius seeds Duetothepolarnatureofabrineandhypaphorine,OasisHLBsolidphasecartridgeswereused to extract the compounds of interest. Both compounds were successfully retained but rapidly elutedwiththeadditionofmethanoloracetonitrile.Itwasinterestingtonotethatthebedofthe cartridgeturnedwineredunderacidicconditionsbutturneddarkgreenunderbasicconditions. Thismightbeusefulwhenextractingunknownpowderedsampleswiththismethod.Abrineand hypaphorinewereretainedinbothacidic(pH4.5)andbasic(pH9)extractsalthoughtheacidic extractrenderedthehighestyieldsofthetwocompoundsandwasthemethodofchoiceforall furtherexperiments. 7.9.3 Purificationofabrineandhypaphorine The preparative Oasis HLB cartridges (20 ml/ 1 g) displayed similar retention and chromatographic characteristics as the small analytical scale (3 ml/ 60 mg) cartridges. The retentionbehaviourwasstronglydependentontheamountoforganicmodifierpresentandthe smallestamountofmethanoloracetonitrileresultedinlossofproductduetobleeding.Thesame chromatographic conditions as used for the analytical column (Table 7.3) were used for the preparative column and only the flow rate was increased to 2.76 ml/min. This was done to ensuresimilarchromatographicbehaviourofthecompoundsofinterest.The10lsyringeofthe 118 Created by Neevia Personal Converter trial version http://www.neevia.com

injectorwasreplacedwitha250lsyringetoallowinjectionvolumesof100lperpreparative run.Althoughthepreparativecolumncouldhandlelargerinjectionvolumes,theinjectionsystem waslimitedto100linjectionsduetotheinternalsampleloopvolumeof100lonthe2690 Separationmodule. The UV spectrum (200 – 600 nm) was monitored and the two main components were fractionatedonthefractioncollectorbyusingaretentiontimetriggerfromthe2690Separation moduleandfixedcollectionwindowsonthefractioncollector.Duetotheconcentratednatureof thecrudeextracts,thesamplesstartedprecipitating.Toalleviatethisproblem,thetemperatures ofthesamplecompartmentandcolumncompartmentwereraisedto40 oC.Thiseliminatedthe precipitationproblemandpredictablyimprovedpeakseparationandpeakshape. Analyses of the purified fractions on the TMD and ZMD systems have been discussed in a previous section. The results indicated that abrine and hypaphorine could be successfully extractedonpreparativeOasisHLBcartridgesandthatthefractionationprocedureusedwere abletoproduceabrineandhypaphorineof>95%purity. 7.10 FORENSICAPPLICABILITY Abrus precatorius isoneoftheplantsthathavenotbeensuccessfullydetectedattheFCLJHB. Theonlyreportofthepresenceof A. precatorius inaforensicexhibitwasbasedontheapolar UVcomponents(Figure7.15)oftheseedsthatweredetectedinaspikedchocolatecake. Arecentforensiccase(Case114)wasreceivedattheFCLJHBofahighprofilepersonwho wenttoatraditionalhealerforatonic.Aftertakinghistonic,thepersonbecameillanddiedafew dayslater.Itwasallegedthathewaspoisonedbythetraditionalhealerandthestomachandits contents as well as a blood sample was submitted for chemical analysis. From previous experienceitwasfoundthattheHClPBSbufferconstantlyproducesthebestextractionyields, andthismethodwasusedtoextractthesamples. ThesampleswereanalysedontheTMDsystem(UVandEI),andtwopeakswereobservedon the PDA detector, in all the samples, that closely resembled abrine and to a lesser extent hypaphorine (UV spectra and retention time; Figure 7.16). The EI mass spectra of the two compounds were matched with the NIST MS library and indicated possible matches with tryptophanandtryptaminederivatives.Thematchesweregoodenoughtowarrantasecondlook but were not conclusive. The first spectrum was particularly interesting as a strong 130 amu basepeakwasobservedthatstronglyresembledabrine(Figure7.17).

119 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure7.15 UVSpectraoftheapolarcompoundsextractedform Abrus precatorius seeds Figure7.16 MaxplotUVchromatogramoftheanalysisofthebloodsampleofCase114(TMDsystem)

120 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure7.17 EISIMchromatogramoftheanalysisofthebloodsampleofCase114(TMDsystem)

Figure7.18 ESI +chromatogramsoftheanalysisofthebloodsampleofCase114.Overlaidthe chromatogramofthepurifiedabrinefraction(bothZMDsystem)

121 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure7.19 ESI +spectraofthesuspectedabrinepeakdetectedintheanalysisofthebloodsampleof Case114(ZMDsystem) ThesampleswerereanalysedontheZMDsystemtoobtainthecharacteristicESI +spectraof the two compounds. Although peaks were observed at the correct retention time, the ESI + spectradidnotmatchthoseofabrineorhypaphorine. IfthistypeofanalysiswasattemptedonaUVbasedchromatographicsystem,afalsepositive mighthavebeenreported.TheadditionofEIandESI +massspectraldataconclusivelyruledout theuseofa muti containingthecompoundsof Abrus precatorius . The combination of the UVEI and UVESI + data obtained from the TMD and ZMD systems respectively,willassistineliminatingfalsepositiveresultswhenindoleputrifactsareobservedin humanviscera.

122 Created by Neevia Personal Converter trial version http://www.neevia.com

CHAPTER8

Ricinus communis

8.1 BOTANICALDESCRIPTION Ricinus com munisL.(Euphorbiaceae)isalargeshruborsmalltreeofupto4minheightwith redpurplish stems, which could be annual or perennial depending on the climatic conditions. The leaves are large, handshaped on long, stout leaf stalks. The flowers are gathered in clusters–thefemaleflowersabovethemaleflowersonthetipsoftheinflorescences.Thefruits arethreelobed,threeseededcapsulesarmedwithsoftspikes.Theseeds,10–12mmlong, haveasmoothandshinyseedcoatandareirregularlymottledwithreddishbrown,brown,silver andblack[140,141,142].Althoughlistedasaproblemplant,ithasbeenusedasanornamental plantingardens[143,144].Itiscommonlyknownasthecastoroilplantor umhlakuva (Xhosa andZulu).

FIGURE8.2 Seedsof Ricinus communis FIGURE8.1 Purpleformof Ricinus communis 8.2 ORIGINANDDISTRIBUTION Thetrueoriginof R. communis isunclear butitisbelievedtobe indigenoustonortheastern AfricaandIndia.Theplanthasbecomeaweedinmanypartsoftheworldandusuallygrowsin

123 Created by Neevia Personal Converter trial version http://www.neevia.com

tropical,subtropicaland temperateclimatesindisturbedsoiloruncultivatedlands.Itis widely distributed throughout South Africa and commercially cultivated for the seed oil in many countries including South Africa, Brazil, Ecuador, Paraguay, India, , USA and USSR [144]. 8.3 TYPEOFTOXIN Ricinus communis issimilarto Abrus precatorius inthatitcontainsahighlytoxiclectin,ricinand a piperidine alkaloid ricinine [145]. Theterm “ricin” refers collectively to thefour glycoproteins that have been purified from the seeds of R. communis . Two ricin agglutinins and two toxins havebeenidentified:RCLI,RCLII(agglutinins),RCLIIIorRicinDandRCLIV(toxins).Allfour lectins consist of two different polypeptide chains joined by a disulfide bond; the toxins are dimers of an Achain (30,000 Da) and a Bchain (33,000 Da) and the agglutinins occur as tetramerscomposedoftwo30,000andtwo33,000molecularweightsubunits[41].Ricininehas

amolecularformulaofC8H8N2O2andamolecularweightof164.2.Theoilfromtheseedsof R.

communis ,ricinoleicacid(castoroil),hasamolecularformulaofC18 H34 O3,amolecularmassof 298.5andiscoldpressedfromtheseeds. O H3C CN N OCH 3 FIGURE8.3 Chemicalstructureofricinine 8.4 ACTIVECOMPONENTSANDPHARMACOLOGICALEFFECTS Allthecompoundsisolatedfrom R. communis havepharmacologicaleffects.TheBchain(sub unit)ofricinisalectinandallowsthetoxintobindtocellmembranescontaininggalactosylsites. ThisfirststepisrequiredbeforetheAchain(subunit),anenzyme,caninhibitproteinsynthesis [141].Thefourglycoproteinsthatmakeupricinhavebeenshowntohaveantitumorproperties [41],butaredestroyedbyheatandlightandmaybeunstableinthehumandigestivetract.Ricin agglutinisreportedlynontoxiciftakenorally[144].Ricinineishighlytoxicandproducessimilar symptomsasabrinandricin[41].Thedrasticcatharticproperties(purgative)ofcastoroiliswell knownandareduetoricinoleicacidwhichalterstheintestinalcellmembraneandcausesthe lossofwaterandelectrolytes[141].

124 Created by Neevia Personal Converter trial version http://www.neevia.com

8.5 ETHNOPHARMACOLOGICALIMPORTANCE Castoroilisa wellknownpurgativemedicineandveryeffective,buthasa verydisagreeable taste.TheseedsareusedasapurgativebymanyoftheethnicgroupsinSouthAfrica[45,146, 147]butnotbytheSothoandZulu.Onetothreeintactseedsaretakenasastrongpurgative withamuchmoredrasticactionthancastoroil.Leafinfusionsareadministeredorallyorrectally (enema)forstomachache,whilerootandleafpoulticesarewidelyappliedtowounds,soresand boils[45,115,147].Therootsareusedasanabortifacientorpoundedintoapasteandused againsttoothache.Ahotwaterextractoftheseedsaretakentoimprovefertilityandleavesare inserteddirectlyintotheanustocurehaemorrhoids[147].Spiritual/magicalusesoftheplant havealsobeendocumented[148]. 8.6 POISONING 8.6.1 Accidental Theseedsareconsideredasnontoxicaslongastheseedcoatremainsintact,butmaceration oftheseedsrendersthemhighlytoxic.Chewingoftheseedsresultinaburningsensationofthe mouthandthroat.Afteralatentperiodofthreetosixhours(orsometimesseveraldays)nausea, vomiting, severe stomach pains, diarrhoea and excessive thirst develop leading to acute dehydration, hypotension and a circulatory failure. These symptoms are followed by blurred vision,lossofconsciousness,convulsions,livernecrosis,haemolysisandrenalfailure[144]. Fatalpoisoningby R. communis asaresultoftheingestionofseedsasapurgative,hasbeen reported[45,144].Adoseofonetothreeseeds(takenwhole)areconsideredas“safe”.Three maceratedseedsareconsideredafataldose[45]butonemaceratedseedmaykillachild.Non fatalpoisoningshavealsobeenreportedaftertheingestionofseeds.Itisinterestingthatpeople havefullyrecoveredaftertheingestionof31seedsbutthatothershavediedaftertheingestion of three to eight seeds. Damaging of the seed coat in any way will drastically increase the chanceofafatalpoisoning,butseasonalvariationsintoxicityorthedimensionsoftheseeds ingestedmayalsoaffecttheoutcomeofingestionof R. communis seeds.Individualsusceptibility orresistancetothetoxicagentsmayalsoplayaroleaswilltheageofthepatient[141]. 8.6.2 Deliberate Inthepast,deliberatepoisoningwith R. communis wasnotcommonandnoreferencetoany deliberatepoisoninginSouthAfricacouldbefound.In1978,GeorgiMarkov,anexiledBulgarian broadcaster was jabbed with an umbrella in the leg. He developed the typical symptoms associated with ricin poisoning and died three days later. At autopsy a small 1.5 mm metal sphere was recovered from the wound site. The sphere had two tiny holes and could hold a volumeof0.28mm 3.Apiginjectedwithasimilardoseofricindiedafter26hours.IntheUSA

125 Created by Neevia Personal Converter trial version http://www.neevia.com

(1991–1997)threericinrelatedcaseswerereportedwheretheintentwastokillusingricin.In December 2002 a “ricin laboratory” was discovered in Manchester, England which led to the arrestofsixsuspectedterrorists.Onthe3 rd ofFebruary2004threeUSSenatebuildingswere closedafterricinwasdiscoveredinthemailroomthatservesthesebuildings[149]. 8.7 FCLJHBINVESTIGATION Referenceto R. communis wasfoundintheFCLJHBdatabaseandithasquitefrequentlybeen mentionedinforensiccasefilessubmittedtotheFCLJHB.Theseedsarefreelyavailabledueto thewidespreaddistributionoftheplantbuthavenotbeensuccessfullydetectedorconfirmedin forensicsamples.Asfor A. precatorius ,thismightbeduetotheunavailabilityofthenecessary equipment and software to detect macromolecules like abrin and ricin, or the availability of equipmentsensitiveenoughtodetecttheminorcomponentslikeabrineandricinine.Thelackof a suitable analytical standard also hampered the development of an analytical method in the past,andthereforeruledoutthedetectionofaminorcompoundlikericinineinviscerasamples andexhibits. RicininehasbeenanalysedbyGCMSinhighconcentrations[150]butHPLCmethodsaresadly lacking.WiththeadditionoftheAPILCMSsystemstotheanalyticalarsenaloftheFCLJHB, the capability was introduced to detect small, stable molecules at the ng/ml level, but no publishedmethodcouldbefoundforricinine.Thisnecessitatedthedevelopmentofanextraction methodandaHPLCMSdetectionmethodforricinine. 8.8 EXPERIMENTALPROCEDURE 8.8.1 Standardsandreagents 13 13 13 Ricinineisnotcommerciallyavailable.Ricinine,ring C5,cyano C(99%byGC)(ricinine C6) was purchased from Cerilliant Corporation, Texas, USA. Potassium chloride, sodium chloride, potassium dihydrogen phosphate and sodium monohydrogen phosphate (> 99.5%) were obtained from Sigma Chemical Company, USA. Ammonium acetate (98%) and acetic acid (99%) were obtained from BDH Laboratory Supplies, England. Sulfuric acid (Suprapur 96%), hydrochloricacid(Suprapur96%),phosphoricacid(Suprapur96%),formicacid(98100%)and ammonia (GR 25%) were obtained from Merck, Darmstadt, Germany. Acetonitrile (gradient quality,200nmUVcutoff)andmethanol(gradientquality,205nmUVcutoff)wereobtained from Romil, England. HPLC grade water (20 Mcm 1) was obtained from a MilliQ / reversed osmosissystem(Millipore,USA).Thephosphatebufferedsalinesolution (PBS)wasprepared accordingtotheprescribedmethodsuppliedbyWaters,Milford,USA[56].Theanhydroussalts

126 Created by Neevia Personal Converter trial version http://www.neevia.com

ofKCl(0.20g),NaCl(8.00g),KH 2PO 4(0.20g)andNa 2HPO 4(1.15g)weredissolvedin1L deionisedwaterandthepHadjustedto5.0with10%hydrochloricacid. OasisHLBsolidphaseextraction(SPE)cartridges(3mlwith60mgofsorbent)wereobtained fromWatersCorporation,Milford,USA.A12portvacuummanifoldwasusedforallextractions. 8.8.2 Instrumentsandconditions AWaters2690HPLCsystemequippedwithbotha996photodiodearray(PDA)detectoranda Termabeammassselectivedetector(TMD)[electronimpact(EI)mode;maximummass1000 m/z )fromWaterswasusedforinitialscreeningandhighconcentrationstudies.AWaters2690 HPLCsystemequippedwitha996PDAdetectorandaZspraymassselectivedetector(ZMD) (Micromass,UK)(electrospraymode;maximummass2000 m/z )wasusedforlowconcentration studies.APhenomenexAquaC18HPLCcolumn(250x2.1mm,5m)wasusedontheTMD systemwhileaWatersXterraMSC18HPLCcolumn(250mmx2mm,5m)wasusedonthe ZMD system. A Harvard syringe pump (Model 11) was obtained from Harvard Apparatus, Holliston,USAandwasusedforalldirectinjectionexperimentsontheZMDdetector.1Hand 13 C NMRspectrawererecordedonaVarian500MHzspectrometer. ThePhenomenexAquacolumnwasusedwithanacidicmobilephaseof0.1%formicacidinthe water,startingat95%water:5%acetonitrileandslowlyrampingtheorganiccomponentto10% methanol:90%acetonitrilein40minutes.Theseconditionswerekeptfor10minuteswhereafter theHPLCcolumnwasreequilibratedwiththeinitialconditions.Thecompletegradientprofileof the2695SMissummarisedinTable8.1. To ensure maximum retention of the alkaloid on the Xterra MS C18 column, the initial chromatographic conditions were 90% water containing 10 mM ammonium acetate, the pH adjusted to 9.5 with ammonia (25%) and acetonitrile. After injection, the chromatographic conditionsweregraduallychangedthroughalineargradientprofileto90%acetonitrileand10% of the original aqueous mobile phase in 20 minutes. These conditions were kept stable for 5 minutes where after the HPLC system reequilibrated the analytical column to the initial conditions.Theflowratewaskeptconstantat0.2ml/min. The nebuliser of the TMD detector was optimised with a caffeine test solution (100 g/ml) to ensureefficientnebulisationanddropletformation.Theelectrosprayionization(ESI)probeofthe ZMDdetectorwasoptimisedbydirectinjectionviaasyringepumpusingaverydilutesolutionof 13 the C6 ricininestandard(100ng/ml).

127 Created by Neevia Personal Converter trial version http://www.neevia.com

Table8.1HPLCgradientprofileofthegeneralscreeningmethod(TMDsystem) TIME FLOW %A %B %C %D CURVE

min ml/min H2O MeOH Buffer ACN 1 0.20 0 0 95 5 6 2 1.00 0.20 0 0 95 5 4 3 10.00 0.20 0 0 80 20 6 4 12.00 0.20 0 0 80 20 4 5 20.00 0.20 0 30 50 20 5 6 35.00 0.20 0 10 0 90 6 7 37.00 0.20 0 10 0 90 6 8 40.00 0.25 0 10 0 90 6 9 45.00 0.25 0 10 0 90 6 10 50.00 0.20 0 0 95 5 5

8.8.3 Chemicalextractionof R. communis seeds SeedswerepurchasedfromtheTraditionalhealer’smarketinJohannesburganddriedat40 oC to constant weight. The seeds were finely ground using an Ika Werk A10 watercooled mill (Janke & Kunkel, Straufen, Germany) and 5 g of powdered seed was placed in a 50 ml polypropylenescrewtopcentrifugesampletubes.Thirtymilliliters(30ml)ofPBSHClbufferwas added,thetubecappedandshakenonaHeidolphrotatingsamplemixerforthirtyminutes.After centrifugationat4000rpmusingaHermleZ300centrifugefor15minutestheaqueousphase was passed through an Oasis HLB cartridge and the absorbed compounds stripped from the solid phase material with 5 ml methanol. The SPE cartridge was prepared by washing consecutively with 6 ml of methanol, water and the extracting buffer used. The cartridge was washedwith3mlextractingbufferanddriedundervacuumfor10minutes.Thecartridgewas thenelutedwith3mlmethanol,3mlacidicmethanol(10mlformicacidperlitermethanol),3ml basic methanol (10 ml ammonia per liter methanol) and 3 ml acetonitrile and the eluates combinedintoonecollectiontube.ThecollectiontubewasplacedintoaZymarkTurbovapand evaporatedat40 ○Cunderaregulatedstreamofnitrogengas.Thedryresiduewasreconstituted with1mlofa50:50methanol:watermixture. 8.8.4 Isolationofricininefrom R. communis seeds A portion of the ground seeds (see §7.8.3) (15 g) was extracted as described above but the aqueousphasewaspassedthroughapreparativeOasisHLBcartridge(20ml/1g).TheSPE cartridge was prepared by consecutively washing with 20 ml of methanol, water and the extractingbufferused.Thecartridgewaswashedwith20mlextractingbufferanddriedunder

128 Created by Neevia Personal Converter trial version http://www.neevia.com

vacuum for 10 minutes. The cartridge was then eluted with 20 ml methanol, 20 ml acidic methanol(10mlformicacidperlitermethanol),20mlbasicmethanol(10mlammoniaperliter methanol) and 20 ml acetonitrile and the eluates combined into one collection flask and evaporated to dryness at 50 oC under reduced pressure. The dry residue was reconstituted usingtheminimumamountofa50:50methanol:watermixture. ThechromatographicconditionsusedontheWatersXterraMSC18analyticalcolumnwasfed into the Prep Calculator software of theWaters Corporation to recalculate the conditions that mustbeusedifaWatersXterraMSC18column(7.8mmx300mm,10m)wasused.The modifiedconditions wereusedtofractionatericininefrom100linjectionsoftheredissolved residuebymeansofaLKB2211SuperracfractioncollectorandmonitoringtheUVspectrumof thePDAdetector. ThestructureofricininewasconfirmedbyNMRspectroscopy: Ricinine: 1 HNMR: δH(MeOHd4,500MHz)7.95(1H,d, J7.8Hz,H6),6.44(1H,d, J7.8Hz,H5),4.04

(3H,s,OCH 3),3.53(3H,s,NCH 3). 13 CNMR : δC(MeOHd4,125MHz)174.7(C2),163.8(C4),146.8(C6),114.7(CN),95.7(C5),

88.2(C3),58.2(OCH 3),37.8(NCH 3). 8.9 RESULTSANDDISCUSSION 8.9.1 Chemicalextractionof R. communis seeds Ricinineislesspolarthanthealkaloidsfrom A. precatorius andcanberetainedonmostsilica based C18 SPE cartridges. The choice of a trifunctional SPE C18 cartridge is advisable to ensurethatanyresidualchargeonthemolecule willnotdisruptthebindingprocessontothe activesitesoftheSPEcartridge.Thefactthatthesilicabasedcartridgesarepronetodewetting and poor recoveries if allowed to run dry makes the choice of a polymeric trifunctional C18 cartridge essential. No problems were encountered during the SPE extraction of the ground seeds but the evaporation of the combined column eluates on the Turbovap were severely hamperediftheSPEcartridgeswerenotcompletelydried–eitherbyapplyingvacuumtothe cartridgesorbypassinginstrumentqualitynitrogengasthroughthecartridges.Itwasfoundthat bothdryingtechniquesrequiredaminimumof10minutestoeffectivelydrythecartridges.The slow evaporation of the samples in the Turbovap due to the presence of water could be alleviatedbythefrequentadditionofmethanoltoazeotropetheremainingwater.

129 Created by Neevia Personal Converter trial version http://www.neevia.com

8.9.2 Chromatographyanddetectionofricinine Ricinine ionised as easily as abrine and hypaphorine under acidic conditions and displayed 13 similar chromatographic behaviour as these two compounds. Analysis of the C6 ricinine standardontheTMDsystemproducedasinglepeakonthePDAdetector(Figure8.4)witha verycharacteristicUVspectrum(Figure8.5).TheTMDdetectorproducedsimilarresultsanda singlepeakwasobserved(Figure8.6)withanEIspectrumthatisconsistentwiththemolecular 13 12 formulaof C6 C2H8N2O2andamolecularweightof170.2(Figure8.7).Theconditionsforthe TMDdetectorweresimilartothoseusedfortheanalysisofabrineandhypaphorine(Table7.2). TheacidicextractoftheseedswereanalysedontheTMDsystemandsixUVactivecompounds

weredetectedonthePDAdetector(Figure8.8).TheUVspectrumofthemaincomponent(R t 13 13.64min)wasconsistentwiththatofthe C6ricininestandard.Onlyonecomponent(R t13.76 min)wasdetectedontheTMDdetector(Figure8.9)andtheEIspectrum(Figure8.10)displayed amolecularionof164amu(whichwasalsothebasepeak)thatisconsistentwiththemolecular

formulaandmolecularweightofricinine(C8H8N2O2and164.2amu). Figure8.4 13 PDAMaxplotchromatogramofthe C6ricininestandard(TMDsystem)

130 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure8.5 13 PDAspectrumofthe C6ricininestandard(TMDsystem) Figure8.6 13 EIchromatogramofthe C6ricininestandard(TMDsystem)

131 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure8.7 13 EIspectrumofthe C6ricininestandard(TMDsystem) Figure8.8 PDAMaxplotchromatogramoftheacidicextractoftheseedsof Ricinus communis containingricinine

132 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure8.9 TMDEIchromatogramoftheacidicextractoftheseedsof Ricinus communis containing ricinine Figure8.10 EIspectrumoftheextractedricinine(TMDsystem)

133 Created by Neevia Personal Converter trial version http://www.neevia.com

8.9.3 Purificationofricinine The purification of ricinine on preparative Oasis HLB cartridges (20 ml/ 1 g) displayed similar retention and chromatographic characteristics as the small analytical scale (3 ml/ 60 mg) cartridges. The retention behaviour of ricinine was less dependent on the amount of organic modifier present than abrine and hypaphorine, and the loss of product due to bleeding was negligible.Thesamechromatographicconditionsasusedfortheanalyticalcolumn(Table8.3) wereusedforthepreparativecolumnandonlytheflowratewasincreasedto2.76ml/min.This wasdonetoensuresimilarchromatographicbehaviourofthecompoundsofinterest.The10l syringeoftheinjectorwasreplacedwitha250lsyringetoallowinjectionvolumesof100lper preparative run. Although the preparative column could handle larger injection volumes, the injectionsystemwaslimitedto100linjectionsduetotheinternalsampleloopvolumeof100l onthe2690Separationmodule. TheUVspectrum(200–600nm)wasmonitoredat309nmandthemaincomponent,ricinine, was fractionated on the fraction collector by using a retention time trigger from the 2690 Separationmoduleandfixedcollectionwindowonthefractioncollector.TheUVspectrumofthe fractionatedcompoundwascontinuallymonitoredtoensurethatthecharacteristicUVspectrum ofricininewasobserved.Duetotheconcentratednatureofthecrudeextract,thesamplestarted precipitating.Toalleviatethisproblem,thetemperatureofthesamplecompartmentandcolumn compartmentwereraisedto40 oC.Thispartiallyeliminatedtheprecipitationproblemanddilution of the sample with methanol became necessary to ensure that all the sample components remainedinsolution.Thefractionatedcomponentfromtheseedsof R. communis wasanalysed ontheTMDsystemandonlyonecompoundwasobservedontheUVandTMDdetectors.The 13 UV spectrum was identical to that of the C6 ricinine standard while the EI spectrum was consistentwithliterature(151).TheAPIinterfaceoftheZMDsystemwasoptimisedtoenable lowleveldetectionofricinineinESI +mode.TheoptimisedconditionsaresummarisedinTable 8.2. Ricininedisplayedgreaterstabilitytoionisationthanthealkaloidsof A. precatorius andrequired higherconevoltagestoioniseandfragment.Atypicalchromatogramofthefractionatedricinine + (Figure8.11)displayedasinglepeak(R t7.64min)andtheESI spectra(Figure8.12)confirmed thenominalmassofthecompoundas164amu.TheESI +spectrumofricinineatCV=25Vwas dominatedbytheprotonatedspecies[M+H] +=165amuanddisplayednoISCIDfragmentation. ThecompoundstartedfragmentingataCV=35Vandata CV=45 V displayedsignificant ISCIDfragmentation.Themainfragmentationproduct(Figure8.13)wasformedbythelossof CN([M+HCN] + m/z 138).

134 Created by Neevia Personal Converter trial version http://www.neevia.com

TABLE8.2OptimisedMSconditionsfordetectingricinineontheZMDdetector ZMD RICININE CONDITIONS Modeandpolarity ESIpositive Capillaryvoltage(KV) 2.50 Conevoltage(V) 25 Desolvationtemperature(°C) 450 Extractorvoltage(V) 5.0 RFlens(V) 0.5 Sourcetemperature(°C) 120 Conegasflow(L/h) 40 Desolvationgasflow(L/h) 400 IonEnergy 1.0 Multiplier(V) 650 Resolution(LMR&HMR) 15.5

Figure8.11 ESI +chromatogramsoftheextractedricinineattwoconevoltages(25Vand45V)onthe ZMDsystem

135 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure8.12 ESI +MSspectraoftheextractedricinineatconevoltagesof25Vand45VontheZMD system 165 138 O H3C CN NH OCH3 Figure8.13 ESI + ISCID oftheextractedricinine(ZMDsystem) 8.10 FORENSICAPPLICABILITY Thismethodisavaluableadditiontoforensicchemistryandwillassistinthedetectionofricinine at low concentration levels. The detection of ricinoleic acid in any forensic exhibits might be indicativeofthepresenceofricinine,andwillnecessitatethereextractionoftheforensicexhibits withthisextractionmethod.Thedetectionandconfirmationoflowmolecularweightcompounds isusuallyproblematicwithMSasdetectiontechnique,butthestrongionisationandreproducible ISCIDfragmentationofricinineunderESIconditionswillassistinthedetectionandconfirmation ofricinineatverylowconcentrationlevels.

136 Created by Neevia Personal Converter trial version http://www.neevia.com

CHAPTER9

Nerium oleander / Thevetia peruviana

9.1 BOTANICALDESCRIPTION Nerium oleander L.(Apocynaceae)isarobust,woody,evergreenshrubofupto6mhigh(Figure 9.1).Theleavesareoblong,withaprominent,whitemidribandnumerousparallellateralveins [152].Theflowerscanbesingleordoubleinavarietyofcolours–white,pink,purple(darkpink) or red [153] (Figure 9.2).When the long and narrow seed capsules burst open, they release numeroussmall,brownseedswithlong,reddishbrownhairs[152]. N. oleander isalsocalledthe commonoleander. FIGURE9.1 FIGURE9.2 Typical Nerium oleander shrub Somecolourformsof Nerium oleander Thevetia peruviana (Pers.)Schumann(Apocynaceae)isaleafyshrubofupto10mhigh,with glossy, spirally arranged leaves (Figure 9.3) and attractive, trumpetshaped, yellow flowers (Figure9.4).Thetriangularfruitsareslightlyfleshyandgreenatfirst,butturnblackwhenthey

137 Created by Neevia Personal Converter trial version http://www.neevia.com

ripen,andcontain2–4flatseeds(Figures9.4and9.5).Theplantiscommonlyknownasthe yellowoleander. FIGURE9.3 Typical Thevetia peruviana shrub 9.2 ORIGINANDDISTRIBUTION Theoriginof N. oleander isuncertainbutisthoughttobenativetotheNearEast[153].Itoccurs naturallyinalargeareathatstretchesfromtheMediterraneanregiontoWesternChinaandis particularlywellsuitedtotheMediterraneanclimates.Itadaptswelltodroughtandisahardyand populargardenshrub.InSouthAfricaithasbecomeaninvaderplantandiswidelydistributed throughthemoretemperateclimateregions[154].

FIGURE9.4 FIGURE9.5 Flowerandfruitof Thevetia peruviana Openedfruitandseedof Thevetia peruviana

138 Created by Neevia Personal Converter trial version http://www.neevia.com

Thevetia peruviana occursnaturallyinMexicoandthenorthernpartsofSouthAmericaandis widespreadinAustralia.Itisapopulargardenshrubfavouringthewarmerclimatesofthenorth easternpartsofSouthAfrica[155]. 9.3 TYPEOFTOXIN Nerium oleander and T. peruviana both contain cardiac glycosides of the cardenolide type (Figure9.6).Themaincardiacglycosideof N. oleander isoleandrinwithamolecularformulaof

C32 H48 O9 and a molecular mass of 576.7. The main cardiac glycosides of T. peruviana are

thevetinAandthevetinBwithmolecularformulaeofC 42 H64 O19 forthevetinAandC 42 H66 O18 for thevetinB.ThemolecularmassofthevetinAis872.0and858.0forthevetinB. O O OAc H C 3 O OH HO O

H CO O O 3 Oleandrin HO O R OAc HO O H3C O O OH HO O O HO OH

HO OH H3CO ThevetinA:R=CHO ThevetinB:R=CH3 FIGURE9.6 Chemicalstructuresofoleandrin,thevetinAandthevetinB 9.4 ACTIVECOMPONENTSANDPHARMACOLOGICALEFFECTS Oleanderleavesandseedscontainmorethan30differentcardiacglycosideswitholeandrinas the main cardiac glycoside. Oleandrin was formerly used as a cardiac tonic and diuretic, and extracts are still used in homeopathy [152]. Numerous cardiac glycosides are known from T. peruviana ,ofwhichthevetinAandBarethemaincomponents[152].AmixtureofthevetinAand Bwaspreviouslyavailableasacommercialcardiacstimulantunderthenamethevetin[153].

139 Created by Neevia Personal Converter trial version http://www.neevia.com

Thecardiacglycosidesof N. oleander and T. peruviana producetypicalclinicalsignsofcardiac glycosidepoisoning.Thefirstsignsaregastrointestinaldiscomfort,nauseaandvomiting.These are followed by neurological symptoms that usually include weakness, mental confusion and visual disturbances. Next to appear are cardiac symptoms, usually bradycardia due to conduction problems and the onset of an AV block resulting in fibrillation [153]. The physiological action of cardenolides are attributed to their binding to the Na +/K +sensitive membranebound enzymes, thereby disturbing the Na +/K + transport and leading to increased intracellularCa 2+ levels[156].Thevetinhasadirectstimulantactiononthesmoothmusclesof theintestine,bladder,uterusandbloodvesselwalls[45]. 9.5 ETHNOPHARMACOLOGICALIMPORTANCE Eventhough N. oleander and T. peruviana areknowntobetoxic,bothareusedmedicinally.

Nerium oleander : Finelypowderedleavesaresniffedforcoldsandheadache.Syphilisistreatedbyeatingsmall quantitiesofbark.Leafextractisrubbedintoclearuprashesandvenerealdiseasesaretreated bydrinkingleafinfusions[157].Apatentedhotwaterextractof N. oleander havebeenusedin thedevelopmentofatreatmentforcancer,viralinfectionsandskindisorders[158]. Thevetia peruviana: The leaf sap is dripped into the nostrils for colds and severe headache and migraine. Bark decoction is drunk to reduce fever while amenorrhea is treated by drinking a maceration of leaves and bark [159]. The seeds are used as an abortifacient in Bengal and neighbouring provinces [45]. Another interesting use of T. peruviana in India is the utilisation of aqueous extractstoassistlocalfishermenintheirfishcatchingpractices[160]. 9.6 POISONING 9.6.1. Accidental Accidentalpoisoningcanbedirectorindirect.Directaccidentalpoisoningwouldbeiftheleaves, seeds or flowers are accidentally consumed. This is mostly the case with children who experimentoutofcuriosity.Misidentificationofleavesmayleadtothepreparationofaninfusion thoughttobefromeucalyptusbutturningouttobeoleander.Indirectaccidentalpoisoningwould occurbytheconsumptionofstagnantwatercontaminatedwithleavesorflowers,oringestionof meat skewered on N. oleander stems [153]. All parts of N. oleander are poisonous to man, animalsandcertaininsects.Inhalationofsmokeortheingestionofsaporhoneyproducedfrom this plant has resulted in poisoning of humans and animals [156]. Accidental exposure to N.

140 Created by Neevia Personal Converter trial version http://www.neevia.com

oleander inchildrenisquitecommoninAustralia,butthemortalityassociatedwiththeseevents is negligible [161]. In the USA oleander poisoning occurs regularly with quite an equal distributionbetweentheages1–90years.Thehighestnumberofexposuresoccurredinthe one yearold age group. These results indicate that oleander exposure in the USA is more accidentalthanintentional[162]. Young children are enticed by the attractive fruit of T. peruviana , resulting in numerous poisonings.Theirnaturalcuriosityandtendencyto“mouth”objectsintheirsurroundings,place youngchildrenatincreasedriskofexposureto N. oleander and T. peruviana .Anotherexample ofaccidentalexposureisthepreparationofanherbalteacontaining T. peruviana leaves[163]. Thekernelsofabout10fruitsmaybefatalinadultsbutthekernelofonefruitmayprovefatalto achild[165].InNamibiatwochildrenwerepoisonedaftereatingthekernelofaseed,resultingin thedeathofonechildsixhourslater[45]. 9.6.2. Deliberate Ananalysisofthewelldocumentedcasesshowsthattheleadingcauseofsevereintoxication with N. oleander in humans is attempted suicide which is often successful [153]. A case was reportedofa55yearoldmalewhopreparedacocktailcomprisingof25 N. oleander leavesand fiveflowerswhichheblendedwithasoftdrinkandconsumed.Hesurvivedthissuicideattempt duetospecialisedmedicaltreatmentandthefactthathevomitedseverelyafteringestionofthe blendandtheremainingpulp[164]. Numerous suicide attempts have been recorded by the ingestion of T. peruviana seeds, especiallythekernel[165].Oneortwoseedswillonlycausegastrointestinaldistress;threeor moreseedswillleadtoseverecardiacdistressandmayleadtodeath[153].Anevaluationofthe reported T. peruviana exposuresinSriLankaindicatedthatveryfewcases(2%)involvedyoung childrenandthatthemajorityofcases(65%)weresuicideattemptsinvolvingpeopleinthe16 25yearagegroup[161,166].Thedeliberateingestionof T. peruviana seedsinSriLankahas becomeapopularmethodofselfharmwithafatalityrateofatleast10%and40%ofthecases requiringspecialisedmedicaltreatment[167]. 9.7 FCLJHBINVESTIGATION OleandrinandoleandrigeninwerepreviouslydetectedattheFCLJHBandwereidentifiedusing commercialspectrallibrarieslikeNISTontheGCMS(EI)andHPLCMS(EI)systems.Thiswas only accomplished in case exhibits and muti, but no cardiac glycosides could be detected or confirmedinviscerasamples.Compoundshavebeendetectedincase exhibitsand muti that gave reasonable (but not absolute) matches to known cadiac glycosides in NIST, but the

141 Created by Neevia Personal Converter trial version http://www.neevia.com

unsatisfactory match qualities are indicative that these compounds might be other cardiac glycosides from indigenous plants and therefore not included in commercial mass spectral libraries.Referenceto N. oleander wasfoundintheFCLJHBdatabaseandinForensiccase files submitted to the FCL JHB. Plant material is freely available due to the widespread distributionoftheplant.HoweveritcouldonlybedetectedbytheFCLJHBifpresentinthehigh g/mlconcentrationrangeandnecessitatedthedevelopmentofextractionandLCMSdetection methodsforthisplant. The first aim was to develop a chromatographic and mass spectral detection protocol for the analysis of heart glycosides and oleandrin, in particular. The second aim was to develop a methodtoextractanddetectthepresenceof N. oleander inforensicsamplesbymatchingthe massspectralprofilesofunknownsamplestothatofextractsmadeof N. oleander leaves.The thirdaimwastobeabletodevelopaprotocoltoallowtheunambiguousdifferentiationbetween N. oleander andT. peruviana inforensicsamplesbypatternrecognition(comparingthemass spectralBPIorTICpatternsofunknownsampleswiththemassspectralBPIorTICpatternof T. peruviana leaves).Thefourthaimwastoadaptthemassspectraldetectiontechniquetodetect oleandrinatalowconcentrationinviscerasamples. 9.8 EXPERIMENTALPROCEDURE 9.8.1. Standardsandreagents NostandardsarecommerciallyavailableforthevetinAorB.Oleandrinwaspreviouslyavailable from Sigma but was discontinued. Oleandrin (1 mg; >90% purity) was obtained from Dr. G. Verdoorn (previously from RAU). Digitoxin, neriifolin, strophanthin G, strophanthin K, bufalin, helveticoside, gitoxin, convallatoxin, digoxin and lanatoside C (>95% purity by TLC) were purchased from SigmaAldrich. Potassium chloride, sodium chloride, potassium dihydrogen phosphateandsodiummonohydrogenphosphate(>99.5%)wereobtainedfromSigmaChemical Company, USA. Ammonium acetate (98%) and acetic acid (99%) were obtained from BDH LaboratorySupplies,England.Sulfuricacid(Suprapur96%),hydrochloricacid(Suprapur96%), phosphoric acid (Suprapur 96%), formic acid (98 100%) and ammonia (GR 25%) were obtainedfromMerck,Darmstadt,Germany.Acetonitrile(gradientquality,200nmUVcutoff)and methanol(gradientquality,205nmUVcutoff)wereobtainedfromRomil,England.HPLCgrade water(20Mcm 1)wasobtainedfromaMilliQ/reversedosmosissystem(Millipore,USA).The phosphatebuffered saline solution (PBS) was prepared according to the prescribed method supplied by Waters, Milford, USA [56]. The anhydrous salts of KCl (0.20 g), NaCl (8.00 g),

KH 2PO 4 (0.20 g) and Na 2HPO 4 (1.15 g) were dissolved in 1 L deionised water and the pH adjustedto6.0with10%hydrochloricacid.

142 Created by Neevia Personal Converter trial version http://www.neevia.com

OasisHLBsolidphaseextraction(SPE)cartridges(3mlwith60mgofsorbent)wereobtained fromWatersCorporation,Milford,USA.A12portvacuummanifoldwasusedforallextractions. 9.8.2. Instrumentsandconditions AWaters2690HPLCsystemequippedwithbotha996photodiodearray(PDA)detectoranda Termabeammassselectivedetector(TMD)[electronimpact(EI)mode;maximummass1000 m/z ]fromWaterswasusedforinitialscreeningandhighconcentrationstudies.AWaters2695 HPLCsystemequippedwitha2996PDAdetectorandaZspraymassselectivedetector(ZQ) (Micromass,UK)[MultimodeESCi,maximummass4000 m/z ,ESCi(+/)mode]wasusedfor lowconcentrationstudies.APhenomenexAquaC18HPLCcolumn(250x2.1mm,5m)was usedontheTMDsystemwhileaWatersXterraMSC18HPLCcolumn(250mmx2mm,5m), aWatersXterraRPC18HPLCcolumn(250mmx2mm,5m)andaPhenomenexSynergi FusionC18HPLCcolumn(250x2.1mm,4m)wasevaluatedontheZQsystem.Thebuiltin syringepumpwasusedforalldirectinjectionexperimentsontheZQdetector. ThePhenomenexAquacolumnwasusedwithanacidicmobilephaseof0.1%formicacidinthe water,startingat95%water:5%acetonitrileandslowlyrampingtheorganiccomponentto10% methanol:90%acetonitrilein40minutes.Theseconditionswerekeptfor10minuteswhereafter theHPLCcolumnwasreequilibratedwiththeinitialconditions.Thecompletegradientprofileof the2695SMissummarisedinTable9.1. The nebuliser of the TMD detector was optimised with a caffeine test solution (10 g/ml) to ensureefficientnebulisationanddropletformation.Flowinjectionexperimentsweredoneonthe multimode ionization probe (ESCi) of the ZQ detector to determine the optimal solvent compositionandmassspectralconditionstoionisecardiacglycosides.Initialexperimentswere donewitha100g/mldigitoxinsolutioninacetonitrilebutwasreplacedinlaterexperimentswith a 10 g/ml solution in methanol. After initial optimisation on digitoxin as test compound, a 10 g/mloleandrintestsolutionwasusedtodothefinaloptimisation.Theoptimisedmassspectral conditionsforoleandrinaresummarisedinTable9.2. A test solution of the 11 cardiac glycosides was prepared in methanol. The chromatographic conditions were varied to obtain separation between the components. The separation was initially monitored with the UV detector but later changed to the ZQ detector. To ensure maximumretentionofthemorepolarcardiacglycosidesontheSynergiFusionC18column,the initial chromatographic conditions were highly aqueous in nature, but a solvent composition higherthan75%waterseriouslyaffectedtheionisationoftheearlyelutingcardiacglycosides. The optimised chromatographic conditions are listed in Table 9.3. The flow rate was kept constantat0.2ml/minandthecolumntemperaturewaskeptconstantat40 OC.

143 Created by Neevia Personal Converter trial version http://www.neevia.com

Table9.1HPLCgradientprofileofthegeneralscreeningmethod(TMDsystem) TIME FLOW %A %B %C %D CURVE

min ml/min H2O MeOH Buffer ACN 1 0.20 0 0 95 5 6 2 1.00 0.20 0 0 95 5 4 3 10.00 0.20 0 0 80 20 6 4 12.00 0.20 0 0 80 20 4 5 20.00 0.20 0 30 50 20 5 6 35.00 0.20 0 10 0 90 6 7 37.00 0.20 0 10 0 90 6 8 40.00 0.25 0 10 0 90 6 9 45.00 0.25 0 10 0 90 6 10 50.00 0.20 0 0 95 5 5 TABLE9.2OptimisedESI+MSconditionsforthedetectionofoleandrin (ZQsystem) CONDITION OLEANDRIN Modeandpolarity ESIpositive Capillaryvoltage(KV) 2.50 Conevoltage(V) 50 Desolvationtemperature(°C) 500 Extractorvoltage(V) 1.0 RFlens(V) 0.1 Sourcetemperature(°C) 120 Conegasflow(L/h) 0 Desolvationgasflow(L/h) 450 IonEnergy 1.1 Multiplier(V) 650 Resolution(LMR&HMR) 15.2

144 Created by Neevia Personal Converter trial version http://www.neevia.com

TABLE9.3OptimisedHPLCconditionsforthedetectionofoleandrin(ZQsystem)

VARIABLE OPTIMISED Column PhenomenexSynergiFusionC18250x2.1mm(4m) Columntemperature( oC) 40±1 Methanol Mobilephasecomponents H2O(0.1%FormicacidpH2.3)

Initialconditionsof70:30H 2O:MeOH

Gradientto40:60H 2O:MeOHin20minutes(G3)

Gradientto10:90H 2O:MeOHat40minutes(G9) Gradientprofile Isocraticconditionsof10:90H 2O:MeOHfor5minutes Returntoinitialconditionswithin5minutes(G3) Equilibratefor10minutes Mobilephaseflowrate 0.2ml/min Degassing Inline(normalmode) Sampletemperature(°C) 5±1 9.8.3. Chemicalextractionof N. oleander and T. peruviana leaves The leaves of N. oleander (white, white hybrid, light pink, dark pink and red forms) and T. peruviana (yellow)werecollectedandseparatelydriedtoconstantweightat40 oC.Theleaves weregroundtoapowderusinganIkaWerkA10watercooledmill(Janke&Kunkel,Straufen, Germany). Initial experiments were done on the light pink form of N. oleander . Ground leaf portions(1g)wereextractedwithchloroform,methanol,PBSbuffer(pH7)andHClPBSbuffer (pH5)byplacingthegroundleafportionsinseparate50mlpolypropylenescrewtopcentrifuge sampletubes.Chloroform,methanolPBSbufferandHClPBSbuffer(30millilitersofeach)were added to the tubes where after the tubes were capped and shaken on a Heidolph rotating samplemixerforthirtyminutes.AftercentrifugationinaHermleZ300centrifugeat4500rpmfor 15minutes,theorganicphaseswereplacedintoaZymarkTurbovapandevaporatedat40 ○C under a regulated stream of nitrogen gas. The dry residues were reconstituted with 1 ml methanol. The aqueous phases were passed through conditioned 3 ml (60 mg) Oasis HLB cartridgesandthecartridgeswashedwith3mlextractingbufferanddriedundervacuumfor10 minutes.Thecartridgeswerethenelutedwith3mlmethanol,3mlacidicmethanol(10mlformic acid per liter methanol), 3 ml basic methanol (10 ml ammonia per liter methanol) and 3 ml acetonitrile and the eluates of each tube combined into a single collection tube for each experiment.ThecollectiontubeswereplacedintoaZymarkTurbovapandevaporatedat40 ○C

145 Created by Neevia Personal Converter trial version http://www.neevia.com

under a regulated stream of nitrogen gas. The dry residues were reconstituted with 1 ml of methanol. TheeffectofpHwasevaluatedbyplacingseven1ggroundleafsamples( N. oleander lightpink form)intoseparate50mlpolypropylenescrewtopcentrifugesampletubes.HClPBSbuffer(pH

3,4,5,6,7,8,and9withHClorNH 4OH)wasaddedtothetubes,thetubescappedandshaken onaHeidolphrotatingsamplemixerforthirtyminutes.Therestofthesamplepreparationwas thesameasfortheaqueoussamplesdescribedabove. 9.8.4. Chemicalextractionandanalysisofvisceraandcaseexhibits An aliquot of each liquefied viscera sample [stomach (including contents), liver, kidney (3 g each),caseexhibit(1g)andblood(3ml)]wereplacedinseparate50mlpolypropylenescrew topcentrifugesampletubes.Thirtymilliliters(30ml)ofPBSHClbuffer(pH5)wasaddedtoeach sampleandthetubescappedandshakenonaHeidolphrotatingsamplemixerforthirtyminutes. OasisHLBSPEcartridges(3ml–60mg)werepreparedbywashingconsecutivelywith6mlof methanol,waterandtheextractingbufferused.Aftercentrifugationofthesampletubesat4500 rpm(HermleZ300centrifuge)for15minutes,theaqueousphaseofeachsamplewaspassed throughaconditionedOasisHLBcartridgeandthecartridgeswerewashedwith3mlextracting bufferanddriedundervacuumfor10minutes.Theywerethenelutedwith3mlmethanol,3ml acidicmethanol(10mlformicacidperlitermethanol),3mlbasicmethanol(10mlammoniaper liter methanol) and 3 ml acetonitrile and the eluates of each cartridge combined into one collection tube. The collection tubes were placed into a Zymark Turbovap and evaporated to drynessat40 oCunderaregulatedstreamofnitrogengas.Thedryresidueswerereconstituted with1mlofa50:50methanol:watermixture. 9.9 RESULTSANDDISCUSSION 9.9.1. Chromatographyanddetectionofcardiacglycosides Cardiacglycosidesareaspecificgroupofsteroidalglycosidescomprisingoftwobasictypes,the cardenolides and the bufadienolides. The cardenolides have a fivemembered lactone ring attachedtoC17,forexampleoleandrin(presentin N. oleander ),whilethebufadienolideshavea sixmembered lactone ring at C17, for example bovoside A, the active principle of Bowiea volubilis (Chapter10)[154,168,171]. CardenolideshaveaverynonspecificUVspectrumwithasingleUVmaximumbetween210–

225nm(Oleandrinλmax 216nm).ThebufadienolideshaveastrongerUVabsorptionatλ280–

320nm(Bufalin:λmax 298nm)(Figure9.7)whichmakesthemquitedistinctiveanddetectable comparedtothecardenolides.InthepasttheFCLJHBreliedsolelyonUVdetectionofcardiac

146 Created by Neevia Personal Converter trial version http://www.neevia.com

glycosides, but this detection method was not reliable or conclusive. A HPLC method was developedforthedetectionofcardiacglycosidesontheTMDsystem,butonlytheUVdetector provided useful data as most cardiac glycosides displayed poor stability during EI ionisation. Another problem was that few of the cardiac glycosides were present in the NIST spectral databasewhichruledoutpositiveidentificationorconfirmationbylibrarymatching.

Figure9.7 ComparisonoftheUVspectraofoleandrinandbufalinonthePDAdetector(TMDsystem) Thesolubilityofcardiacglycosidesinsolvents variesquitesignificantly withtheonlycommon characteristicbeingtheverylowsolubilityinwater.Quiteafewcompoundsdisplaysolubilityin chloroform,whileothersdonotdissolveinchloroformalonebutinamixtureofchloroformand methanol.Acetoneisalsooneofthemorecommonsolventsbutnotallthecardiacglycosides displaysufficientsolubilitytomakeitthecommonsolvent.Thebestcompromiseismethanolas mostcardiacglycosides dissolvein“alcohol”andallstandards werepreparedinHPLCgrade methanol. An evaluation ofthe structures ofthe selected cardiac glycosides (Figure 9.7) suggested that ESI negative would be the most probable ionisation mode due to the presence of hydroxyl groups, but these compounds displayed very poor ionisation in this mode irrespective of the mobilephasecompositionandtheseresultswereconsistentwithpublishedmethods[169,170]

147 Created by Neevia Personal Converter trial version http://www.neevia.com

TheonlycompoundthatdisplayednoteworthyESInegativeionisationwasbufalin,butitwasnot comparabletothestrongESIpositiveionisationsignalobserved.Digitoxinwasusedastheinitial test compound for optimisation of the ESI interface and solvent composition. Although acetonitrile is the solvent of choice in ESI analysis (strong solvent characteristics and high volatility)itresulted inionisationsuppression and wasreplaced withmethanol inallanalytical experiments.Strongionisationwasobservedinhighlyorganicmobilephasesbuttheadditionof water reduced the ionisation signal strength. The addition of more than 75% water severely affectedionisationandlimitedthestartingmobilephasecompositiontolessthan75%water. Various buffers were evaluated to ensure ionisation of the cardiac glycosides, namely acetic acid, formic acid, ammonium acetate, ammoniumformate and ammonium hydroxide. For ESI detection,thecompoundmustbechargedinsolutionwhichmayoccurnaturallyorisinducedby theadditionofabuffer(mobilephasemodifier)andtheadjustmentofthepH.Formicacidand ammoniumacetateweretheonlytwobuffersthatallowedreproducibleESIpositiveionisation, withdiluteformicacid(0.05–0.5%v/v)beingthebetterofthetwobuffers.Abufferconcentration of 0.5% produced the best chromatography but suppressed ionisation, while a buffer concentrationof0.05%producedthestrongestionisationsignalfordigitoxinbutwasunableto stabilise the chromatography. The optimal buffer concentration of 0.1% v/v produced stable chromatographywithoutanynoteworthysuppressionofionisation. InitialexperimentsontheTMDsystem(EIionisation)suggestedthatallthecardiacglycosides were fragile compounds that fragmented easily and could not be detected with the glycoside moietystillattachedtothesteroidalaglycone.ESIexperimentswereadaptedtocompensatefor this fragile nature of the compounds by using low cone and capillary voltages as well as low nebulisationtemperatures.However,thesemildsettingsresultedinpoorionisationofallthetest compounds and settings were increased to enhance ionisation efficiency. The optimal mass spectralconditionsforthedetectionoftheselected11cardiacglycosidesarelistedinTable9.2. UndertheseMSconditionsandbyusingtheoptimisedHPLCconditionslistedinTable9.3,all thecardiacglycosidescouldbeseparatedanddetected(Figures9.9and9.10).Theonlytwo

componentsthatoverlappedpartiallywereneriifolin(R t31.83min)andbufalin(R t31.97min). However,thesecompoundscouldeasilybedistinguishedbytheiruniqueESIpositivespectra (Figure9.9).Asummaryofthemassspectralinterpretationsforeachcompoundissummarised in Table 9.4. Most of the compounds were subject to cationisation with sodium while a few compounds also formed adducts with methanol (bufalin, neriifolin, oleandrin and to a lesser extentstrophanthinK).

148 Created by Neevia Personal Converter trial version http://www.neevia.com

O O O O

O

H3C OH O OH HO HO O H OH BUFALIN(1) HO OH CONVALLATOXIN(2) O O O O OH

H3C H3C O OH O OH HO O H HO O H

HO HO

3 3 DIGITOXIN(3) DIGOXIN(4)

O O O O

O OH CH H3C H C OH 3 OH O O HO O H HO O OH

HO HO 3 GITOXIN(5) HELVETICOSIDE(6) Figure9.8(a) Chemicalstructuresoftheselectedcardiacglycosides

149 Created by Neevia Personal Converter trial version http://www.neevia.com

O O

OH

HOH C H C H C H C 2 3 3 3 OH O O O O HO O O O O H

HO AcO HO HO

LANATOSIDEC(7) O O O O

OAc H3C H3C O OH O OH HO O HO O H

H3CO OH H3CO NERIIFOLIN(8) OLEANDRIN(9)

O O O O

HO HO O HO H3C OH OH O O HO O OH HO O OH

HO OH H3CO STROPHANTHING(10) STROPHANTHINK(11) Figure9.8(b) Chemicalstructuresoftheselectedcardiacglycosides

150 Created by Neevia Personal Converter trial version http://www.neevia.com

BUFALIN(ESI +) BUFALIN(ESI )

CONVALLATOXIN(ESI +) DIGITOXIN(ESI +)

DIGOXIN(ESI +) GITOXIN(ESI +)

Figure9.9(a) ESIspectraoftheselectedcardiacglycosides(ZQsystem)

151 Created by Neevia Personal Converter trial version http://www.neevia.com

HELVETICOSIDE(ESI +) LANATOSIDEC(ESI +)

NERIIFOLIN(ESI +) OLEANDRIN(ESI +)

STROPHANTHING(ESI +) STROPHANTHINK(ESI +)

Figure9.9(b) ESIspectraoftheselectedcardiacglycosides(ZQsystem)

152 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure9.10 OverlaidESIchromatogramsoftheselectedcardiacglycosides(ZQsystem) TABLE9.4MassspectralinterpretationoftheESIspectraobtainedfortheselected cardiacglycosides(ZQsystem) COMPOUND BASEPEAK PEAK#2 PEAK#3 + BUFALIN(ESI ) 388(M+OHCH 3) 410(M+H+Na) 442

(M+H+Na+CH 3OH) BUFALIN(ESI ) 418(M+CH 3OH) CONVALLATOXIN 573(M+Na) DIGITOXIN 787(M+Na) DIGOXIN 803(M+Na) GITOXIN 803(M+Na) HELVETICOSIDE 557(M+Na) LANATOSIDEC 1007(M+Na)

NERIIFOLIN 557(M+Na) 589(M+Na+CH 3OH)

OLEANDRIN 599(M+Na) 631(M+Na+CH 3OH) STROPHANTHING 607(M+Na)

STROPHANTHINK 571(M+Na) 603(M+Na+CH 3OH)

153 Created by Neevia Personal Converter trial version http://www.neevia.com

Itisinterestingtonotethatthosecompoundsthatdisplayedtheformationofamethanoladduct allhadamethoxygroupontheglycosideportionofthestructureanditwouldseemasifthe presenceofthisfunctionalgroupisaprerequisitefortheformationofamethanoladduct. VariousHPLCcolumnswereevaluatedduringthedevelopmentofthismethod.Alltheevaluated columns were able to separate most of the 11 cardiac glycosides, but it was only the PhenomenexSynergiFusioncolumnthatcouldpartiallyseparatebufalinandneriifolinandfully separatedigoxinandlanatosideC.Thesecolumns,aswellastheXterraRPC18column,were

theonlycolumnsthatgaveadequateretentionofstrophanthinG(R t8.29min).Thiscompound wasextremelysensitivetothepercentageoforganicsolventpresentintheeluentandadequate equilibration time must be allowed at the end of each analysis run to obtain stable and reproduciblechromatography. Flowinjectionanalysis(FIA)ofthecompoundswassubjecttovariousproblems.Directinfusion ofthemethanolicstandardsatflowratesof10–50l/mingaveveryprominentprotonatedbase peaks, but the observed signals were unstable and fluctuated unacceptably. Infusion of the methanolicstandardsatsimilarflowratesintoamobilephaseof50:50methanol:watermixedat 0.2ml/mingaveexcellentresultsandalsoallowedtheformationofadducts. An attempt was made to induce ISCID of the selected compounds by varying the cone and capillaryvoltages.Eachcompoundwastestedbystepwiseadjustingtheconevoltagefrom20V to150Vandthecapillaryvoltagefrom0.5to3.5KVwhileinfusingthestandardintoa50:50 methanol:watereluent.Itwasfoundthatnoneofthecompoundscouldbegraduallyfragmented byISCIDandthattheyweredestroyedbyconevoltagesabove70V.Capillaryvoltagesabove 2.8KVcausedconsistentarchingbetweenthecapillarytipandtheoutersampleconeandcould notbeconsideredforfutureexperiments. 9.9.2 Chemicalextractionof N. oleander and T. peruviana leaves The extraction of N. oleander and T. peruviana leaves with organic solvents produced mixed results.Theextractswereextremely“dirty”andprecipitatedeasilyinthesamplecoolerorduring injection. Although various cardiac glycosides were observed in these extracts, the frequent system maintenance required when analysing these samples ruled out the use of organic solvents.ThePBSbufferextracts(phosphateandHClbuffers)weremuchcleaneranddidnot precipitateasseverelyastheorganicsolventextractswhencooledto5 oC.TheUV/ESIpositive analysisoftheseextractsindicatedthepresenceofseveralcardiacglycosidesandthePBSHCl

bufferproducedbetterresultsthanthePBSPO 4buffer.TheoptimalpHofthePBSHClbuffer wasdeterminedandapHof5wasfoundtoextractthemostoleandrinaswellasthehighest numberofcompounds.

154 Created by Neevia Personal Converter trial version http://www.neevia.com

The analysis of an oleandrin standard and the leaf extract of N. oleander under optimised conditionsaredepictedinFigure9.11.Apeaksimilartothatofoleandrinwasdetectedintheleaf extractandwasresolvedfromtheothercardiacglycosidesandmatrixcompounds.Themass spectrum of the oleandrin standard was added to the MassLynx user library and used as referencespectrumtoconfirmtheidentityofthesuspectedoleandrinpeakintheleafextract. The mass spectral matches were excellent (92% Forward match; 99% Reverse match). An evaluationofthedetectedcompoundsintheleafextractindicatedthepresenceofthreeother cardiacglycosides.ThechromatogramsofthethreecompoundsaredepictedinFigure9.12and their mass spectra in Figure 9.13. Figure 9.12 was generated by extracting selective masses (SIM)at541,557,589and615amufromthefullscandata.Themassspectrawerecompared with those of the 11 cardiac glycosides and one compound was identified, namely nerriifolin (Forwardmatch81%;Reversematch89%).

Accordingtoliterature[170]odoroside(C 30 H46 O7;MW518.32)andneritaloside(C 32 H48 O10 ;MW 592.32)arecommonconstituentsof N. oleander .Underthemassspectralandchromatographic conditionsofthismethod,odorosidewouldcationiseandformaprotonatedion[M+Na] +with m/z 541 and would also display the formation of a methanol adduct [M+MeOH] + with m/z 573. Neritalosidewouldbehavesimilarlyandfromaprotonatedion[M+Na] +with m/z 615andwould alsodisplaytheformationofamethanoladduct[M+MeOH] +with m/z 647.Theobservedmass spectraoftheothertwocompoundsmatchedverywellwiththesetheoreticalpredictions,and

indicatedthepresenceofneritalosideatR t 30.14minandodorosideatR t36.70min. Theleavesof T. peruviana wereextractedwiththePBSHClmethodandthechromatographic profile was compared to that of the N. oleander leaf extract that was obtained under similar extractionconditions(Figure9.14). Differentiation between the two plants was possible by a visual comparison of the two chromatograms: the N. oleander extract contained more apolar compounds whereas the T. peruviana extractsweremorepolarinnature.BycomparingthesetwoextractsinSIMmodeand usingthecommonmassesof N. oleander ,thetwoplantscouldbeclearlydistinguished(Figure 9.15). Thesamewastrueiftheextractswerecomparedbyusingthecommonmassesof T. peruviana (Figure9.16).Althoughthemassspectralandchromatographicconditionswerenotoptimised forthedetectionofcardenolidesof T. peruviana ,thevetinA,thevetinBandneriifolincouldbe detectedintheleafextractsof T. peruviana .

155 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure9.11 OverlaidESI +chromatogramsoftheleafextractof Nerium oleander andoleandrin standard(ZQsystem)

Figure9.12 SIMESI +chromatogramsoftheothercardiacglycosidesdetectedintheleafextractof Nerium oleander (ZQsystem)

156 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure9.13 ESI +massspectraoftheothercardiacglycosidesdetectedintheleafextractof Nerium oleander (ZQsystem) The PBSHCl SPE extracts of the five colour varieties were compared (Figure 9.17). A comparison of the chromatograms (Figure 9.18) revealed that the various colour forms have similarprofiles,themaincomponentswerepresentinallthecolourformsbuttheconcentration ofthevariouscomponentsvariedbetweenthecolourforms. 9.9.3 Chemicalextractionandanalysisofvisceraandcaseexhibits Theextractionandpositiveidentificationofcardiacglycosideshavealwaysbeenaproblematic procedureattheFCLJHB.Inthepastsolventextractionwithmethanolorchloroformproduced positiveresultsonlyforcaseexhibits( muti orplantmaterial),butnocardiacglycosidescouldbe detected in the viscera samples. The viscera extracts were very complex and easily contaminated the instruments due to the large amount of putrifacts and fat that were co extracted. Aforensiccase(Case995)wasreceivedofapersonthatwenttoatraditionalhealertoobtaina muti tocleansehissystem.Thepersonadministeredthe muti asanenema,becameseriouslyill and died the next day. The request from the investigating officer was to identify the herbal toxin(s)present.The muti consistedofamixtureofliquidandplantmaterialandwasextracted withtheoptimisedSPEmethod.

157 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure9.14 ESI +chromatographicprofilesofthe Nerium oleander and Thevetia peruviana leaf extracts(ZQsystem) Figure9.15 Comparisonof Nerium and Thevetia leafextractsusingthecommonmassesof Nerium oleander (ESI +chromatogramsonZQsystem)

158 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure9.16 Comparisonof Nerium and Thevetia leafextractsusingthecommonmassesof Thevetia peruviana (ESI +chromatogramsonZQsystem)

Figure9.17 ComparisonoftheESI +chromatographicprofilesoffivecolourformsof Nerium oleander (FullanalysisrunonZQsystem))

159 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure9.18 ComparisonoftheESI +chromatographicprofilesoffivecolourformsof Nerium oleander (Zoomed–ZQsystem)

Figure9.19 ESI +chromatographiccomparisonoftheextractsoftheexhibitofCase995anda Nerium oleander leafextract(ZQsystem)

160 Created by Neevia Personal Converter trial version http://www.neevia.com

TheextractwasanalysedontheZQESIsystemandproducedachromatographicprofilesimilar to that of the N. oleander leaf extract (Figure 9.19). A SIM analysis of the data at 599 amu ([M+Na] + ofoleandrin)revealeda largepeakthat wasconsistent withthatofoleandrin and a librarymatch(MassLynxuserlibrary)confirmedthepresenceofoleandrin(Forwardmatch92%, Reversematch99%). TheviscerasamplesofCase995wereextractedwiththePBSHClbufferandanalysedonthe ZQsystem.TheTICchromatogramsdidnotdisplayprofilescompatiblewith N. oleander ,buta SIManalysisofthedatarevealedthepresenceofapossibleoleandrinpeakinallthesamples (Rt36.7±0.2min)(Figure9.20).Thespectraofthecompounds(Figure9.21)werecompared withtheMassLynxuserlibraryandtheresultsaresummarisedinTable9.5. Table9.5AnalysisresultsofthesamplespertainingtoCase995 SAMPLE Rt(min) FORWARDMATCH REVERSEMATCH IDENTITY Stomach 37.17 29% 98% Oleandrin Liver 36.92 66% 99% Oleandrin Kidney 36.95 58% 99% Oleandrin Blood 36.90 76% 99% Oleandrin Exhibit 36.60 92% 99% Oleandrin

Figure9.20 ESI +SIMchromatogramsat599amuofthevarioussamplesofCase995(ZQsystem)

161 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure9.21 SpectraobtainedfromtheESI +SIManalysisat599amuofthesamplesofCase995 (ZQsystem) Oleandrin was detected in all the viscera samples and confirmed the use of the muti that contained large amounts of oleandrin. The variation in match quality can be attributed to the varyinglevelsofoleandrininthesamples–thestomachcontainedtheleastandhadtheworst match qualities while the case exhibit contained the most and had the best match qualities (Table9.5). The success of this method sparked renewed interest in a previous case (Case 234) of suspected oleander selfpoisoning that happened in 2003. The person wasfound dead in his roomafterboilingupsomeleavesanddrinkingtheextract.Asmallamountoftheextract(3ml) andabloodsample(2ml)weresubmittedtotheFCLJHBandwasextractedwiththenormal SPE PBS buffer method and analysed on the TMD system. Oleandrin was detected and confirmed in the muti (NIST library matches) but not in the blood sample. The samples were frozenafteranalysisbutpartiallyfreezedriedduringstorage.Thesampleswerethawedandre extractedwiththeSPE–PBSHClmethodandanalysedontheZQsystem.Theinitialanalysis wasdoneinfullscanmodeandpresenceofoleandrinwasindicatedinthe muti extractbutnotin thebloodsample.ASIManalysisofthebloodsampleindicatedthepresenceofoleandrinbut wasnotconclusive.TheSIManalysismethodwasexpandedtomonitorthesixcommonionsof oleandrin(ionclustersat599and631amu).

162 Created by Neevia Personal Converter trial version http://www.neevia.com

The oleandrin standard was reanalysed with the adapted SIM method and the spectrum appendedtotheMassLynxuserlibrary.The muti sample(Figure9.22)andthebloodsample (Figure9.23)werereanalysed.Thespectraofthesuspectedoleandrinpeaksofthe muti and blood sample (Figures 9.24 and 9.25) were compared with those in the user library and the presenceofoleandrinwasconfirmedinbothsamples(Table9.6). Table9.6AnalysisresultsofthesamplespertainingtoCase234 SAMPLE Rt(min) FORWARDMATCH REVERSEMATCH IDENTITY Blood 37.40 99% 99% Oleandrin Exhibit 37.36 99% 99% Oleandrin 9.10 FORENSICAPPLICABILITY The FCL JHB dearly needed a good screening method for cardiac glycosides. The method developed is capable of detecting various cardiac glycosides – cardenolides as well as bufadienolides.

Figure9.22 ESI +chromatogramoftheSIManalysis(sixmasses)ofthe muti sampleofCase234 (ZQsystem)

163 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure9.23 ESI +chromatogramoftheSIManalysis(sixmasses)ofthebloodsampleofCase234 (ZQsystem)

Figure9.24 ESI +spectrumoftheSIManalysis(sixmasses)ofthe muti sampleofCase234 (ZQsystem)

164 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure9.25 ESI +spectrumoftheSIManalysis(sixmasses)ofthebloodsampleofCase234 (ZQsystem) AlthoughsomeofthetestcompoundsmightnotoccurinforensicsamplessubmittedtotheFCL JHB, the versatility of the method was clearly demonstrated by separating and detecting 11 cardiac glycosides. The method is ideally suited for the detection of oleandrin in high concentrations (full scan mode), low concentrations (selected masses) or trace levels (SIM analysisofionclusters). Themethodisabletodistinguishbetweenextractsderivedfrom N. oleander and T. peruviana and was able to detect and confirm neriifolin, odoroside and neritaloside in N. oleander leaf extracts. Analysis of forensic case exhibits were also successfully done with this method and performed well with liquid and solid matrices. Forensic analysis of viscera samples did not produce positive results in the past, but with the new method oleandrin could be detected at tracelevels.Theanalysisofoleandrinonthebloodsamplewasdoneonasamplesizeofless than100landstillproducedexcellentresults. Althoughthismethodcouldfunctionasaprimaryscreeningmethod,especiallytodetectknown cardiacglycosides(previouslyanalysedandincludedintheMassLynxuserlibrary)atverylow concentration levels, it is ideally suited as a secondary screening method to confirm the presenceofpossiblecardiacglycosidesdetectedontheTMDsystem.

165 Created by Neevia Personal Converter trial version http://www.neevia.com

CHAPTER10

Bowiea volubilis

10.1 BOTANICALDESCRIPTION Bowiea volubilis Harv.exHook.f.(Hyacinthaceae)isaninterestingplantwithagreenishwhite, fleshybulbthatgrowspartlyaboveground(Figure10.1).Thebulbscalesarefleshyincontrast to the papery orfibrousscales of B. disticha . The main aboveground part of the plant is the succulent,twining,leaflessfloweringstems(Figure10.2).Theflowersaresmallandgreenishin colour,andeventuallyturnintosmall,twolocularcapsuleswithnumerousblackseeds[171].Itis commonlyknownastheclimbingpotato, umagaqana (Xhosa)and igibisila (Zulu).

FIGURE10.2 FIGURE10.1 Flowersof Bowiea volubilis Thefleshybulbandstemsof Bowiea volubilis 10.2 ORIGINANDDISTRIBUTION Bowiea volubilis isindigenoustoSouthAfricaandiswidelydistributedthroughtheeasternparts ofthecountry[171]. 166 Created by Neevia Personal Converter trial version http://www.neevia.com

10.3 TYPEOFTOXIN Bowiea volubilis contain cardiacglycosidesofthebufadienolidetype.Themaincomponent is

bovosideAwithamolecularformulaofC 31 H44 O9andamolecularmassof560.7[69]. O O OHC OH H3C O O H HO OH H CO 3 BOVOSIDEA FIGURE10.3 ChemicalstructureofbovosideA 10.4 ACTIVECOMPONENTSANDPHARMACOLOGICALEFFECTS ThemainpharmacologicaleffectsarecausedbythecardiacglycosidesincludingbovosideA. Their action as cardiac tonics, which increase the cardiac output through increased muscular contractions, are well known and have found application in the treatment of congestive heart

failure. Bovoside A is, however, extremely toxic with a LD 50 (cat, ivn) of 0.13 mg/kg [40]. Bufadienolides are also inhibitors of the enzyme Na,KATPase, and will cause similar physiologicalabnormalitiesasthecardenolides.Thefirstsignsaregastrointestinaldiscomfort, nausea and vomiting. These are followed by neurological symptoms that usually include weakness,mentalconfusionandvisualdisturbances.Nexttoappeararecardiacirregularities, usually bradycardia due to conduction problems and the onset of an AV block resulting in fibrillation[172,173]. 10.5 ETHNOPHARMACOLOGICALIMPORTANCE

Allthepartsoftheplantareextremelytoxic. Duetothe very highLD 50 value,the difference between therapeutic and toxic doses becomes very small, making the use of this plant for medicinal purposes very risky. However, the plant is widely used in traditional medicine and freelyavailableonthe muti marketsofSouthAfrica.Itisusedtotreatheadaches[174],hotwater extractsoftheroastedbulbistakenasapurgativeandthefreshbulbisusedtotreatoedema andinfertilityinwomen.Thefreshjuiceofthebulbisappliedtotheskinofasickpersonora decoction may be applied as a lotion to treat sore eyes [45]. It is a powerful emetic, working rapidlyinsmalldoses,andisalsousedasapurgative[175].Bulbsareusedinpotionstakenby

167 Created by Neevia Personal Converter trial version http://www.neevia.com

menaslovecharmemetics.Infusionsaretakenduringpregnancytofacilitatedeliveryandare also used to induce abortions. Bulb decoctions are taken for bladder pains associated with venerealdisease[176].Itisreportedthatthebulbalsopossessesmagicalproperties[177,178] andissprinkledon impi’s towardoffenemies. 10.6 POISONING 10.6.1 Accidental Sincetheearly1900’snumerouscasesofpoisoninghavebeenreportedthatinvolvedthebulb of B. volubilis .Itwasinitiallythoughtthatthetoxicprinciplewasanalkaloid,butKatzmadeanin depthstudyoftheplantandisolatedthreehighlyactivecardiacglycosides[45].Itisthecauseof numerousfatalitiesinhumansandanimalsandmaybefatalwithinacoupleofminutes[45,179, 180,181]. 10.6.2 Deliberate Noreferenceinliteraturecouldbefoundofanydeliberateattempttokillorcommitsuicideby using B. volubilis . 10.7 FCLJHBINVESTIGATION BufadienolidecontainingplantsisamajorprobleminagricultureinSouthAfrica[182,183]and Australia[184]duetotheirtoxicitytolivestock.AccordingtoKellermanetal.[185],bufadienolide glycosidesrepresentthemostimportantcauseofmortalityduetoplantpoisoningamongcattle in South Africa and it is estimated that 33% of plantrelated mortality may be attributed to bufadienolides,leadingtolossof12000headofcattleperyear.Promptedbythesestatistics,a literaturestudy wasdoneontheuse ofbufadienolidecontainingplants intraditionalmedicine and B. volubilis wasidentifiedasapotentialcandidateforhumanpoisonings. Bowiea volubilis is widelyusedandfreelyavailable,buthasnotbeendetectedbyanyofthescreeningprocedures oftheFCLJHB. No reference could be found in the FCL JHB data base or any of the forensic case files submitted to the laboratory regarding the use of B. volubilis . The lack of a standard and a sensitivescreeningmethodforbovosideAisprobablythemainreasonswhythiscompoundhas notbeendetectedbefore.Anotherreasoncouldbethelackofagoodextractionmethodforthe bufadienolidesandinparticularbovosideA. ReferenceswerefoundtoafewLCMSmethodsforthedetectionofoleandrin[186,187].These were all electrospray techniques using acidic eluents (formic acid or ammonium formate) and

168 Created by Neevia Personal Converter trial version http://www.neevia.com

acetonitrile as organic phase. In Chapter 9, a versatile and robust extraction method was developedfortheextractionofoleandrinfromplantmaterialandvisceraandaverysensitiveand versatileESIpositivedetectionmethodwasdevelopedforthedetectionoftencardenolidesand onebufadienolide.Theaimofthisstudywas: (a) Toapplythedevelopedmethodstotheanalysisofthedriedbulbof B. volubilis forthe detectionofbovosideA. (b) Todeterminewhetherthisprotocolcandistinguishamongextractsof B. volubilis and other common South African plants containing cardiac glycosides, e.g. Nerium oleander , Thevetia peruviana and Gomphocarpus fruticosus . 10.8 EXPERIMENTALPROCEDURE 10.8.1 Standardsandreagents NostandardiscommerciallyavailableforbovosideA.Thestandardsandreagents,asdescribed in§9.8.1ofchapter9,wereused. 10.8.2 Instrumentsandconditions Theoptimisedinstrumentalconditions,asdescribedin§9.8.2ofchapter9,wereused.These conditionscanbesummarisedasfollows: TMDconditions : Table10.1HPLCGradientprofileofthegeneralscreeningmethod(TMDsystem) TIME FLOW %A %B %C %D CURVE

min ml/min H2O MeOH Buffer ACN 1 0.20 0 0 95 5 6 2 1.00 0.20 0 0 95 5 4 3 10.00 0.20 0 0 80 20 6 4 12.00 0.20 0 0 80 20 4 5 20.00 0.20 0 30 50 20 5 6 35.00 0.20 0 10 0 90 6 7 37.00 0.20 0 10 0 90 6 8 40.00 0.25 0 10 0 90 6 9 45.00 0.25 0 10 0 90 6 10 50.00 0.20 0 0 95 5 5

169 Created by Neevia Personal Converter trial version http://www.neevia.com

Thisgeneralscreeningmethodwasdevelopedtogiveoptimalretentionofpolarcompoundson thePhenomenexAquaC18columnbutalsofunctionswellwiththePhenomenexSynergiFusion C18column.Thebufferis0.1%(v/v)formicacidinHPLCgradewater. TABLE10.2OptimisedMSconditionsforthedetectionofbovosideAontheTMDsystem TMDSYSTEM BOVOSIDEA CONDITIONS

Mode EIpositive Ionisationenergy(eV) 70 Gain 10 Nebulisertemperature(°C) 80 Expansiontemperature(°C) 90 Sourcetemperature(°C) 225 Capillarytiptemperature( oC) 160 Desolvationgasflow(L/h) 30 Samplingrate 1.0 Scanrange(amu) 50550 IonEnergy 1.0 Multipliergain(V) 1250 PDAscanrange(nm) 200–600 PDAsamplingrate(points/s) 1.0 PDAresolution(nm) 1.2 TheconditionsusedforthedetectorsoftheTMDsystemaretoacertainextentfixed(modeand ionisation energy) while the other parameters are variable and user adjustable. It must be stressed that the various adjustable settings will affect ionisation, nebulisation and sensitivity, andmustbecarefullyselectedandcontrolled. Anotherfactorthatmustbekeptinmindiswhetherthedatacollectedcanbesearchedwhen added to a database. Strict control must be implemented over experimental conditions and detector settings when analysing standards that will be incorporated into searchable libraries.

170 Created by Neevia Personal Converter trial version http://www.neevia.com

Thesameistruefortheanalysisoftheactualsamplesasdeviationfromthespecifiedconditions andsettingsmighteitherrenderdataunsearchableorresultinpoormatchqualities. ZQconditions : TABLE10.3OptimisedHPLCconditionsfortheseparationofcardiacglycosidesonthe ZQsystem

VARIABLE OPTIMISED Column PhenomenexSynergiFusionC18250x2.1mm(4m) Columntemperature(°C) 40±1 Methanol Mobilephasecomponents H2O(0.1%FormicacidpH2.3)

Initialconditionsof70:30H 2O:MeOH

Gradientto40:60H 2O:MeOHin20minutes(G3)

Gradietto10:90H 2O:MeOHat40minutes(G9) Gradientprofile Isocraticconditionsof10:90H 2O:MeOHfor5minutes Returntoinitialconditionswithin5minutes(G3) Equilibratefor10minutes Mobilephaseflowrate 0.2ml/min Degassing Inline(normalmode) Sampletemperature(°C) 5±1 10.8.3 Chemicalextractionof B. volubilis bulb Freshbulbs werepurchasedfromtheSomsTraditionalHealer’smarketinJohannesburg,cut intoslicesandairdriedatroomtemperaturefor48hours.Thebulbsliceswereblendedtoapulp using an Ika Werk A10 watercooled mill (Janke & Kunkel, Straufen, Germany) and the pulp driedat40 oCtoconstantweight.Powderedpulp(5g)wasplacedintoa50mlpolypropylene screwtopcentrifugesampletube.PBSHClbuffer(pH5)(30ml)wasaddedtothetube,capped andshakenonaHeidolphrotatingsamplemixerforthirtyminutes.OasisHLBSPEcartridges werepreparedbywashingconsecutivelywith6mlofmethanol,waterandtheextractingbuffer used.AftercentrifugationofthecentrifugesampletubeonaHermleZ300centrifugeat4000 rpm for 15 minutes, the aqueous phases were passed through the conditioned Oasis HLB cartridges.Thecartridgeswerewashedwith3mlextractingbufferanddriedundervacuumfor 10minutes.Thecartridgeswerethenelutedwith3mlmethanol,3mlacidicmethanol(10ml

171 Created by Neevia Personal Converter trial version http://www.neevia.com

formicacidperlitermethanol),3mlbasicmethanol(10mlammoniaperlitermethanol)and3ml acetonitrileandtheeluatescombinedintoasinglecollectiontube. TABLE10.4OptimisedESI +MSconditionsforthedetectionofbovosideA(ZQsystem) CONDITION BOVOSIDEA Modeandpolarity ESIpositive Capillaryvoltage(KV) 2.50 Conevoltage(V) 50 Desolvationtemperature(°C) 500 Extractorvoltage(V) 1.0 RFlens(V) 0.1 Sourcetemperature(°C) 120 Conegasflow(L/h) 0 Desolvationgasflow(L/h) 450 IonEnergy 1.1 Multiplier(V) 650 Resolution(LMR&HMR) 15.2 The collection tube was placed into a Zymark Turbovap and evaporated at 40 ○C under a regulated stream of nitrogen gas. The dry residue was reconstituted with 1 ml of a 80:20 methanol:watermixture. 10.8.4 PurificationofbovosideA Aportionofthepowderedbulb(see§10.8.3)(20g)wasextractedwiththeacidicPBSHClbuffer as described above but the aqueous phase was passed through a preparative Oasis HLB cartridge(20ml/1g).TheSPEcartridgewaspreparedbywashingconsecutivelywith20mlof methanol,waterandtheextractingbufferused.Thecartridgewaswashedwith20mlextracting buffer and dried under vacuum for 10 minutes. The cartridge was then eluted with 20 ml methanol,20mlacidicmethanol(10mlformicacidperlitermethanol),20mlbasicmethanol(10 ml ammonia per liter methanol) and 20 ml acetonitrile and the eluates combined into one collectionflaskandevaporatedtodrynessat 40 oC underreducedpressure.Thedryresidue wasreconstitutedusingtheminimumamountofa80:20methanol:watermixture. Bovoside A could be successfully separated from the sample matrix on the Phenomenex SynergiFusioncolumn,butthepreparativefractionationhadtobedoneontheonlyavailable

172 Created by Neevia Personal Converter trial version http://www.neevia.com

preparativecolumn,anXterraMSC18column(300x7.8mm).Theoptimisedconditionsofthe PhenomenexFusioncolumnwastestedontheXterraMSC18analyticalcolumn,butcouldnot resolve bovoside A from the sample matrix. The analytical conditions for the Phenomenex SynergiFusionanalyticalcolumnweretestedonaWatersXterraMSC18analyticalcolumnand adequate separation could not be obtained to fractionate bovoside A. The chromatographic conditionswereadaptedforthepreparativefractionationandpurificationofbovosideAonthe Waters Xterra MS C18 analytical column. The preparative conditions were obtained as described in §8.8.4 and calculated the preparative chromatographic conditions for theWaters XterraMSC18column(300mmx7.8mm,10m).TheUVspectrumofthePDAdetectorwas collected between 200 and 600 nm and a single wavelength at 300 nm was monitored to observeeludingbufadienolides. 10.9 RESULTSANDDISCUSSION 10.9.1 Chromatographyanddetectionofbufadienolides Thechromatographyanddetectionofcardiacglycosides have been discussedin§9.9.1.The chromatography of bufalin, a bufadienolide, was quite acceptable (Figure 10.4) but the ESI positive fragmentation (Figure 9.9) was atypical for cardiac glycosides with the formation of numerousadducts.Themainadductsobservedwere[M+H] +m/z 388,[MH+Na] +m/z 410and [MH+Na+MeOH] +m/z 442(Figure10.5).UnderESInegativeconditionsbufalinproducedonly themethanoladduct[MH+MeOH] m/z 418(Figure9.9). 10.9.2 Chemicalextractionofthe B. volubilis bulb Theextractderivedfromthebulbof B. volubilis wasinjectedintotheZQsystemandanalysed with the previously optimised conditions. The chromatogram was quite complex but after the exclusion of compounds not displaying a bufadienolidetype UV spectrum, the chromatogram becamerelativelysimple(Figure10.6).TheUVspectrumofthemaincompoundwasconsistent with the typical bufadienolidetype UV spectrum (Figure 10.7) and the ESI positive spectrum (Figure10.8)suggestedthatthecompoundmightbebovosideA.Thecompounddidnotform numerous adducts like bufalin, but displayed the typical adducts observed for cardenolides, namely[M+H] +m/z 561and[M+Na] +m/z 583. 10.9.3 PurificationofbovosideA Bovoside A could be successfully separated from the sample matrix on the Phenomenex SynergiFusioncolumn,buttheanalysisontheXterraMSC18analyticalcolumndidnotresolve bovosideAfromthesamplematrix.Thesolventcompositionwasadjustedtoseparatethetarget compound successfully from the sample matrix. The scaleup of this method was done as describedforricininein§8.8.4.Themethodhoweverproducedexcessivebackpressureatthe

173 Created by Neevia Personal Converter trial version http://www.neevia.com

specified flow rate of 2.76 ml/min, and the method was adapted to lower the operating back pressurebyreplacingthemethanolwithacetonitrile.Althoughacetonitrileseverelysuppressed theionisationofcardiacglycosides,itcouldbeincorporatedintotheeluentasthePDAdetector wasusedforthefractionationandnottheZQdetector.TheoptimisedHPLCconditionsforthe fractionationofbovosideAissummarisedinTable10.5.Asaprecautionthetemperatureofthe samplecompartmentwasraisedto40 oCtopreventexcessiveprecipitationofthecrudesample.

Figure10.4 ESI +chromatogramofabufalinstandardontheZQsystem H H O 388 +Na +Na+MeOH 410 442 O

H H OH H O H H Figure10.5 AdductsofbufalinunderESI +conditionsontheZQsystem

174 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure10.6 ESI +chromatogram(selectedmasses)ofthebulbextractof Bowiea volubilis (ZQsystem) Figure10.7

UVspectrumofthecompoundatR t=26.45min(Figure10.6)

175 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure10.8 + ESI spectrumofthecompoundatR t=26.45min(Figure10.6)

ThepurifiedfractionwasinjectedintotheTMDsystemanddisplayedamajorcomponentatR t

30.82minonthePDAdetector(Figure10.9)andatR t31.42minontheTMDdetector(Figure

10.10).TheUVspectrumwasidenticaltothatofthecompounddetectedatR t26.45mininthe crudeextractof B. volubilis (Figure10.7). TABLE10.5OptimisedHPLCconditionsforfractionatingbovosideA

VARIABLE OPTIMISED Column XterraMSC18300x7.8mm(10m) Columntemperature(°C) 40±1 Acetonitrile Mobilephasecomponents H2O(0.1%FormicacidpH2.3)

Initialconditionsof70:30H 2O:ACN

Lineargradientto40:60H 2O:ACNin20minutes(G6)

Gradientto10:90H 2O:ACNat25minutes(G3) Gradientprofile Isocraticconditionsof10:90H 2O:ACNfor2minutes Returntoinitialconditionswithin5minutes(G3) Equilibratefor8minutes Mobilephaseflowrate 2.8ml/min Degassing Inline(normalmode) Sampletemperature(°C) 40±1

176 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure10.9 MaxPlotUVchromatogramofthepurifiedbovosideAfractionontheTMDsystem Figure10.10 EISIMchromatogramofthepurifiedbovosideAfractionontheTMDsystem

177 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure10.11 EIspectrumofthepurifiedbovosideAfractionontheTMDsystem Figure10.12 ESI +chromatogramofthepurifiedbovosideAfractionontheZQdetector. + InsertedtheUVandESI spectraofthepeakatR t=27.71min

178 Created by Neevia Personal Converter trial version http://www.neevia.com

10.9.4 Identificationofunknownplantextracts Theaimofanyscreeningmethodistodistinguishunambiguouslybetweendifferentcomponents withouttheneedtoreanalysethesamplesonanothermethodordetectionsystem.Thisisalso thecasewithascreeningmethodforcardiacglycosides–itmustbeabletodistinguishbetween thedifferentchromatographicprofilesoftheplantextracts,butmustalsobeabletoconfirmthe presenceorabsenceoftheactivecompounds. The crude extracts derived from the leaves of Nerium oleander , Thevetia peruviana and Gomphocarpus fruticosus andthebulbof Bowiea volubilis werediluted1:1andplacedinsample vials marked Sample 1, Sample 2, Sample 3 and Sample 4 without keeping track of which extract was placed into which vial. The samples were analysed with the optimised screening methodutilisingfullscanmodebetween300–1100Da.TheTICchromatogramswereunusable duetohighbackgroundsignalsbuttheBPIchromatogramscouldbecomparedwitheachother (Figure 10.13). The BPI chromatograms were still complex but certain marker peaks were identifiedthatmaybeusedtoidentifytheindividualsamples.Bymonitoringthemassesofthe maincompoundsof N. oleander (oleandrin:599amu), T. peruviana (ThevetinA&B:881&897 amu)and B. volubilis (bovosideA:561&583amu)thesamplescouldbeidentifiedaccordingto theretentiontimeofthecharacteristicpeaksFigure10.14).

Figure10.13 ComparisonoftheESI +BPIchromatogramsoffourplantextracts(ZQsystem)

179 Created by Neevia Personal Converter trial version http://www.neevia.com

Figure10.14 Comparisonofthechromatogramsofthefourplantextractsbymonitoring561,583,599, 881and897amu(ZQsystem) Theidentitieswereconfirmedbyevaluatingthemassspectraofeachcompound.Theidentityof thesampleswasasfollows: Sample4 : Gomphocarpus fruticosus (Identifiedbyaprocessofelimination) Sample3 : Bowiea volubilis (BovosideA:massspectrumcontained561&583amu) Sample2 : Thevetia peruviana (ThevetinA&B:massspectracontained897&881amu) Sample1 : Nerium oleander (Oleandrin:massspectrumcontained599amu) 10.10 FORENSICAPPLICABILITY Thechromatographicmethoddevelopedwascapableofseparating11cardiacglycosidesand allowedmassspectraldetectionofallthecompounds.Underthesechromatographicconditions, stable cationisation was observed for all the compounds, and methanol adducts were formed withthosecardiacglycosidesthathadamethoxyfunctionalgroupontheglycosidemoiety.

180 Created by Neevia Personal Converter trial version http://www.neevia.com

The method was successfully applied to the analysis of the bulb extract of B. volubilis and bovoside A was identified as the main bufadienolide present in the bulb. Bovoside A was fractionatedandpurifiedandthemainpeakobservedintheextracthadanESI +massspectrum thatwasconsistentwiththeempiricalformulareportedinliterature[40]. Four extracts of botanical origin could be successfully distinguished from each other by monitoring the main masses of bovoside A, oleandrin, thevetin A and B. These marker compounds were well separated from each other and made the identification of the botanical extractsquiteeasy,andtheidentityofeachextractwasconfirmedbythemassspectrumofeach peak. This method is ideally suited as a secondary screening method to confirm or rule out the presenceofcardiacglycosidestentativelyidentifiedontheTMDsystem(UVspectrumorNIST library match). In cases where plant material is submitted or the use of cardiac glycoside containingplantsareindicated,theextractionmethodmustbeusedwhereaftertheanalytical methodcanbeappliedasprimaryscreeningmethod. Theonlydisadvantageofthismethodisthelackofcommerciallyavailablereferencestandards of the cardenolides and bufadienolides commonly found in the plants of southern Africa. The additionofaccuratemassdeterminationwilleasetheidentificationprocess,butthepurification andcharacterisationoftheactivecomponentsmightstillbeneededtoidentifynewcompounds unambiguously.

181 Created by Neevia Personal Converter trial version http://www.neevia.com

CONCLUSION

TheForensicChemistryLaboratoryofJohannesburg(FCLJHB)wasestablishedin1926with thesolepurposetosupplyachemicalanalysisservicetothecustomersoftheDepartmentof Health. The scope of analysis covers all the pharmaceutical products, all the agricultural products which include all pesticides, herbicides and fungicides, volatile gases (HCN and CO exposure),bloodalcoholandherbalproducts.Mostofthesecompoundsreceivedafairamount ofattentionastomethoddevelopmentandadaptationofequipmentfortheoptimaldetectionof thecompoundsofinterest,buttheherbalproductswerebadlyneglected.Thereasonsforthis were multiple: standards were not commercially available, there was a lack of accurate information as to plants used, plant parts used, dosage, toxicicity and of suitable analytical equipment. Thissituationexistedformorethan70yearsuntilthepurchaseofthefirstLCMSsystem,the WatersTMD(EI),whichprovedverysuccessfulinidentifyingcompoundsseparatedbyHPLC andevenincludedsomeplantderivedcompoundslikealkaloids,flavonoids,andcarotenoids.In 2001 I initiated this project to do research and method development in the field of poisonous medicinal plants used in muti . The use of LCEIMS and GCEIMS as initial screening tools provedtobe verysuccessfuland werequicklyadoptedastheroutinescreeningtoolsforthe project. However, these systems lacked the specificity and, more importantly, the sensitivity neededtodetect muti componentsinviscera. The introduction of LCESIMS to the analytical arsenal greatly expanded the capabilities not onlytodetectcertaincompoundsbelowthedetectionlimitoftheEIsystems,butalsotoconfirm thesecompoundsbyISCID.Mostofthedevelopedmethodsfunctionedwellinfullscanmode, butifhighersensitivitywasneeded,themethodswereadaptedtoSIMmodebyusingatleast foursignificantions.TheSIMmethodswerespecificallyusefultomonitortheionclustersofthe protonatedmoleculesandtoconfirmthesemoleculesbyalsomonitoringtheionclustersofthe ISCIDproduct(s). Thedevelopedmethodswerequiteuniqueasnopublishedmethodscouldbefoundthatwhere applicable in plant and viscera matrices on single quadrupole LCMS or GCMS systems. No suitable published methods could be found for the compounds of B. disticha, A. coranica, C. laureola, A. precatorius, R. communis, T. peruviana and B. volubilis .Thisresearchresultedin thepublicationofthreearticlesininternationaljournalswhileafourtharticleisunderreview(see AppendixA1). Thisstudyhaselevatedtheanalysisoflethal muti plants(responsibleformostoftherecorded humanfatalitiesinSouthAfrica)toanewlevel.Themethodsdevelopedcoversthemainclasses

182 Created by Neevia Personal Converter trial version http://www.neevia.com

oflethalplantpoisonsaswellasthemostcommonlyavailableandwidelyusedpoisonous muti plants.Theapproachandmethodsofextraction,detectionandanalysisdevelopedduringthis study can be further expanded to cover a wider range of plant species for each of the main classes of compounds (alkaloids, cardiac glycosides and kaurenoid glucosides). In this way, plantrelated forensic analysis in South Africa can become more sophisticated, with a higher successrateintermsofthenumberofcasessolved.

183 Created by Neevia Personal Converter trial version http://www.neevia.com

REFERENCES

1. Laurens, J.B., Bekker, L.C., Steenkamp, V., Stewart, M.J. (2001). Gas chromatographic mass spectrometric confirmation of atractyloside in a patient poisoned with Callilepis laureola. J.Chrom.B.765:127–133.

2. WorldBookMultimediaEncyclopediaStandardEditiononCDROM(1997).

3. Amdur,M.O.,Doull,J.,Klaassen,C.D.(eds)(1991).CasarettandDoull’sToxicology:The BasicScienceofPoisons,FourthEdition,PergamonPress,NewYork.

4. ForensicScience:TheEarlyYears. http//www.troopers.state.ny.us/Forensic_Science/Forensic_Science_History,accessed 18/10/2004.

5. Moffat, A.C., Osselton, M.D. Widdop, B. (eds) (2002). Clarke's Analysis of Drugs and Poisons.PharmaceuticalPress.Electronicversion,(Version1.1).

6. Eckert,W.G.(1997).IntroductiontoForensicSciences.SecondEdition,CRCPressInc.pp 108–113.

7. Moffat, A.C., Osselton, M.D., Widdop, B. (eds) (2002). Clarke's Analysis of Drugs and Poisons.PharmaceuticalPress.Electronicversion,(Version1.1)Chapter5,Figure5.1.

8. VanWyk,BE.,VanHeerden,F.R.,VanOudtshoorn,B.(2002).PoisonousPlantsofSouth Africa.BrizaPublications,Pretoriap.8.

9. Eckert,W.G.(1997).IntroductiontoForensicSciences.CMCPressInc.,pp.42–43.

10. Blythe,S.(1999).AnIntroductiontoMedicinesfromPlants.

http//www.rainforesteducation.com/medicines/PlantMedicines/rfmedicines.htm(accessed 18/10/04)

11. http://conserveafrica.org/medicinal_plants.rtf.(accessed18/10/04).

12. Cunningham, A.B. (1997). An Africawide overview of medicinal plant harvesting, conservation and health care, NonWood Forest Products 11: Medicinal plants for forest conservationandhealthcare.FAO,Rome,Italy.

13. Cunningham,A.B.(1993).AfricanMedicinalPlants:settingprioritiesattheinterface betweenconservationandprimaryhealthcare.Workingpaper1UNESCO,Paris.

14. Millard,D.,Sobiecki,F.(2004).Ethnobotany–Opportunitiesforsustainabledevelopment andcommunityparticipation.http://www.ierm.org.za/library/congress2002/(accessed 18/10/04).

15. VanWyk,BE.,VanOudshoorn,B.,Gericke,N.(1997).MedicinalPlantsofSouthAfrica, BrizaPublications,Pretoria.

184 Created by Neevia Personal Converter trial version http://www.neevia.com

16. Hughson,L.(ed)(1995).Pharmaceutical&CosmeticReview,Jul/Aug.

17. Kaufman,J.(1997).TheabsenceofadultmortalitydataforsubSaharanAfrica:apractical solution.Bull.WorldHealthOrganisation.75:389395.

18. 1995UnitedNationsestimates,&RSAStatsinBrief,Aug1996.

19. Joubert,P.,Mathibe,L.(1989).Acutepoisoningindevelopingcountries.AdverseDrug React.AcutePoisoningRev.8:39.

20. Joubert,P.,Sebata,B.(1982).Theroleofprospectiveepidemiologyintheestablishmentof atoxicologyserviceforadevelopingcommunity.S.Afr.Med.J.62:2329.

21. Venter,C.,Joubert,P.(1988).Aspectsofpoisoningwithtraditionalmedicinesinsouthern Africa.Biomed.Environ.Sci.1:388391.

22. Joubert,P.H.(1990).PoisoningadmissionsofblackSouthAfricans.J.Tox.Clin.Tox.28: 85–94.

23. Foukardis,G.N.,Joubert,P.H.,Fata,M.(1992).Acomputerizedlibrarysearchroutineusing anHPLCdiodearraydetectorforidentificationofpoisoningbytraditionalmedicines.J. Toxicol.Clin.Toxicol.30:149151.

24. Hutchings,A.Terblanche,S.(1989).Observationsontheuseofsomeknownand suspectedtoxicLiliifloraeinZuluandXhosamedicine.S.Afr.Med.J.75:6269.

25. Ellis,C.G.(1986).MedicinalPlantuseAsurvey.VeldandFlora72:72–74.

26. Veale,D.J.H.,Furman,K.I.,Oliver,D.W.(1992).SouthAfricantraditionalherbalmedicine usedduringpregnancyandchildbirth.J.Ethnopharmacol.36:185–191.

27. Pantanowitz,D.(1996).Alternativemedicine:Adoctor’sperspective.S.Afr.Med.J.86(2): 184.

28. Steenkamp, V. (2003). Traditional herbal remedies used by South African women for gynaecologicalcomplaints.J.Ethnopharm.,86:97–108.

29. McVann,A.,Havlik,I.,Joubert,P.,Monteagudo,F.(1992).Cardiacglycosidepoisoning involvedindeathsfromtraditionalmedicines.S.Afr.Med.J.,81:139–141.

30. Stewart,M.J.,Steenkamp,V.,Zuckerman,M.(1998).ThetoxicologyofAfricanherbal medicines.Ther.DrugMonit.20:510516.

31. Tswett, M.S. (1906). Physikalischchemische studien uber das chlorophyll. Die adsorptionen.Ber.Bot.Ges.24:316–332.

32. Lindquist, F. (1963). Methods of Forensic Science Vol II. Interscience Publishers, John Wiley&Sons,London/NewYork,p.129.

185 Created by Neevia Personal Converter trial version http://www.neevia.com

33. Johnson,E.L.,Stevenson,R.(1977).BasicLiquidChromatography.Majorrevisionofthe bookpublishedin1971,Blacksburg,Virginia.

34. Todd, J.F.J. (1991). Ion Trap Massspectrometer – Past, Present, and Future. Mass SpectrometryReviews10,3–52.

35. Stephens,W.E.(1946).Apulsedmassspectrometerwithtimedispersion.Phys.Rev.69: 691.

36. Thomson,J.J.(1911).Someapplicationsofthetheoryofelectricdischargetospectroscopy. Chem.News94:197–199and209212.

37. DeZeeuw,R.A.(2004).Substanceidentification:theweaklinkinanalyticaltoxicology,J. Chromatog.B811:312.

38. Henderson,L.(2001).AlienWeedsandInvasivePlants,PlantProtectionResearchInstitute Handbookno.12,AgriculturalResearchCouncil,Pretoria.

39. Bromilow,C.(2001).ProblemPlantsofSouthAfrica,BrizaPublications,Pretoria,p.83.

40. DictionaryofNaturalProductsonCDROM,version9:2(2000).

41. TheMerckIndexonCDROM,version12:2(1997).

42. Mellick,L.B.,Makowski,T.,Mellick,G.A.,Borger,R.(1999).Neuromuscularblockadeafter ingestionoftreetabacco( Nicotiana glauca ).Ann.Emerg.Med.,34:101104.

43. http://www.inchem.org/documents/pims/plant/nicotab.htm .(accessed27/04/2005)

44. http://www.ivis.org/advances/Beasley/Cpt2G/chapter_frm .(accessed27/4/2005)

45. Watt,J.M.,BreyerBrandwijk,M.G.(1962).TheMedicinalandPoisonousplantsofSouthern andEasternAfrica.SecondEdition,Livingstone,London.

46. http://www.tobacco.org/History/indiantobcalif.html(accessed02/11/2004.

47. http://cochise.uia.net/alistar/tobacco.html.(accessed02/11/2004).

48. Guèye,E.H.F.(1997).Diseasesinvillagechickens:controlthroughethnoveterinary medicine.ILEIANewsletter13:20.

49. VanWyk,BE.,Gericke,N.(2000).People’splants.BrizaPublications,Pretoriapp.170– 171.

50. Ginsburg,J.M.(1935).Comparativetoxicityofanabasineandnicotinesulphatetoinsects, J.Agric.Res.51:349354.

51. Arnold, T.H., Prentice, C.A., Hawker, L.C., Snyman, E.E., Tomalin, M., Crouch, N.R., PottasBircher, C. (2002). Medicinal and magical plants of southern Africa: an annotated checklist,Strelitzia13,NationalBotanicalInstitute,Pretoria,p.130.

186 Created by Neevia Personal Converter trial version http://www.neevia.com

52. Mizrachi, N., Levy, S., Goren, Z. (2000). Fatal poisoning from Nicotiana glauca leaves: identificationofanabasinebygaschromatography/massspectrometryJ.ForensicSci.,45: 736741.

53. Sims,D.N.,James,R.,Christensen,T.(1999).Anotherdeathduetoingestionof Nicotiana glauca .J.ForensicSci.44:447–449.

54. Castorena, J.L., Garriot,J.C., Barnhardt, F.E., Shaw, R.F. (1987). A fatal poisoning from Nicotiana glauca ,J.Toxicol.Clin.25:429–435.

55. Manoguerra, A.S., Freeman, D. (1982). Acute poisoning from the ingestion of Nicotiana glauca ,J.Toxicol.Clin.Toxicol.19:861–864.

56. Waters Oasis Extraction cartridges Instruction sheet 11/96 Rev. 1,Waters Corporation, Milford,USA.

57. MerckapplicationsdatabaseonCDROM,MerckKgaADarmstadtGermany(1997).

58. Ciolino,L.A.,Turner,J.A.,McCauly,H.A.,Smallwood,A.W.,Yi,T.Y.(1999).Optimization study for the reversedphase ionpair liquid chromatographic determination of nicotine in commercialtobacco,J.Chromatogr.A852:451463.

59. Munday, J. (1988). Poisonous Plants in South African Gardens and Parks, Delta Books, Craighall,RSA,p.118.

60. http://michaelsilveus.com/Herbs/NicotianaGlauca.html .(accessed10/11/2004)

61. http://www.ces.ncsu.edu/depts/hort/consumer/poison/Nicotgl.htm.cc (accessed10/11/2004)

62. Henderson,L.(1995).PlantInvadersofSouthernAfrica.AgriculturalResearchCouncil, Pretoriap.16. 63. VanWyk,BE.,VanOudtshoorn,B.,Gericke,N.(1997).MedicinalPlantsofSouthAfrica. BrizaPublications,Pretoriapp.102–103.

64. VanWyk,BE.,VanHeerden,F.R.,VanOudtshoorn,B.(2002).PoisonousPlantsofSouth Africa.BrizaPublications,Pretoriapp.86–87.

65. Bruneton,J.(1999).ToxicPlantsDangeroustoHumansandAnimals,Intercept,Hamphire UKp.465.

66. Miraldi, E., Masti, A., Ferri, S., Comparini, I.B. (2001). Distribution of hyoscyamine and scopolaminein Datura stramonium .Fitoterapia72:644–648.

67. VanWyk,BE.,Gericke,N.(2000).People’sPlants,BrizaPublications,Pretoria,p.162.

68. TheMerckIndexonCDROM,Version12:2(1997).

69. DictionaryofNaturalProducts,CRCPress,CDROM,Version11.2(2003).

187 Created by Neevia Personal Converter trial version http://www.neevia.com

70. Vivale, A.A., Acher, A.,Pomilio, A.B. (1995). Alkaloids of Datura ferox from Argentina. J. Ethnopharmacol.49:81–89.

71. Arnold, T.H., Prentice, C.A., Hawker, L.C., Snyman, E.E., Tomalin, M., Crouch, N.R., PottasBircher, C. (2002). Medicinal and magical plants of southern Africa: an annotated checklist.Strelitzia13,NationalBotanicalInstitute,Pretoriap.129.

72. http://www.onlinebangalore.com/tips/datura.html.(accessed17/11/2004).

73. http://www.cdc.gov/mmwr/preview/mmwrhtml/00000342.htm.(accessed18/11/2004).

74. Smith,E.A.,Meloan,C.E.,Pickell,J.A.,Oehme,F.W.(1991).Scopolaminepoisoningfrom homemade“moonflower”wine.J.Anal.Toxicol.15:216–219. 75. Boyd,R.,Nichol,N.,Wyatt,J.P.,Little,K.(1997).AtropinepoisoningafterdrinkingIndian tonicwater.Eur.J.Emerg.Med.4:172–173. 76. Rwiza,H.T.(1991).Jimsonweedfoodpoisoning.Trop.Geogr.Med.43:85–90. 77. Awang,D.W.,Kindack,D.G.(1989).Atropineaspossiblecontaminantofcomfreytea. Lancet334:44. 78. Lamens,D.,DeHert,S.,Vermeyen,K.(1994).Teaofthornappleleaves.ActaAnaesth. Belg.45:5557. 79. Ramirez,M.,Rivera,E.,Ereu,C.(1999).Fifteencasesofatropinepoisoningafterhoney ingestion.Vet.HumanToxicol.41:19–20. 80. Onen,C.L.,Othol,D.,Mbwana,S.K.,Manuel,I.L.(2003). Datura stramonium mass poisoninginBotswana.S.Afr.Med.J.92:213214. 81. Urich,R.W.,Bowerman,D.L.,Lavisky,J.A.,Pflug,J.L.(1982). Datura stramonium :afatal poisoning.J.ForensicSci.27:948–954. 82. Steenkamp,P.A.,Harding,N.M.,VanHeerden,F.R.,VanWyk,BE.(2004).Fatal Datura poisoning: Identification of atropine and scopolamine by high performance liquid chromatography/photodiodearray/massspectrometry,For.Sci.Int.145:31–39.

83. Guharoy,S.R.,Barajas,M.(1991).Atropineintoxicationaftertheingestionandsmoking ofjimsonweed.Vet.HumanToxicol.33:588–589. 84. Groszek,B.,Gawlikowski,T.,Szkolnicka,B.(2000).Selfpoisoningwith Datura stramonium .PrzegladLekarski57:577–579. 85. VanWyk,BE.,VanHeerden,F.R.,VanOudtshoorn,B.(2002).PoisonousPlantsofSouth Africa.BrizaPublications,Pretoriapp.86–87.

86. Munday, J. (1988). Poisonous Plants in South African Gardens and Parks. Delta Books, Craighallp.34.

87. Candy,H.A.,Pegel,K.H.,Brookes,B.,Rodwell,M.(1977).Theoccurrenceofatractyloside in Callilepis laureola .16:13081309.

188 Created by Neevia Personal Converter trial version http://www.neevia.com

88. Brookes,K.B.,Candy,H.A.,Pegel,K.H.(1983).Atractylosidein Callilepis laureola .S.Afr.J. Chem.36:6568.

89. Piozzi,F.,Quilico,A.,Mondelli,R.,Ajello,T.,Sprio,V.,Melera,A.(1966).Thestructureand ofatractyloside.Tetrahedron22Suppl.8:515529.

90. Bruneton,J.(1999).ToxicPlantsDangeroustoHumansandAnimals.Intercept,Hamphire UKpp.172175.

91. Obatomi,D.K.,Bach,P.H.(1998).andtoxicologyofthediterpenoidglycoside atractyloside.FoodChem.Toxicol.36:335346.

92. Stewart, M.J., Steenkamp, V. (2000). The biochemistry and toxicity of atractyloside: a review.Ther.DrugMonit.22:641649.

93. BudavariS.(Ed.)(1996).TheMerckIndex.12 th Edition.Merck,WhitehouseStationNJ902.

94. Klingenberg,M.(1979).TheADP,ATPshuttleofthemitochondrion.TrendsBiochem.Sci. 4:249252.

95. Hatch, R.C., Jain, A.V., Weiss, R., Clark, J.D. (1982). Toxicologic study of carboxyatractyloside(activeprincipleincockleburXanthium strumarium )inratstreatedwith enzymeinducersandinhibitorsandglutathioneprecursoranddepletor.Am.J.VetRes.,43: 111–116.

96. Watt,J.M.,BreyerBrandwijk,M.G.(1962).TheMedicinalandPoisonousPlantsofSouthern andEasternAfrica.2 nd Edition,Livingstone,Londonp.208.

97. Bye, S.N., Dutton, M.F. (1991). The inappropriate use of traditional medicines in South Africa.J.Ethnopharm.,34:253–259.

98. Hutchings,A.,Scott,A.H.,Lewis,G.,Cunningham,A.B.(1996).ZuluMedicinalPlants–an Inventory.UniversityofNatalPress,Pietermaritzburgp.321. 99. Ngwena,M.A.,Koopman,A.,Williams,R.(2003).ZuluBotanicalKnowledge:an introduction.NationalBotanicalInstitute,Durbanp.24. 100. Arnold, T.H., Prentice, C.A., Hawker, L.C., Snyman, E.E., Tomalin, M., Crouch, N.R., PottasBircher, C. (2002). Medicinal and magical plants of southern Africa: an annotated checklist.Strelitzia13,NationalBotanicalInstitute,Pretoriap.28.

101. Bruneton,J.(1999).ToxicPlantsDangeroustoHumansandAnimals.Intercept,Hamphire UKpp.172–172.

102. Wainwright,J.,Schonland,M.M.,Candy,H.A.(1977).Toxicityof Callilepis laureola .S.Afr. Med.J.52:313315.

189 Created by Neevia Personal Converter trial version http://www.neevia.com

103. Watson, A.R., Coovadia, H.M., Bhoola, K.D. (1979). The clinical syndrome of Impila (Callilepis laureola )poisoninginchildren.S.Afr.Med.J.56:290.292

104. Munday, J. (1988). Poisonous Plants in South African Gardens and Parks. Delta Books, Craighallp.34.

105. Steenkamp,V.,Stewart,M.J.,Zuckerman,M.(1999).DetectionofpoisoningbyImpila (Callilepis laureola )inamotherandchild.HumanExp.Toxicol.18:594597. 106. Popat,A.,Shear,N.H.,Malkiewicz,I.,Stewart,M.J.,Steenkamp,V.,Thomson,S., Neuman,M.G.(2001).Thetoxicityof Callilepis laureola ,aSouthAfricantraditionalherbal medicine.Clin.Biochem.34:229236. 107. Archer, R.H., Snijman, D.A., Brummitt, R.K. 2001. Proposal to conserve the name BoophoneHerbertwiththatspelling(Amaryllidaceae).Taxon50:569–571.

108. VanWyk,BE.,VanHeerden,F.R.,VanOudtshoorn,B.(2002).PoisonousPlantsofSouth Africa.BrizaPublications,Pretoriapp.52–53.

109. VanWyk,BE.,VanOudtshoorn,B.,Gericke,N.(1997).MedicinalPlantsofSouthAfrica, BrizaPublications,Pretoriapp.60–61.

110. DictionaryofNaturalProductsonCDROM,version11:2(2003).

111. VanWyk,BE.,Gericke,N.(2000).People’sPlants.BrizaPublications,Pretoriapp.156.

112. Schapera,I.(1925).Bushmenarrowpoisons,BantuStud.2:190–214.

113. Binneman,J.(1999).MummifiedhumanremainsfromtheKougamountains,EasternCape. TheDiggingStick(NewsletteroftheArcheologicalSocietyofSouthAfrica)16:12.

114. Rood,B.(1994).UitdieVeldapteek,Tafelberg,CapeTown.

115. Grierson, D.S., Afolayan, A.J. (1999). An ethnobotanical study of the plants used for the treatmentofwoundsintheEasternCape,SouthAfrica.J.Ethnopharm.67:327–332.

116. DeSmet,P.A.G.M.(1996).SomeethnopharmacologicalnotesonAfricanhallucinogens.J. Ethnopharm.50:141–146.

117. Botha, E.W., Kahler, C.P., Du Plooy, W.J., Du Plooy, S.H., Mathibe, L. (2004). Effect of Boophone disticha onhumanneutrophils.J.Ethnopharm.96:385388.

118. Neuwinger, H.D. (2000). African Traditional Medicine – A Dictionary of Plant Use and Applications.MedpharmScientificPublishers,Stuttgartp.73.

119. Hutchings,A.,Scott,A.H.,Lewis,G.,Cunningham,A.(1996).ZuluMedicinalPlantsAn Inventory.UniversityofNatalPress,Pietermaritzburgpp.49–50.

190 Created by Neevia Personal Converter trial version http://www.neevia.com

120. Arnold, T.H., Prentice, C.A., Hawker, L.C., Snyman, E.E., Tomalin, M., Crouch, N.R., PottasBircher, C. (2002). Medicinal and magical plants of southern Africa: an annotated checklist.Strelitzia13,NationalBotanicalInstitute,Pretoriap.12.

121. Laing,R.O.(1979).Threecasesofpoisoningby Boophane disticha .CentralAfricanJ.Med. 25:265266.

122. DuPlooy,W.J.,Swart,L.,VanHuysteen,G.W.(2001).Poisoningwith Boophane disticha :a forensiccase.HumanExp.Toxicol.20:277278.

123. Crain, W.O., Wildman, W.C., Roberts, J.D. (1971). Nuclear magnetic resonance spectroscopy.Carbon13spectraofnicotine,andsomeAmarylidaceaealkaloids.J. Am.Chem.Soc.93 :990994. 124 . Sandagar, M., Nielsen, N.D., Stafford, G.I., Van Staden, J., Jäger, A.K.(2005). Alkaloids from Boophane disticha withaffinitytotheserotonintransportinratbrain.J.Ethnopharm. 98:367370. 125. Pham, L.H., Döpke, W., Wagner, J., Mügge, C. (1998). Alkaloids from Crinum amabile . Phytochemistry 48 :371376. 126. Vildamat,F.,Codina,C.,Bastida,J.,Mathee,S.,Campbell,W.E.(1995).Furtheralkaloids from josephinae .Phytochemistry40:961965.

127. Hauth, H., Stauffacher, D. (1961). Die Alkaloide von Buphane disticha (L. f.) Herb. Helv. Chim.Acta.44:491502.

128. Verdcourt,B.(1970).Areappraisalofthespeciesofthegenus Abrus Adans.KewBull.24: 235–253.

129. Verdcourt,B.(1971).Leguminosae,Papilionoideae.FloraofTropicalEastAfrica3:113– 118.

130. VanWyk,BE.,VanHeerden,F.R.,VanOudtshoorn,B.(2002).PoisonousPlantsofSouth Africa.BrizaPublications,Pretoriapp.30–31.

131. http://www.inchem.org/documents/pims/plant/abruspre.htm.(accessed21/11/2004).

132. http://www.tropilab.com/paternosterbean.html.(accessed21/11/2004).

133.Hutchings, A., Scott, A.H., Lewis, G., Cunningham, A. (1996). Zulu Medicinal Plants An Inventory.UniversityofNatalPress,Pietermaritzburgp.142.

134. Bruneton,J.(1999).ToxicPlantsDangeroustoHumansandAnimals.Intercept,Hamphire UKp.172.

135. Ghosal, S., Dutta, S.K. (1971). Alkaloids of Abrus precatorius . Phytochemistry 10: 195 – 198.

191 Created by Neevia Personal Converter trial version http://www.neevia.com

136. http://inchem.org/documents/pims/plant/abruspre.htm.(accessed27/11/2004).

137. Neuwinger, H.D. (2000). African Traditional Medicine – A Dictionary of Plant Use and Applications.MedpharmScientificPublishers,Stuttgartp.2.

138. Hutchings,A.,Scott,A.H.,Lewis,G.,Cunningham,A.(1996).ZuluMedicinalPlantsAn Inventory.UniversityofNatalPress,Pietermaritzburgpp.142–143.

139. Arnold, T.H., Prentice, C.A., Hawker, L.C., Snyman, E.E., Tomalin, M., Crouch, N.R., PottasBircher, C. (2002). Medicinal and magical plants of southern Africa: an annotated checklist.Strelitzia13,NationalBotanicalInstitute,Pretoriap.65.

140. Henderson,M.,Henderson,J.G.(1966).CommonweedsinSouthAfrica.Memoirsofthe BotanicalSurveyofSouthAfrica.Dept.Agr.Techn.Serv.,Pretoriap.37.

141. Bruneton,J.(1999).ToxicPlantsDangeroustoHumansandAnimals.Intercept,Hamphire UKpp.271272.

142. Munday, J. (1988). Poisonous Plants in South Africa Gardens and Parks, a field guide. DeltaBooks,Craighallp.75.

143. Bromilow,C.(1996).ProbleemplantevanSuidAfrika.Briza,Pretoriap.190.

144. http://www.inchem.org/documents/pims/plant/ricinus.htm.(accessed23/11/2004)

145. VanWyk,BE.,VanHeerden,F.R.,VanOudtshoorn,B.(2002).PoisonousPlantsofSouth Africa.BrizaPublications,Pretoriapp.180–181.

146. VanWyk,BE.,Gericke,N.(2000).People’sPlants.BrizaPublications,Pretoriap.22.

147. Hutchings,A.,Scott,A.H.,Lewis,G.,Cunningham,A.(1996).ZuluMedicinalPlantsAn Inventory.UniversityofNatalPress,Pietermaritzburgpp.196–170.

148. Arnold, T.H., Prentice, C.A., Hawker, L.C., Snyman, E.E., Tomalin, M., Crouch, N.R., PottasBircher, C. (2002). Medicinal and magical plants of southern Africa: an annotated checklist.Strelitzia13,NationalBotanicalInstitute,Pretoriap.65.

149. http://www.emedicine.com/emerg/topic889.htm.(accesses18/10/2004).

150. Waller,G.R.,Ryhage,R.(1966).Massspectrometryofbiochemicallylabeledricinine.Anal. Biochem.16:277–286.

151. NIST/EPA/NIH MASS SPECTRAL LIBRARY (NIST 98), Version 2.0, NIST Standard ReferenceDatabase1AonCDROM.

152. VanWyk,BE.,VanHeerden,F.R.,VanOudtshoorn,B.(2002).PoisonousPlantsofSouth Africa.BrizaPublications,Pretoriapp.156–157.

192 Created by Neevia Personal Converter trial version http://www.neevia.com

153. Bruneton,J.(1999).ToxicPlantsDangeroustoHumansandAnimals.Intercept,Hamphire UKpp.125130.

154. VanWyk,BE.,VanHeerden,F.R.,VanOudtshoorn,B.(2002).PoisonousPlantsofSouth Africa.BrizaPublications,Pretoriapp.156–157.

155. Henderson, L. (2001). Alien Weeds and Invasive Plants. Plant Protection Research Institute,Handbookno.12,ARC,Pretoria.

156. Langford,S.D.,Boor,P.J.(1996).Oleandertoxicity:anexaminationofhumanandanimal exposures.Toxicology109:1–13.

157. Neuwinger, H.D. (2000). African Traditional Medicine – A Dictionary of Plant Use and Applications.MedpharmScientificPublishers,Stuttgartp.353.

158. Wang, X., Plomley, J.B., Newman, R., Cisneros, A. (2000). LC/MS/MS Analysis of an oleanderextractforcancertreatment.Anal.Chem.72:3547–3552.

159. Neuwinger, H.D. (2000). African Traditional Medicine – A Dictionary of Plant Use and Applications.MedpharmScientificPublishers,Stuttgartp.523.

160. Singh, D., Singh, A. (2002). Piscicidal effect of some common plants of India commonly usedinfreshwaterbodiesagainsttargetanimals.Chemosphere49:45–49.

161. Shaw,D.,Pearn,J.(1979).Oleanderpoisoning.Med.J.Aust.2:267–269.

162. Litovitz,T.L.,Schmitz,B.F.,Holm,K.C.(1988)AnnualreportoftheAmericanAssociationof PoisoncontrolCentersNational/dataCollectionSystem.Am.J.Emerg.Med.7:495–545.

163. Haynes, B.E., Bessen, H.A., Wightman, W.D. (1985). Oleander tea: herbal draught of death.Ann.Emerg.Med.14:350–353.

164. Lim,D.C.(1999).Asuicideattemptwithanoleandercocktail.Chest116:405S–406S.

165. http://www.inchem.org/documents/pims/plant/thevetia.htm.(accessed03/12/2004).

166. Saravanapavanthan,N.,Ganeshamoorthy,J.(1988).Yellowoleanderpoisoning–astudy of170cases.ForensicSci.Int.36:247–250.

167. Eddleston,M.,Ariaratnam,C.A.,Sjöström,L.,Jayalath,S.(2000).Accuteyellowoleander (Thevetia peruviana ) poisoning: cardiac arrhythmias, electrolyte disturbances, and serum cardiacglycosideconcentrationsonpresentationtohospital.Heart83:301–306.

168. VanWyk,BE.,VanHeerden,F.R.,VanOudtshoorn,B.(2002).PoisonousPlantsofSouth Africa.BrizaPublications,Pretoriap.28.

193 Created by Neevia Personal Converter trial version http://www.neevia.com

169. Guan, F., Ishii, A., Seno, H., WatanabeSuzuki, K., Kumazawa, T., Suzuki, O. (1999). Identification and quantification of cardiac glycosides in blood and urine samples by HPLC/MS/MS.Anal.Chem.71:4034–4043.

170. Wang, X., Plomley, J.B., Newman, R.A., Cisneros, A. (2000). LC/MS/MS Analysis of an oleanderextractforcancertreatment.Anal.Chem.72:3547–3552.

171. VanWyk,BE.,VanHeerden,F.R.,VanOudtshoorn,B.(2002).PoisonousPlantsofSouth Africa.BrizaPublications,Pretoriapp.54–55.

172. FamilyPracticeNotebook:Atrioventricularblock.http://www.fpnotebook.com/CV11.htm (accessed10/04/2005)

173. Heartblock,firstdegree.http//www.emedicine.com.emerg/topic233.htm(accessedon 10/04/2005)

174. Hutchings,A.,VanStaden,J.(1994).Plantsusedforstressrelatedailmentsintraditional Zulu,XhosaandSothomedicine.PartI:Plantsusedforheadaches.J.Ethnopharmacol.43: 89–124.

175. VanWyk,BE.,Gericke,N.(2000).People’sPlants.BrizaPublications,Pretoriap.22.

176. Hutchings,A.,Scott,A.H.,Lewis,G.,Cunningham,A.(1996).ZuluMedicinalPlantsAn Inventory,UniversityofNatalPress,Pietermaritzburgpp.29–30.

177. Arnold, T.H., Prentice, C.A., Hawker, L.C., Snyman, E.E., Tomalin, M., Crouch, N.R., PottasBircher, C. (2002). Medicinal and magical plants of southern Africa: an annotated checklist.Strelitzia13,NationalBotanicalInstitute,Pretoriap.83.

178. Hannweg,K.,Watt,M.P.,Berjak,P.(1996).Asimplemethodforthemicropropagationof Bowiea volubilis frominflorescenceexplants.Bot.Bull.Acad.Sin.37:213–218.

179. Steyn, D.G. (1934). The Toxicity of Plants in South Africa. Central News Agency, South Africa.

180. Steyn,D.G.(1949).DieVergiftigingvanMensenDier.VanSchaik,Pretoria.

181. Verdcourt, B., Trump, E.C. (1969). Common Poisonous Plants of East Africa. Collins, London.

182. Kellerman,T.S.,Coetzer,J.A.W.,Naudé,T.W.(1988).PlantpoisoningandMycotoxicoses ofLivestockinSouthAfrica.OxfordUniversityPress,CapeTownpp.99–105.

183. VanWyk,BE.,VanHeerden,F.R.,VanOudtshoorn,B.(2002).PoisonousPlantsofSouth Africa.BrizaPublications,Pretoriap.54.

184. Mckenzie,R.A.,Franke,F.P.,Dunster,P.J.(1987).Thetoxicitytocattleandbufadienolide contentofsix Bryophyllum species.Aust.Vet.J.,64,289–301.

194 Created by Neevia Personal Converter trial version http://www.neevia.com

185. Kellerman,T.S.,Naudé,T.W.,Fourie,N.(1996).Thedistributiondiagnosisandestimated economicimpactofplantpoisoningsandmycotoxicosesinSouthAfrica.OnderstepoortJ. Vet.Res.,63,65–90andreferencescitedtherein.

186. Tracqui,A.,Kintz,P.,Branche,F.,Ludes,B.(1998).Confirmationofoleanderpoisoningby HPLC/MS.Int.J.Leg.Med.111:3234.

187. Wang, X., Plomley, J.B., Newman, R.A., Cisneros, A. (2000). LC/MS/MS Analysis of an OleanderExtractforCancerTreatment.Anal.Chem.72:3547–3552.

195 Created by Neevia Personal Converter trial version http://www.neevia.com