Use of Diuretics in Cardiovascular Diseases: (1) Heart Failure S U Shah, S Anjum, W a Littler
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DIURETICS Diuretics Are Drugs That Promote the Output of Urine Excreted by the Kidneys
DIURETICS Diuretics are drugs that promote the output of urine excreted by the Kidneys. The primary action of most diuretics is the direct inhibition of Na+ transport at one or more of the four major anatomical sites along the nephron, where Na+ reabsorption takes place. The increased excretion of water and electrolytes by the kidneys is dependent on three different processes viz., glomerular filtration, tubular reabsorption (active and passive) and tubular secretion. Diuretics are very effective in the treatment of Cardiac oedema, specifically the one related with congestive heart failure. They are employed extensively in various types of disorders, for example, nephritic syndrome, diabetes insipidus, nutritional oedema, cirrhosis of the liver, hypertension, oedema of pregnancy and also to lower intraocular and cerebrospinal fluid pressure. Therapeutic Uses of Diuretics i) Congestive Heart Failure: The choice of the diuretic would depend on the severity of the disorder. In an emergency like acute pulmonary oedema, intravenous Furosemide or Sodium ethacrynate may be given. In less severe cases. Hydrochlorothiazide or Chlorthalidone may be used. Potassium-sparing diuretics like Spironolactone or Triamterene may be added to thiazide therapy. ii) Essential hypertension: The thiazides usually sever as primary antihypertensive agents. They may be used as sole agents in patients with mild hypertension or combined with other antihypertensives in more severe cases. iii) Hepatic cirrhosis: Potassium-sparing diuretics like Spironolactone may be employed. If Spironolactone alone fails, then a thiazide diuretic can be added cautiously. Furosemide or Ethacrymnic acid may have to be used if the oedema is regractory, together with spironolactone to lessen potassium loss. Serum potassium levels should be monitored periodically. -
Extracts from PRAC Recommendations on Signals Adopted at the 9-12 March 2020 PRAC
6 April 20201 EMA/PRAC/111218/2020 Corr2,3 Pharmacovigilance Risk Assessment Committee (PRAC) New product information wording – Extracts from PRAC recommendations on signals Adopted at the 9-12 March 2020 PRAC The product information wording in this document is extracted from the document entitled ‘PRAC recommendations on signals’ which contains the whole text of the PRAC recommendations for product information update, as well as some general guidance on the handling of signals. It can be found here (in English only). New text to be added to the product information is underlined. Current text to be deleted is struck through. 1. Immune check point inhibitors: atezolizumab; cemiplimab; durvalumab – Tuberculosis (EPITT no 19464) IMFINZI (durvalumab) Summary of product characteristics 4.4. Special warnings and precautions for use Immune-mediated pneumonitis [..] Patients with sSuspected pneumonitis should be evaluated confirmed with radiographic imaging and other infectious and disease-related aetiologies excluded, and managed as recommended in section 4.2. LIBTAYO (cemiplimab) Summary of product characteristics 1 Expected publication date. The actual publication date can be checked on the webpage dedicated to PRAC recommendations on safety signals. 2 A footnote was deleted on 8 April 2020 for the signal on thiazide and thiazide-like diuretics (see page 3). 3 A minor edit was implemented in the product information of the signal on thiazide and thiazide-like diuretics on 5 June 2020 (see page 4). Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. -
Effect of Exogenous Glucocorticoid on Osmotically Stimulated Antidiuretic
European Journal of Endocrinology (2006) 155 845–848 ISSN 0804-4643 CLINICAL STUDY Effect of exogenous glucocorticoid on osmotically stimulated antidiuretic hormone secretion and on water reabsorption in man Volker Ba¨hr1, Norma Franzen1, Wolfgang Oelkers2, Andreas F H Pfeiffer1 and Sven Diederich1,2 1Department of Endocrinology, Diabetes and Nutrition, Charite-Universitatsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany and 2Endokrinologikum Berlin, Centre for Endocrine and Metabolic Diseases, Berlin, Germany (Correspondence should be addressed to V Ba¨hr; Email: [email protected]) Abstract Objective: Glucocorticoids exert tonic suppression of antidiuretic hormone (ADH) secretion. Hypocortisolism in secondary adrenocortical insufficiency can result in a clinical picture similar to the syndrome of inappropriate ADH secretion. On the other hand, in vitro and in vivo results provide evidence for ADH suppression in states of hypercortisolism. To test the hypothesis that ADH suppression is of relevance during glucocorticoid therapy, we investigated the influence of prednisolone on the osmotic stimulation of ADH. Design and methods: Seven healthy men were subjected to water deprivation tests with the measurement of plasma ADH (pADH) and osmolality (posmol) before and after glucocorticoid treatment (5 days 30 mg prednisolone per day). Results: Before glucocorticoid treatment, the volunteers showed a normal test with an adequate increase of pADH (basal 0.54G0.2 to 1.9G0.72 pg/ml (meanGS.D.)) in relation to posmol(basal 283.3G8.5 to 293.7G6 mosmol/kg). After prednisolone intake, pADH was attenuated (!0.4 pg/ml) in spite of an increase of posmol from 289.3G3.6 to 297.0G5.5 mosmol/kg. -
Isocratic HPLC Method for Simultaneous Determination of Amlodipine and Xipamide in Human Plasma
vv ISSN: 2689-7628 DOI: https://dx.doi.org/10.17352/ojabc CHEMISTRY GROUP Received: 06 April, 2020 Research Article Accepted: 05 May, 2020 Published: 06 May, 2020 *Corresponding author: Mahmoud M Sebaiy, Isocratic HPLC Method for Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt, Tel: 01062780060; Fаx: 0552303266; Simultaneous Determination E-mail: Keywords: HPLC; Amlodipine; Xipamide; Human of Amlodipine and Xipamide in plasma; Pharmacokinetic https://www.peertechz.com Human Plasma Mahmoud M Sebaiy1*, Hisham E Abdellatef2, Mohamed A Elmosallamy3 and Mustafa Kh Alshuwaili3,4 1Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt 2Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt 3Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt 4Ministry of Education, Iraq Abstract An HPLC method had been developed and validated for rapid simultaneous separation and determination of the two antihypertensive drugs, amlodipine and xipamide in human plasma within 5 minutes. Drugs are extracted from plasma using methanol, the environmentally benign solvent, for protein precipitation technique. Separation ® was carried out on a Thermo Scientifi c BDS Hypersil C8 column (5μm, 2.50x4.60 mm) using a mobile phase of methanol: 0.025M KH2PO4 (70: 30, v/v) adjusted to pH 3.49 with ortho - phosphoric acid at ambient temperature. The fl ow rate was 1 ml/min and maximum absorption was measured using DAD detector at 235nm. The retention times of amlodipine and xipamide were recorded to be 4.51 and 3.38 minutes, respectively, indicating a shorter analysis time. Limits of detection were reported to be 0.17 and 0.25 μg/ml for amlodipine and xipamide, respectively, showing a high degree of the method sensitivity. -
Nephropharmacology for the Clinician
Nephropharmacology for the Clinician Clinical Pharmacology in Diuretic Use David H. Ellison CJASN 14: 1248–1257, 2019. doi: https://doi.org/10.2215/CJN.09630818 Diuretics are among the most commonly prescribed Gastrointestinal Absorption of Diuretics drugs and, although effective, they are often used to The normal metabolism of loop diuretics is shown in treat patients at substantial risk for complications, Figure 2A. Furosemide, bumetanide, and torsemide are Departments of making it especially important to understand and absorbed relatively quickly after oral administration Medicine and appreciate their pharmacokinetics and pharmacody- (see Figure 2B), reaching peak concentrations within Physiology and – Pharmacology, namics (see recent review by Keller and Hann [1]). 0.5 2 hours (3,4); when administered intravenously, Oregon Health & Although the available diuretic drugs possess distinc- their effects are nearly instantaneous. The oral bioavail- Science University, tive pharmacokinetic and pharmacodynamic proper- ability of bumetanide and torsemide typically exceeds Portland, Oregon; and ties that affect both response and potential for adverse 80%, whereas that of furosemide is substantially lower, Renal Section, at approximately 50% (see Table 2) (5). Although the t Veterans Affairs effects, many clinicians use them in a stereotyped 1/2 Portland Health Care manner, reducing effectiveness and potentially in- of furosemide is short, its duration of action is longer System, Portland, creasing side effects (common diuretic side effects are when administered orally, as its gastrointestinal Oregon t listed in Table 1). Diuretics have many uses, but this absorption may be slower than its elimination 1/2. review will focus on diuretics to treat extracellular This is a phenomenon called “absorption-limited Correspondence: fluid (ECF) volume expansion and edema; the reader is kinetics” (3) and may explain the mnemonic that Dr. -
Estonian Statistics on Medicines 2016 1/41
Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole -
Part 3 Hypertension Series
Clinical Pharmacology & Toxicology Pearl of the Week ~Part 3 - Hypertension Series: Thiazide and Thiazide-like Diuretics~ Thiazide and thiazide-like diuretics are a class of diuretics that predominantly operate at the distal convoluted tubule (DCT) - Thiazide diuretics: hydrochlorothiazide - Thiazide-like diuretics: chlorthalidone, metolazone, indapamide Indications: - Treatment of hypertension - Off-label: Edema, calcium nephrolithiasis, nephrogenic diabetes insipidus, augmented effect of loop diuretics (Lasix + metolazone) Mechanisms of action: Renin release is mediated by: Baro-receptors in afferent arteriole, Beta- 1 stimulation, and the macula densa (Senses distal convoluted tubule sodium-chloride concentration) Thiazide-induced inhibition of the sodium-chloride co-transporter (NaCC) in the distal convoluted tubule natriuresis and mild diuresis Mild diuresis and drop in the extra-cellular fluid volume (200-300cc) Typically offset by increase in Renin (RAAS) system Natriuresis: increases the slope of the pressure-natriuresis curve (see right) Impaired absorption of sodium and chloride due to thiazide higher sodium-chloride concentrations in distal convoluted tubule sensed by macula densa decreased renin-signal vasodilation + sustained natriuresis drop in blood pressure Promotes calcium reabsorption (increased calcium movement though the TRPV5 calcium channel in DCT) Other mechanisms (proposed): o Direct vessel vaso-dilation (inhibiting epithelial ATP, or potassium channels) o Weak carbonic anhydrase activity (promotes diuresis) How -
Heart Failure — Managing Newly Diagnosed and Decompensated
Clinical Guideline Heart failure: Managing newly diagnosed and decompensated patients admitted to hospital 1. Confirmation of Diagnosis Person with signs and symptoms suggesting heart failure Detailed history and clinical examination Consider aetiology for new diagnosis of heart Suspected diagnosis Confirmed failure or underlying cause for exacerbation of of heart failure diagnosis of heart chronic heart failure and exclude treatable Diagnosis has not failure causes. been confirmed by Diagnosis confirmed Arrange other investigations: echocardiogram by previous . CXR echocardiogram . ECG . FBC . U&Es and Creatinine . LFTs . TFTs . RBG . Cholesterol If current echocardiogram not Diagnosis confirmed by clinically relevant, echocardiogram, if possible Heart failure excluded so request repeat performed as an in-patient review diagnosis echo, if possible and adhering to Advancing performed as an in- Quality heart failure (AQHF) patient indicators Heart failure with preserved ejection Heart failure due to significant left ventricular fraction / diastolic dysfunction (EF systolic dysfunction (EF < 40%) >55%) • Update primary diagnosis on PCIS / -Update primary diagnosis on PCIS Cerner and document in casenotes /Cerner and document in casenotes. Proceed to Management of Confirmed Heart Failure Heart failure — managing newly diagnosed and decompensated patients in acute care — clinical guidelines, v1 Principal author: Dr P Saravanan Approved by Medicines Clinical Guideline Team: July 2013 Review by: July 2016 Page 1 of 27 2. Inpatient management Heart failure with preserved Heart failure due to left ventricular ejection fraction systolic dysfunction (EF < 40%) • Referral to heart failure specialist team. • Arrange admission to appropriate ward/unit Refer to Heart Failure Fluid balance: Drug management: Specialist Nurse for 1. Fluid restriction 1-2 litres in 24 1. -
Chlorothiazide Versus Metolazone in Hospitalized Patients with Heart
Chlorothiazide Versus Metolazone in Hospitalized Patients with Heart Failure Receiving Loop Diruetics Barry Nicholson, PharmD; Halley Gibson, PharmD, BCPS Lahey Hospital & Medical Center, Burlington, MA Background Baseline Characteristics Secondary Outcomes Results • Heart failure (HF) is the primary diagnosis in > 1 million hospitalizations annually Characteristic Metolazone Chlorothiazide p-value • Loop diuretics are first-line treatment for edema for most patients with HF, and Secondary Outcome Metolazone Chlorothiazide p-value (n=62) (n=59) thiazide diuretics may be used as an adjuvant option for additional diuresis1 (n=62) (n=59) • Previous trials have shown that oral metolazone is non-inferior to intravenous chlorothiazide with regards to safety and efficacy2,3 Age (years) ± SD 75.6 ± 12.1 74.8 ± 12.1 0.55 Hypokalemia within 24 hours 13 (21) 14 (23.7) 0.89 • There is currently no institution-specific policy to guide thiazide diuretic post-thiazide, n (%) Male, n (%) 40 (64.5) 34 (56.7) 0.55 selection in patients with heart failure at Lahey Hospital & Medical Center Hypokalemia within 72 hours 10 (16.1) 5 (8.5) 0.32 post-thiazide, n (%) Objective Weight (kg) ± SD 92 ± 32.8 95.5 ± 31.1 0.54 To evaluate the safety and efficacy of chlorothiazide versus metolazone for Hypomagnesemia within 24 hours 5 (8.1) 7 (11.9) 0.69 Non-ICU, n (%) 48 (77.4) 39 (65) 0.24 augmented diuresis in hospitalized heart failure patients receiving loop diuretics post-thiazide, n (%) Endpoints Progressive Care Unit, n (%) 12 (19.4) 3 (5.1) 0.07 Hypomagnesemia within 72 hours 9 (14.5) 6 (10.2) 0.66 post-thiazide, n (%) Primary Endpoint Change in net urine output (UOP) pre and post-initiation Intensive Care Unit, n (%) 2 (3.2) 17 (28.8) <0.01* of either study thiazide diuretic at 24 and 72 hours Length of Stay, days ± SD 14.7 ± 6.6 17 ± 11.8 0.2 Serum creatinine, mg/dL ± SD 2.2 ± 1.2 2.2 ± 1.1 0.91 Secondary Endpoints - Incidence of the following at 24 and 72 hours: # patients needing additional 27 (43.5) 37 (62.7) 0.05 1. -
Beta-Blockers for Hypertension: Time to Call a Halt
Journal of Human Hypertension (1998) 12, 807–810 1998 Stockton Press. All rights reserved 0950-9240/98 $12.00 http://www.stockton-press.co.uk/jhh FOR DEBATE Beta-blockers for hypertension: time to call a halt DG Beevers University Department of Medicine, City Hospital, Birmingham B18 7QH, UK Beta-blockers are not very effective at lowering blood the endorsement of beta-blockers by the British Hyper- pressure in elderly hypertensive patients or in Afro- tension Society and other guidelines committees, Caribbeans and these two groups represent a large pro- except possibly for severe resistant hypertension, high portion of people with raised blood pressure. Further- risk post-infarct patients and those with angina pectoris. more they do not prevent more heart attacks than the The time has come to move across to newer, safer, more thiazide diuretics. Beta-blockers can also be dangerous tolerable and more effective antihypertensive agents in many hypertensive patients and even when these whilst continuing to use thiazide diuretics in low doses drugs are not contraindicated, they cause subtle and in the elderly as first choice, providing there are no depressing side effects which should preclude their contraindications. usefulness. The time has come therefore to reconsider Keywords: beta-blockers; hypertension Introduction Safety and tolerability Beta-adrenergic blockers were first introduced in the There is little doubt that the beta-blockers are the early 1960s for the treatment of angina pectoris. most unsafe of all antihypertensive drugs. They can Their antihypertensive properties were not fully precipitate or worsen heart failure in patients with recognised until the celebrated paper by Pritchard myocardial damage and they are contraindicated in and Gillam in 1964.1 They rapidly became popular patients with asthma. -
Ш„ ^Гг Тііи CLINICAL PHARMACOLOGICAL STUDIES on TIENILIC ACID and FUROSEMIDE Promotores: Prof
D D π Ш π α π • Q ÛDD fDSDUO Q ^г^ ш„ ^гг тііи CLINICAL PHARMACOLOGICAL STUDIES ON TIENILIC ACID AND FUROSEMIDE Promotores: Prof. dr F. W. J. GRIBNAU Prof. dr С. Α. Μ. van GINNEKEN CLINICAL PHARMACOLOGICAL STUDIES ON TIENILIC ACID AND FUROSEMIDE PROEFSCHRIFT ter verkrijging van de graad van doctor in de Geneeskunde aan de Katholieke Universiteit te Nijmegen, op gezag van de rector magnificus Prof. dr J. H. G. I. Giesbers, volgens het besluit van het college van dekanen in het openbaar te verdedigen op donderdag 24 maart 1983 des namiddags te 2 uur precies door ADRIANUS LAMBERTUS MARIA KERREMANS geboren te Roosendaal И krips repro meppel The studies presented in this thesis were performed in - the Department of Internal Medicine - the Institute of Pharmacology of the University of Nijmegen, The Netherlands; and in - the Nursing home 'Irene" H. Landstichting - the Canisius-Wilhelmina Hospital Nijmegen Aan Mariette Jos, Sanne en Mechteld Aan mijn ouders CONTENTS Chapter I GENERAL INTRODUCTION AND PROBLEM STATEMENT page Chapter II DIURETICS 2.1 renal transport of sodium and chloride 2.2 renal transport of uric acid 2.3 site of action and mode of action of diuretics 2.4 tienilic acid 2.5 furosemide references Chapter III SOME FACTORS INFLUENCING DRUG RESPONSE 2 3.1 influence of age on pharmacokinetics and pharmacodynamics 3.2 influence of long-term treatment 3.3 congestive heart failure and its influence on sodium homoeostasis and on disposition and effect of diuretics 3.4 diuretic resistance in congestive heart failure references Chapter IV METHODS 4 4.1 HPLC 4.2 protein binding of drugs 4.3 pharmacokinetics 4.4 dose-response curves references Chapter V PHARMACOKINETIC AND PHARMACODYNAMIC STUDIES OF TIE- 6 NILIC ACID IN HEALTHY VOLUNTEERS Eur J Clin Pharmacol 1982, 22, 515-521. -
MELT-HF Metolazone As Early Add on Therapy for Acute Decompensated
MELT-HF MEtolazone as Early add on Therapy for acute decompensated Heart Failure. A single center pilot study. Muhammad A. Chaudhry, MD MELT-HF Protocol [Amendment 5.0; 17-Jan-2017] Page 1 of 10 INTRODUCTION Background Heart failure is a major source of morbidity, mortality and growing public health cost. In US, the number of congestive heart failure patients is more than 4 million with more than 550,000 new annually reported cases. The annual cost of heart failure management exceeds 35 billion dollars per year. The heart failure readmissions and average length of hospital stay cost approximately $11,000 per patient. Loop diuretics are used alone in the majority of cases to promote diuresis. An association of increased creatinine and increased risk of renal dysfunction, the cardiorenal syndrome, in the face of high dose loop diuretics has raised questions regarding the safety and toxicity of high dose loop diuretics. While the dose of diuretics is ubiquitous, little data exists to guide their use and many clinicians are uncertain as to when and how to initiate and limit therapy. In many cases, a “stepped approach” with oral loop diuretics advancing to intravenous and finally combination high dose diuretics is employed. PREVIOUS TRIALS DOSE( Diuretic strategies in patients with ADHF) Trial Prospective, randomized double blinded trial of 308 patients with ADHF. Showed that high dose diuretics (2.5 times the outpatient daily dose) were associated with improved urine output at 72 hours (3575± 2635 in low dose group vs. 4899±3479 in high dose group). There was no significant difference between the high and low dose groups in mean creatinine change (0.08±0.3 mg per deciliter in high-dose group as compared to 0.04±0.3 mg per deciliter in low-dose group, P=0.21.