The Discovery of the Neutron in 1932 Gave Chemists and Physicists Something New to Throw at Atoms. Neutron Has Mass but No Charg

Total Page:16

File Type:pdf, Size:1020Kb

The Discovery of the Neutron in 1932 Gave Chemists and Physicists Something New to Throw at Atoms. Neutron Has Mass but No Charg The discovery of the neutron in 1932 gave Chain Reaction chemists and physicists something new to throw at atoms. Neutron has mass but no charge so would not be deflected by protons or electrons. In September 1933 Leo Szilard comes up with the idea of bombarding one element with one neutron. If you could get that element to emit more than one neutron then you could start a chain reaction. After Meitner fled Germany, she and Hahn continued their collaboration. Hahn's lab was smacking uranium with neutrons and instead of getting a heavier uranium atom (as expected) they were getting strange contamination such as barium and krypton, elements much lighter than uranium (artificial fission). Meitner and Hahn's In December 1938 Hahn submits his Lab: Desktop results, but does not provide an science explanation of what is happening, only that he has found barium and krypton and that some of the uranium seems to be disappearing. Bohr compared the nucleus to a water drop - as you add protons you get the next heavier element, and so Liquid drop model of on. Eventually you reach a limit at 92 protons fission (uranium). Beyond this there is so much positive charge that it makes the nucleus unstable. Adding more and more water to a drop will cause it to split into two or more drops. Same with the nucleus. This approach explained why atoms beyond uranium tended to be unstable – they would quickly decay. Using Bohr's idea, in February 1939 Meitner provides the physical explanation as to what was happening: the nucleus of an atom could be split into smaller parts: uranium nuclei had split to form barium and krypton, accompanied by the ejection of extra neutrons and a large amount of energy (the latter two products Artificial fission of accounting for the loss in mass). uranium nucleus Meitner's nephew, Otto Frisch, tells Niels Bohr about artificial uranium fission just as Bohr was leaving for a trip to the US. There Bohr announces uranium fission to an American audience. Very quickly Szilard's chain reaction concept is connected to the concept of artificial fission and the possibility of an atomic bomb is born, where energy is released catastrophically. In America, many scientists were divided about the possibilities of exploiting the power of the atom. Some regarded it as impossible in practice, others only a matter of time. The one group that kept pushing for the development of a nuclear program were the European scientists forced out of Europe and with first-hand experience of Nazi behavior (and of how good German physics was). The assumption was that Germany would jump at the chance to create a nuclear weapon and was almost certainly already at work on such a project. But nothing happened. Why? Because of the structure of American science at this period. (Also America not yet at war.)‏ Before World War II very little public money in the US was available for scientific research – within universities or outside universities. What there was, was for agriculture and medical projects. Projects were small, without expensive equipment. Large projects such as cyclotrons, which accelerate charged particles to high speeds, were funded by private foundation such as the Rockefeller Foundation. World War II changed the way science was funded. There seemed little reason for the government to get involved until Szilard thought to use Einstein's fame and prestige. Szilard convinced Einstein to sign a letter to President Roosevelt that described the possibilities of nuclear fission. The letter pointed out that the Germans had already suspended export of uranium ores and warned of the consequences should Germany create a nuclear weapon before the United States did. In the spring of 1940 Vannevar Bush proposed a scheme to President Franklin Delano Roosevelt that would organize and direct science for the upcoming war effort (though America still not at war at this point). Vannevar Bush pioneered the approach by which the government contracted for research and development from university scientists and private industry. A new relationship was created between science and the government. During the war research funded by the government included the development of radar, sonar, , penicillin, and new insecticides – DDT (which was a powerful weapon against malaria – it killed the mosquitoes which carry malaria). The Manhattan Project, which developed the American atomic bomb, originally came under Bush's scheme, but was soon turned over to the Army Corps of Engineers, because of the amount of technical work that would be required (it would also be easier to hide the huge amounts of money going into the project from Congress). The Manhattan Project became the prototype of Big Science. After the war, the approach pioneered by Bush continues into the Cold War and government support for science even increased. The National Science Foundation was created as a grant-giving agency for researchers at universities. In 1961 Alvin Weinberg, director of research at Oak Ridge National Laboratory, coined the term “Big Science”. “... many of the activities of modern science – nuclear physics, or elementary particle physics, or space research – require extremely elaborate equipment and staffs of large teams and professionals...” Inevitably this approach creates conflict, said Weinberg. How should scarce resources be allocated, who is going to decide between specific projects. The big question of what gets funded and why. (Really) Big Science CERN Particle Accelerator in Europe (26 kilometres long)‏ Manhattan Project Based on the assumption that Germany was at least as far advanced as America, if not more so, in developing a nuclear bomb. After all the original results had come out of Germany, and Germany had Heisenberg, one of the greatest theoretical physicists living. Now just because something is theoretically possible does not mean it is practically possible. What became the Manhattan Project was a huge effort that involved spending well over 20 billion dollars in today's money. At its peak it employed over 160,000 people all over the country. The beginning of big science. What kind of problems did people have to solve? They had to figure out which kind of uranium, 235 or 238, is responsible for fission. In the middle of 1940, scientists discovered that it was U235 that was fissile, and that a chain reaction would be possible with this isotope of uranium. Another problem, how to get large amounts of sufficiently pure U235 from ordinary uranium. U235 makes up only 1% of the uranium dug out of mines. It looked the same and had the same characteristics. Chemical separation was impossible. And how do you manage to slow down the fast moving neutrons expelled from the uranium nucleus. If you didn't slow them down, the chain reaction might go haywire in a nuclear reactor (bad if you're trying to study nuclear reactions) and in a bomb the bomb might blow itself apart before releasing its atomic energy. Also, how much U235 would be needed for a bomb. Too small an amount of uranium and the chain reaction would never get off the ground – too many neutrons would escape. The amount of uranium needed to create an explosion was called the “critical mass” and opinions varied as to how much was needed – from ten to several hundred pounds. In Spring 1940, Otto Frisch (by then in England) calculated that if you had very pure U235 and packed it tightly then you didn't need to slow the neutrons down for a chain reaction to release massive amounts of energy all at once. Frisch was one of the first to realize that an atomic bomb was feasible, and that it would take only a few kilograms of pure U235 to produce a bomb. Frisch had direct experience of the Nazis – they had put his father in a concentration camp after Austria was annexed (Frisch managed to get him out before the war). He quickly convinced other British scientists and in 1941 British Prime Minister Winston Churchill gave the go ahead for a program to build an atomic bomb. Churchill said: “Although personally I am quite content with the existing explosives, I feel we must not stand in the path of improvement.” Britain set up factories to separate U235. But soon the British effort merged with the American effort in the US. In 1941 theoreticians predicted that if a neutron was absorbed by U238 (the other isotope of uranium) it would over a few days produce a completely new element, which they called plutonium (partly after Pluto, the Roman god of the dead). Plutonium was easier to deal with than U235 - no problems with separating out the fissile material - and it appeared as though plutonium would make a successful bomb. The end result was a two pronged project – producing a uranium bomb and a plutonium bomb. In the meantime costs in the US had escalated and for not much in the way of practical results. Bush was under pressure to focus on projects with a more immediate benefit – such as radar. In April 1941 he decided it was time to make a decision – to suspend the nuclear work or go all out. He decided to go all out and reorganized the way work was done. He created three research centers, at Columbia University, at the University of Chicago, and at the University of California, Berkeley. Columbia took up the problem of how to separate the two uraniums. Chicago focused on designing nuclear reactors and and designing the weapon itself. (Later weapon design was transferred to Los Alamos in New Mexico). Berkley ended up supporting the Los Alamos work. For a project of this size and organization, Bush needed a lot of money, and he needed security, (that is, not asking Congress for the money).
Recommended publications
  • James Chadwick: Ahead of His Time
    July 15, 2020 James Chadwick: ahead of his time Gerhard Ecker University of Vienna, Faculty of Physics Boltzmanngasse 5, A-1090 Wien, Austria Abstract James Chadwick is known for his discovery of the neutron. Many of his earlier findings and ideas in the context of weak and strong nuclear forces are much less known. This biographical sketch attempts to highlight the achievements of a scientist who paved the way for contemporary subatomic physics. arXiv:2007.06926v1 [physics.hist-ph] 14 Jul 2020 1 Early years James Chadwick was born on Oct. 20, 1891 in Bollington, Cheshire in the northwest of England, as the eldest son of John Joseph Chadwick and his wife Anne Mary. His father was a cotton spinner while his mother worked as a domestic servant. In 1895 the parents left Bollington to seek a better life in Manchester. James was left behind in the care of his grandparents, a parallel with his famous predecessor Isaac Newton who also grew up with his grandmother. It might be an interesting topic for sociologists of science to find out whether there is a correlation between children educated by their grandmothers and future scientific geniuses. James attended Bollington Cross School. He was very attached to his grandmother, much less to his parents. Nevertheless, he joined his parents in Manchester around 1902 but found it difficult to adjust to the new environment. The family felt they could not afford to send James to Manchester Grammar School although he had been offered a scholarship. Instead, he attended the less prestigious Central Grammar School where the teaching was actually very good, as Chadwick later emphasised.
    [Show full text]
  • Neutron-Proton Collisions
    Neutron-Proton Collisions E. Di Grezia INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo Via Cintia, Edificio 6, 80126 Napoli, Italy∗ A theoretical model describing neutron-proton scattering developed by Majorana as early as in 1932, is discussed in detail with the experiments that motivated it. Majorana using collisions’ theory, obtained the explicit expression of solutions of wave equation of the neutron-proton system. In this work two different models, the unpublished one of Majorana and the contemporary work of Massey, are studied and compared. PACS numbers: INTRODUCTION In early 1932 a set of experimental phenomena revealed that the neutron plays an important role in the structure of nucleus like the proton, electron and α-particle and can be emitted by artificial disintegration of lighter elements. The discovery of the neutron is one of the important milestones for the advancement of contemporary physics. Its existence as a neutral particle has been suggested for the first time by Rutherford in 1920 [1], because he thought it was necessary to explain the formation of nuclei of heavy elements. This idea was supported by other scientists [2] that sought to verify experimentally its existence. Because of its neutrality it was difficult to detect the neutron and then to demonstrate its existence, hence for many years the research stopped, and eventually, in between 1928-1930, the physics community started talking again about the neutron [3]. For instance in [3] a model was developed in which the neutron was regarded as a particle composed of a combination of proton and electron. At the beginning of 1930 there were experiments on induced radioactivity, which were interpreted as due to neutrons.
    [Show full text]
  • Section 7: BASIC NUCLEAR CONCEPTS
    BPA BASIC NUCLEAR CONCEPTS Section 7: BASIC NUCLEAR CONCEPTS In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section 2] Radioactivity - discovered in 1896 by Henri Becquerel. Types of radiation observed: alpha ( ) rays (4He nuclei); beta ( ) rays (electrons) ; gamma ( ) rays (photons) Proposed atomic models: built of positively and negatively charged components. - Planetary model: Light electrons (-charge) orbiting a massive nucleus (+charge): - 'Plum pudding' model (J. J. Thompson): In this model, electrons are embedded but free to move in an extended region of positive charge filling the entire volume of the atom. Thompson found it difficult to develop this model. For example he could not account for the patterns of discrete wavelengths in light emitted from excited atoms. In the early 1900s, Rutherford and co-workers, by performing experiments scattering particles off gold, confirmed the planetary model with a small, massive nucleus at its centre. The problem of the stability of such an atom was realized early on but not explained until the development of quantum mechanics [see Section 3]. Discovery of the neutron 1932 – The neutron was identified by James Chadwick from observations of the effects of radiation emitted when beryllium is bombarded with alpha particles. This gave the basic nuclear framework (Heisenberg, Majorana and Wigner) that the nucleus consists of nucleons (neutrons and protons) held together by a strong, short-range binding force, with a strength independent of the type of nucleon. Nuclear size and density Scattering experiments showed that the nuclear radius varies as cube root of the mass number A, 1/3 i.e.
    [Show full text]
  • From the Natural Transmutations of Uranium to Its Artificial Fission
    O T T O H AH N From the natural transmutations of uranium to its artificial fission Nobel Lecture, December 13, 1946 The year 1946 marked a jubilee in the history of the chemical element, ura- nium. Fifty years earlier, in the spring of 1896, Henri Becquerel had discov- ered the remarkable radiation phenomena of this element, which were at that time grouped together under the name of radioactivity. For more than 100 years, uranium, discovered by W. H. Klaproth in 1789, had had a quiet existence as a somewhat rare but not particularly interesting element. After its inclusion in the Periodic System by D. Mendeleev and Lothar Meyer, it was distinguished from all the other elements in one partic- ular respect: it occupied the highest place in the table of the elements. As yet, however, that did not have any particular significance. We know today that it is just this position of uranium at the highest place of the then known chemical elements which gives it the important properties by which it is distinguished from all other elements. The echo of Becquerel’s fundamental observations on the radioactivity of uranium in scientific circles was at first fairly weak. Two years later, how- ever, they acquired an exceptional importance when the Curies succeeded in separating from uranium minerals two active substances, polonium and ra- dium, of which the latter appeared to be several million times stronger than the same weight of uranium. It was only a few years before the first surprising property of this "ra- diating" substance was explained.
    [Show full text]
  • RIGHT and WRONG ROADS to the DISCOVERY of NUCLEAR ENERGY by Lise Meitner
    RIGHT AND WRONG ROADS TO THE DISCOVERY OF NUCLEAR ENERGY by Lise Meitner Twenty years ago, on 2 December 1942, Enrico Fermi succeeded in making the world's first reactor "critical", i.e. in bringing it into operation. It was no accident that Fermi was the first man to solve what was then an extremely complicated problem, although a simple one in principle. In both the experimental and theoretical fields, he was one of the most gifted physicists of our time, always ready and able to ap­ proach new and difficult problems with the simplest of conceptions and, if the available facilities were not adequate, to develop or devise experimental methods (again in the simplest manner) with an amazing power of analysis of the task in hand. The basis for Fermi's achievement in construc­ ting the first reactor was of course the discovery, by Otto Hahn and Fritz Strassmann, of uranium fission through neutron bombardment of ordinary uranium. Viewed in the light of our present knowledge, the road to that discovery was astonishingly long and to a cer­ tain extent the wrong one, yet here also, in following this devious path which led at last to the true expla­ nation of events, Fermi was the pioneer. Very soon after the discovery of the neutron by Chadwick and of artificial radioactivity by I. Curie and F. Joliot, Fermi recognized how suitable neu­ trons must be, due to the absence of an electric charge, for penetrating heavier, i. e. highly-charged, Lise Meitner (Photo USIS) atomic nuclei and bringing about reactions in them.
    [Show full text]
  • Lev Landau and the Conception of Neutron Stars
    Lev Landau and the conception of neutron stars Dmitry G. Yakovlev1, Pawe lHaensel2, Gordon Baym3, Christopher J. Pethick4,5 1Ioffe Physical Technical Institute, Politekhnicheskaya 26, 194021 St.-Petersburg, Russia 2N. Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland 3Department of Physics, University of Illinois, 1110 W. Green Street, Urbana, Illinois 61801, USA 4Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark 5 NORDITA, Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden Abstract We review the history of neutron star physics in the 1930s that is related to L. Landau. Accord- ing to recollections of Rosenfeld (1974, Proc. 16th Solvay Conference on Physics, p. 174), Landau improvised the concept of neutron stars in a discussion with Bohr and Rosenfeld just after the news of the discovery of the neutron reached Copenhagen in February 1932. We present arguments that the discussion took place in March 1931, before the discovery of the neutron, and that they in fact discussed the paper written by Landau in Zurich in February 1931 but not published until February 1932 (Phys. Z. Sowjetunion 1 285). In his paper Landau mentioned the possible existence of dense stars which look like one giant nucleus; this can be regarded as an early theoretical prediction or anticipation of neutron stars, prior to the discovery of the neutron. The coincidence of the dates of the neutron’s discovery and the paper’s publication has led to an erroneous association of the paper with the discovery of the neutron. In passing, we outline the contribution of Landau to the theory of white dwarfs and to the hypothesis of stars with neutron cores.
    [Show full text]
  • An Atomic History Chapter 1
    An Atomic History 0-3 8/11/02 7:30 AM Page 6 Chapter One 7 Between 1898 and 1911, this work was continued by Ernest Rutherford, who studied the nature of the radiation emitted by uranium and thorium. Rutherford was the first to discover and name alpha and beta radiation, and link them with Thompson’s electrons. Rutherford also discovered that radioactive elements, whether they were uranium, thorium, or radium, would all spontaneously disintegrate by emitting alpha and beta particles. The 1 Nuclear Awakenings longevity of these elements was determined in "half-lives."6 Albert Einstein not only provided more pieces of the puzzle; he put the puzzle in a new frame. In 1905, while working in the Swiss Patent Office, Einstein prepared five papers on the nature of modern physics, any one of which would have secured his fame. One of the five, and the one for which he later received a Nobel Prize, dealt with the "pho- toelectric effect." In it, Einstein theorized that light is made of discrete packets or "quan- ta," and that the energy of each packet is determined by the wavelength of the light, not its intensity. Two of the five papers dealt with new evidence for the existence and size of atoms and molecules. Another two expounded a radical new theory on the relationship of The work done at the Savannah River Site is the culmination of over a hundred time and space: one dealt with the theory of relativity, while the other posited that mass years of nuclear research. Modern physics, the study of the properties, changes, and inter- has energy—expressed as the equation "E=mc2."7 This equation became one of the hall- actions of matter and energy, is basically the study of the atom and its components.
    [Show full text]
  • Chapter 2 the Atom 1
    Chapter 2 The Atom 1. Introduction The scientific name for materials is matter. The idea that materials are made up of small particles is often referred to as the particulate nature of matter. In the above experiment: • Particles of the ammonia gas moving from left to right meet up with particles of hydrogen chloride gas moving from right to left. • A white cloudy substance is formed where the particles of hydrogen chloride and ammonia meet. The spreading of gases is called diffusion. 2. History of the Atom Greek philosophers were the first to propose that matter was composed of small particles. They believed that those particles could not be broken down into smaller particles. They called these small particles atoms. Later, in 1808 John Dalton (English chemist) came forward with an atomic theory. His theory may be summarised as follows: 1. All matter is made up of very small particles called atoms. 2. All atoms are indivisible. They cannot be broken down into simpler particles. However, his theory started to be questioned towards the end of the XIX century as a result of a series of experiments. John Dalton: 3. Discovery of the Electron In 1875 William Crookes (English chemist) • Crookes used a vacuum tube - long glass tube with an electrode at each end, inside the tube there was gas at low pressure • Rays travelled from cathode to anode these rays were called cathode rays • They travelled in straight lines – to show the presence of radiation he placed a Maltese cross inside the tube – a sharp shadow in glow formed at end of tube (CNAP – cathode negative, anode positive) Crookes carried out a second experiment to investigate the properties of cathode rays (Crookes Paddle Wheel Experiment) • Consisted of a light paddle wheel mounted on rails in front of the cathode.
    [Show full text]
  • Matter Is Made up of Atoms ATOMS & THEIR STRUCTURE Aristotle Thought Matter Was Made of Air, Earth, Fire and Water
    CHAPTER 4: Matter is Made up of Atoms ATOMS & THEIR STRUCTURE Aristotle thought matter was made of air, earth, fire and water. Democritus (250 B.C.)- Said the world is made of empty space & tiny particles called atoms DEVELOPMENT OF THE ATOMIC THEORY (3 S CIENTISTS INVOLVED ) 1. Lavoisier (1743-1794)- Law of Conservation of Matter The Father of Modern Chemistry 2. P ROUST (1799) Law of definite proportions- elements that make up compounds are found in fixed proportions Joseph Proust 3. D ALTON ’S ATOMIC THEORY 1. All matter is made of atoms. 2. Atoms are indivisible 3. All atoms of 1 element are alike, but are different than atoms of other elements Was he right? 1. All matter is made of atoms. 2. Atoms are indivisible 3. All atoms of 1 element are alike, but are different than atoms of other elements DISCOVERY OF ATOMIC STRUCTURE 4 S CIENTISTS JJ Thomson (1897) 1. Discovered the electron during his vacuum tube/cathode ray experiments. 2. JJ’s Plum Pudding model 3. When studying Ne he discovered isotopes - atoms of an element that are alike chemically, but differ in mass. *Same # protons, different # neutrons 4. His work led to the discovery of the neutron NAGAOKA Saturnian model or early planetary model RUTHERFORD A. Gold foil experiment 1. shot positive particles through a thin sheet of Au. 2. Most went straight through, but others were deflected. WHY ? http://www-outreach.phy.cam.ac.uk/camphy/nucleus/nucleus6_1.htm CONCLUSIONS DRAWN FROM THE GOLD FOIL EXPERIMENT 1. Most of the atom is empty space.
    [Show full text]
  • Brief Reports of Nobel Laureates in Physics
    IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861. Volume 5, Issue 2 (Nov. - Dec. 2013), PP 60-68 www.iosrjournals.org Brief Reports of Nobel Laureates in Physics Dr.Shaikh Sarfaraz Ali Department of Physics, Veer Surendra Sai University of Technology (VSSUT), Burla-768018, Samalpur, Odisha, India. Abstract: Alfred B. Nobel, a Swedish chemist and engineer who invented dynamite left $ 9 million in his will to establish the Nobel Prize, which are awarded annually, without regard to nationality, in six different areas like Peace, Literature, Physics, Chemistry, Physiology or Medicine and Economic Science to those who, during the preceding year, shall have conferred the greatest benefit on mankind. Here the complete list of all the Nobel Laureates in Physics since 1901 to 2013 is compiled. 1901-Wilhelm Conrad Rontgen, Born in Lennep, Rhenish Prussia, Germany (1845-1923) was awarded the Nobel Prize for the Discovery of Rontgen rays which is also known as X-rays. 1902-Hendrik Antoon Lorentz, Born in Arnhen, the Netherlands (1853-1928) was awarded 1/2 of the Nobel Prize for the investigations of effects of magnetism on the phenomena of radiation. 1902-Pieter Zeeman, Born in Zonnemaire, the Netherlands (1865-1943) was awarded 1/2 of the Nobel Prize for the Investigations of the effects of magnetism on the phenomena of radiation. 1903-Henri Antoine Becquerel, Born in Paris (1852-1908) was awarded 1/2 of the Nobel Prize for the discovery of spontaneous radioactivity. 1903-Pierre Curie, Born in Paris (1859-1906) was awarded 1/4 of the Nobel Prize for the Phenomena of radiation discovered by Becquerel.
    [Show full text]
  • Understanding the Discovery of the Neutron
    MITOCW | Radiation History to the Present — Understanding the Discovery of the Neutron NARRATOR: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free. To make a donation or to view additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu. MIKE SHORT: OK, guys. Welcome to the first filmed and hands-on installation of 22.01, Introduction to Ionizing Radiation. I'm Mike Short. I'm the department's undergrad coordinator. I'm also your 22.01 instructor. But I also want to introduce you to Amelia Trainer in the back, who one of the three TAs for the course. She took it last year. Everything is still very fresh in your head, I bet. AUDIENCE: More or less. MIKE SHORT: Cool. So she'll be-- she and Ka-Yen Yau and Caitlin Fisher will be with us all throughout the term. So if there's something that you don't like my explanation for, you've got three people who just took the course, and struggled through my own explanations, and can say it in a different way. So let's start off by taking your knowledge of physics from the roughly 1800s education of the GIRs, the a General Institute Requirements, up till 1932 when the neutron was discovered. And I would argue that this particle is what makes us nuclear engineers. It's the basis behind reactors. It's what differentiates us from the high energy physics folks and everything, because we've studied these and use them quite a lot.
    [Show full text]
  • The Discovery of Fission Otto R
    The discovery of fission Otto R. FrischJohn A. Wheeler Citation: Physics Today 20, 11, 43 (1967); doi: 10.1063/1.3034021 View online: http://dx.doi.org/10.1063/1.3034021 View Table of Contents: http://physicstoday.scitation.org/toc/pto/20/11 Published by the American Institute of Physics Articles you may be interested in On the belated discovery of fission Physics Today 68, (2015); 10.1063/PT.3.2817 The Discovery of Nuclear Fission Physics Today 42, (2008); 10.1063/1.881174 The Discovery of Fission Initial formulations of nuclear fission are colored with the successes, failures and just plain bad luck of several scientists from different nations. The winning combination of good fortune and careful thought made this exciting concept a reality. by Otto R. Frisch and John A. Wheeler How It All Began by Otto R. Frisch THE NEUTRON was discovered in 1932. had little respect for theory. Once, Why, then, did it take seven years be- when one of her students suggested an fore nuclear fission was found? Fission experiment, adding that the theoreti- is obviously a striking phenomenon; it cal physicists next door thought it results in a large amount of radioactiv- hopeful, she replied, "Well, we might ity of all kinds and produces fragments try it all the same." Their disregard that have more than ten times the total of theory may have cost them the dis- Otto R. Frisch, professor of natural ionization of anything previously covery of the neutron. philosophy (physics) at Cambridge known. So why did it take so long? Cambridge is the second place wor- University, England, did research in Berlin (1927-30), Hamburg (1930- The question might be answered best thy of discussion.
    [Show full text]