Lev Landau and the Conception of Neutron Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
James Chadwick: Ahead of His Time
July 15, 2020 James Chadwick: ahead of his time Gerhard Ecker University of Vienna, Faculty of Physics Boltzmanngasse 5, A-1090 Wien, Austria Abstract James Chadwick is known for his discovery of the neutron. Many of his earlier findings and ideas in the context of weak and strong nuclear forces are much less known. This biographical sketch attempts to highlight the achievements of a scientist who paved the way for contemporary subatomic physics. arXiv:2007.06926v1 [physics.hist-ph] 14 Jul 2020 1 Early years James Chadwick was born on Oct. 20, 1891 in Bollington, Cheshire in the northwest of England, as the eldest son of John Joseph Chadwick and his wife Anne Mary. His father was a cotton spinner while his mother worked as a domestic servant. In 1895 the parents left Bollington to seek a better life in Manchester. James was left behind in the care of his grandparents, a parallel with his famous predecessor Isaac Newton who also grew up with his grandmother. It might be an interesting topic for sociologists of science to find out whether there is a correlation between children educated by their grandmothers and future scientific geniuses. James attended Bollington Cross School. He was very attached to his grandmother, much less to his parents. Nevertheless, he joined his parents in Manchester around 1902 but found it difficult to adjust to the new environment. The family felt they could not afford to send James to Manchester Grammar School although he had been offered a scholarship. Instead, he attended the less prestigious Central Grammar School where the teaching was actually very good, as Chadwick later emphasised. -
On the Concept of Degenerate Stars: the Case of White Dwarfs
On the concept of degenerate stars: the case of white dwarfs Michael Rotondo - Istituto di Istruzione Superiore Statale “Pacinotti-Archimede”, Roma - [email protected] Abstract: In this work we briefly review the history of degenerate stars from the first introduction of Fermi-Dirac quantum statistics to the first unified approach of white dwarfs, based on the relativistic generalization of the Feynman-Metropolis-Teller of compressed atoms, which takes into account consistently the gravitational, the weak, the strong and the electromagnetic interactions. Keywords:History of astrophysics, Compact stars, Degenerate Fermi gas 1. Prologue: Adams and Eddington Exactly one century ago Walter S. Adams published a paper entitled “The Spectrum of the Companion of Sirius” in which he concludes that: …the companion of Sirius has a color index not appreciably different from that of the principal star (Adams 1915, p. 237). This conclusion would lead to a dramatic consequence as summarized by Arthur S. Ed- dington: …a ton of [companion of Sirius] material would be a little nugget that you could put in a match-box. What reply can one make to such a message? The reply which most of us made in 1914 was - ‘Shut up. Don’t talk nonsense’ (Eddington 1927, p. 50). Nine years later, in 1924, Eddington published a paper entitled “On the Relation be- tween the Masses and Luminosities of the Stars” in which he suggested a new test to confirm (or reject) the exceptionally high density of the companion of Sirius: …the question could probably be settled by measuring Einstein shift of the spec- trum… (Eddington 1924, p. -
Subrahmanyan Chandrasekhar – Geniaalne Astrofüüsik
Subrahmanyan Chandrasekhar – geniaalne astrofüüsik Sissejuhatus Kuulsin Chandrasekhari nime esimest korda, kui mu sõber ja hilisem kolleeg Tiit Nilson oli saanud veel ülikooliajal – 1962. aastal - oma juhendajaks Juhan Rossi. Tiit näitas mulle Juhani käest saadud vene keelde tõlgitud Chandrasekhari raamatut kiirguslevist, mis oli täis salapäraseid valemeid. Hiljem sai see raamat mullegi väga oluliseks ja 1977. a ostsin selle – inglisekeelsena – Lõuna-California ülikooli raamatupoest Los Angeleses. Sellest ajast on see mu töölauaraamat, ja minuni jõudis arusaamine sellest, et see mees on haruldaselt mitmekülgne suur teadlane. Mingi tõsise probleemi ettevõtnuna avaldas ta terve seeria artikleid probleemi lahenduse kohta ja siis järgnes artikleid kokkuvõttev monograafia. Nii said põhjaliku ülevaate ja lahenduse tähe siseehitus, sh valgete kääbuste ehitus, stellaardünaamika, stohhastilised protsessid, kiirguslevi, negatiivse vesiniku iooni kvantteooria, hüdrodünaamika ja hüdromagnetiline stabiilsus, turbulents, tasakaaluliste objektide tasakaal, üldine relatiivsusteooria, mustade aukude matemaatiline teooria ja põrkuvate gravitatsioonilainete teooria. Lisaks veel Newtoni kuulsa Principia „tõlkimine“ autori geomeetrilisest keelest tänapäevasesse keelde. Mida rohkemat veel ühelt inimeselt nõuda võiks! Lapsepõlv ja perekond Chandrasekhar sündis tolleaegses Briti India (nüüd Pakistani) Punjabi provintsi linnas Lahores 19. oktoobril 1910 Chandrasekhara Subrahmanyan Ayyari (1885-1960) ja tema abikaasa Sitalakshmi (1891-1931) esimese pojana. Kokku -
Chandrasekhar and the History of Astronomy
Chandrasekhar and the history of astronomy Virginia Trimble· Department of Physics and Astronomy, Universiry of California, Irvine CA 92697, USA, and Las Cumbres Observatory Global Telescope Network. Goleta, California, USA Received August 12, 2011 Abstract. Chandrasekhar's own books, papers, and oral history interviews make clear that he was generally more interested in the present and future of astrophysics than in its past. Nevertheless, late in his life and after his death, historians of science have somewhat entangled him in two supposedly contro versial issues, one concerning precursors of his mass limit for degenerate stars and the other his relationship with Eddington. Neither story is an entirely happy one. 1. The fate of famous scientists Biographers write biographies and historians write books and papers, and no one, living or dead, has much defense against them. Among scientists I've known, Richard Feynman, Fred Hoyle, and Carl Sagan have each been the subject of at least three. Thus no one should be surprised that there are biographies and encyclopedia articles about Chandra (Wali 1991 , 2008) and Eddington (Douglas 1956; Stanley 2007, 2008), and indeed even a biography of Eddington by Chandrasekhar ( 1983). Not that you had any doubts before, but you cannot come away from any of these without realizing that each made both extraordinarily many and extraordinarily important contributions to 20th century astrophysics. But be thou chaste as ice, as pure as snow, thou shalt not escape calumny (Hamlet, Act ill, Sc. l, to save you looking it up). 2. Degenerate stars, or, who discovered the Chandrasekhar limit? I first encountered this issue more than 30 years ago (Trimble 1979) when I reviewed a semi-popular book by l.S. -
UC Irvine UC Irvine Previously Published Works
UC Irvine UC Irvine Previously Published Works Title Chandrasekhar and the history of astronomy Permalink https://escholarship.org/uc/item/4qf3w1g4 ISBN 9789814374767 Author Trimble, V Publication Date 2011-12-01 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Chandrasekhar and the history of astronomy Virginia Trimble· Department of Physics and Astronomy, Universiry of California, Irvine CA 92697, USA, and Las Cumbres Observatory Global Telescope Network. Goleta, California, USA Received August 12, 2011 Abstract. Chandrasekhar's own books, papers, and oral history interviews make clear that he was generally more interested in the present and future of astrophysics than in its past. Nevertheless, late in his life and after his death, historians of science have somewhat entangled him in two supposedly contro versial issues, one concerning precursors of his mass limit for degenerate stars and the other his relationship with Eddington. Neither story is an entirely happy one. 1. The fate of famous scientists Biographers write biographies and historians write books and papers, and no one, living or dead, has much defense against them. Among scientists I've known, Richard Feynman, Fred Hoyle, and Carl Sagan have each been the subject of at least three. Thus no one should be surprised that there are biographies and encyclopedia articles about Chandra (Wali 1991 , 2008) and Eddington (Douglas 1956; Stanley 2007, 2008), and indeed even a biography of Eddington by Chandrasekhar ( 1983). Not that you had any doubts before, but you cannot come away from any of these without realizing that each made both extraordinarily many and extraordinarily important contributions to 20th century astrophysics. -
Neutron-Proton Collisions
Neutron-Proton Collisions E. Di Grezia INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo Via Cintia, Edificio 6, 80126 Napoli, Italy∗ A theoretical model describing neutron-proton scattering developed by Majorana as early as in 1932, is discussed in detail with the experiments that motivated it. Majorana using collisions’ theory, obtained the explicit expression of solutions of wave equation of the neutron-proton system. In this work two different models, the unpublished one of Majorana and the contemporary work of Massey, are studied and compared. PACS numbers: INTRODUCTION In early 1932 a set of experimental phenomena revealed that the neutron plays an important role in the structure of nucleus like the proton, electron and α-particle and can be emitted by artificial disintegration of lighter elements. The discovery of the neutron is one of the important milestones for the advancement of contemporary physics. Its existence as a neutral particle has been suggested for the first time by Rutherford in 1920 [1], because he thought it was necessary to explain the formation of nuclei of heavy elements. This idea was supported by other scientists [2] that sought to verify experimentally its existence. Because of its neutrality it was difficult to detect the neutron and then to demonstrate its existence, hence for many years the research stopped, and eventually, in between 1928-1930, the physics community started talking again about the neutron [3]. For instance in [3] a model was developed in which the neutron was regarded as a particle composed of a combination of proton and electron. At the beginning of 1930 there were experiments on induced radioactivity, which were interpreted as due to neutrons. -
Section 7: BASIC NUCLEAR CONCEPTS
BPA BASIC NUCLEAR CONCEPTS Section 7: BASIC NUCLEAR CONCEPTS In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section 2] Radioactivity - discovered in 1896 by Henri Becquerel. Types of radiation observed: alpha ( ) rays (4He nuclei); beta ( ) rays (electrons) ; gamma ( ) rays (photons) Proposed atomic models: built of positively and negatively charged components. - Planetary model: Light electrons (-charge) orbiting a massive nucleus (+charge): - 'Plum pudding' model (J. J. Thompson): In this model, electrons are embedded but free to move in an extended region of positive charge filling the entire volume of the atom. Thompson found it difficult to develop this model. For example he could not account for the patterns of discrete wavelengths in light emitted from excited atoms. In the early 1900s, Rutherford and co-workers, by performing experiments scattering particles off gold, confirmed the planetary model with a small, massive nucleus at its centre. The problem of the stability of such an atom was realized early on but not explained until the development of quantum mechanics [see Section 3]. Discovery of the neutron 1932 – The neutron was identified by James Chadwick from observations of the effects of radiation emitted when beryllium is bombarded with alpha particles. This gave the basic nuclear framework (Heisenberg, Majorana and Wigner) that the nucleus consists of nucleons (neutrons and protons) held together by a strong, short-range binding force, with a strength independent of the type of nucleon. Nuclear size and density Scattering experiments showed that the nuclear radius varies as cube root of the mass number A, 1/3 i.e. -
From the Natural Transmutations of Uranium to Its Artificial Fission
O T T O H AH N From the natural transmutations of uranium to its artificial fission Nobel Lecture, December 13, 1946 The year 1946 marked a jubilee in the history of the chemical element, ura- nium. Fifty years earlier, in the spring of 1896, Henri Becquerel had discov- ered the remarkable radiation phenomena of this element, which were at that time grouped together under the name of radioactivity. For more than 100 years, uranium, discovered by W. H. Klaproth in 1789, had had a quiet existence as a somewhat rare but not particularly interesting element. After its inclusion in the Periodic System by D. Mendeleev and Lothar Meyer, it was distinguished from all the other elements in one partic- ular respect: it occupied the highest place in the table of the elements. As yet, however, that did not have any particular significance. We know today that it is just this position of uranium at the highest place of the then known chemical elements which gives it the important properties by which it is distinguished from all other elements. The echo of Becquerel’s fundamental observations on the radioactivity of uranium in scientific circles was at first fairly weak. Two years later, how- ever, they acquired an exceptional importance when the Curies succeeded in separating from uranium minerals two active substances, polonium and ra- dium, of which the latter appeared to be several million times stronger than the same weight of uranium. It was only a few years before the first surprising property of this "ra- diating" substance was explained. -
RIGHT and WRONG ROADS to the DISCOVERY of NUCLEAR ENERGY by Lise Meitner
RIGHT AND WRONG ROADS TO THE DISCOVERY OF NUCLEAR ENERGY by Lise Meitner Twenty years ago, on 2 December 1942, Enrico Fermi succeeded in making the world's first reactor "critical", i.e. in bringing it into operation. It was no accident that Fermi was the first man to solve what was then an extremely complicated problem, although a simple one in principle. In both the experimental and theoretical fields, he was one of the most gifted physicists of our time, always ready and able to ap proach new and difficult problems with the simplest of conceptions and, if the available facilities were not adequate, to develop or devise experimental methods (again in the simplest manner) with an amazing power of analysis of the task in hand. The basis for Fermi's achievement in construc ting the first reactor was of course the discovery, by Otto Hahn and Fritz Strassmann, of uranium fission through neutron bombardment of ordinary uranium. Viewed in the light of our present knowledge, the road to that discovery was astonishingly long and to a cer tain extent the wrong one, yet here also, in following this devious path which led at last to the true expla nation of events, Fermi was the pioneer. Very soon after the discovery of the neutron by Chadwick and of artificial radioactivity by I. Curie and F. Joliot, Fermi recognized how suitable neu trons must be, due to the absence of an electric charge, for penetrating heavier, i. e. highly-charged, Lise Meitner (Photo USIS) atomic nuclei and bringing about reactions in them. -
Harwit M. in Search of the True Universe.. the Tools, Shaping, And
In Search of the True Universe Astrophysicist and scholar Martin Harwit examines how our understanding of the Cosmos advanced rapidly during the twentieth century and identifies the factors contributing to this progress. Astronomy, whose tools were largely imported from physics and engineering, benefited mid-century from the U.S. policy of coupling basic research with practical national priorities. This strategy, initially developed for military and industrial purposes, provided astronomy with powerful tools yielding access – at virtually no cost – to radio, infrared, X-ray, and gamma-ray observations. Today, astronomers are investigating the new frontiers of dark matter and dark energy, critical to understanding the Cosmos but of indeterminate socio-economic promise. Harwit addresses these current challenges in view of competing national priorities and proposes alternative new approaches in search of the true Universe. This is an engaging read for astrophysicists, policy makers, historians, and sociologists of science looking to learn and apply lessons from the past in gaining deeper cosmological insight. MARTIN HARWIT is an astrophysicist at the Center for Radiophysics and Space Research and Professor Emeritus of Astronomy at Cornell University. For many years he also served as Director of the National Air and Space Museum in Washington, D.C. For much of his astrophysical career he built instruments and made pioneering observations in infrared astronomy. His advanced textbook, Astrophysical Concepts, has taught several generations of astronomers through its four editions. Harwit has had an abiding interest in how science advances or is constrained by factors beyond the control of scientists. His book Cosmic Discovery first raised these questions. -
An Atomic History Chapter 1
An Atomic History 0-3 8/11/02 7:30 AM Page 6 Chapter One 7 Between 1898 and 1911, this work was continued by Ernest Rutherford, who studied the nature of the radiation emitted by uranium and thorium. Rutherford was the first to discover and name alpha and beta radiation, and link them with Thompson’s electrons. Rutherford also discovered that radioactive elements, whether they were uranium, thorium, or radium, would all spontaneously disintegrate by emitting alpha and beta particles. The 1 Nuclear Awakenings longevity of these elements was determined in "half-lives."6 Albert Einstein not only provided more pieces of the puzzle; he put the puzzle in a new frame. In 1905, while working in the Swiss Patent Office, Einstein prepared five papers on the nature of modern physics, any one of which would have secured his fame. One of the five, and the one for which he later received a Nobel Prize, dealt with the "pho- toelectric effect." In it, Einstein theorized that light is made of discrete packets or "quan- ta," and that the energy of each packet is determined by the wavelength of the light, not its intensity. Two of the five papers dealt with new evidence for the existence and size of atoms and molecules. Another two expounded a radical new theory on the relationship of The work done at the Savannah River Site is the culmination of over a hundred time and space: one dealt with the theory of relativity, while the other posited that mass years of nuclear research. Modern physics, the study of the properties, changes, and inter- has energy—expressed as the equation "E=mc2."7 This equation became one of the hall- actions of matter and energy, is basically the study of the atom and its components. -
Chapter 2 the Atom 1
Chapter 2 The Atom 1. Introduction The scientific name for materials is matter. The idea that materials are made up of small particles is often referred to as the particulate nature of matter. In the above experiment: • Particles of the ammonia gas moving from left to right meet up with particles of hydrogen chloride gas moving from right to left. • A white cloudy substance is formed where the particles of hydrogen chloride and ammonia meet. The spreading of gases is called diffusion. 2. History of the Atom Greek philosophers were the first to propose that matter was composed of small particles. They believed that those particles could not be broken down into smaller particles. They called these small particles atoms. Later, in 1808 John Dalton (English chemist) came forward with an atomic theory. His theory may be summarised as follows: 1. All matter is made up of very small particles called atoms. 2. All atoms are indivisible. They cannot be broken down into simpler particles. However, his theory started to be questioned towards the end of the XIX century as a result of a series of experiments. John Dalton: 3. Discovery of the Electron In 1875 William Crookes (English chemist) • Crookes used a vacuum tube - long glass tube with an electrode at each end, inside the tube there was gas at low pressure • Rays travelled from cathode to anode these rays were called cathode rays • They travelled in straight lines – to show the presence of radiation he placed a Maltese cross inside the tube – a sharp shadow in glow formed at end of tube (CNAP – cathode negative, anode positive) Crookes carried out a second experiment to investigate the properties of cathode rays (Crookes Paddle Wheel Experiment) • Consisted of a light paddle wheel mounted on rails in front of the cathode.