Which Drug Class and Why?

Total Page:16

File Type:pdf, Size:1020Kb

Which Drug Class and Why? CLINICAL PRACTICE: Prescribing series Which drug class and why? Sepehr Shakib, MBBS, FRACP, is Clinical Lecturer, Department of Clinical Pharmacology, Royal Adelaide Hospital, and Clinical Lecturer, Clinical and Experimental Pharmacology, University of Adelaide, South Australia. Alison George, MBBS, FRACGP, DipObs, is a general practitioner, Glenunga, South Australia. This is the fourth article in the series on general practice prescribing. This article focusses on the choice of drug class. BACKGROUND Having made the diagnosis, decided on therapeutic goals and the therapeutic approach, the next step is choice of drug class. OBJECTIVE This article discusses the four factors to be considered when choosing an appropriate drug class: efficacy, safety, suitability and cost. DISCUSSION The first consideration in choosing a drug class is the relative efficacy compared with other agents for the particular therapeutic goal. Safety is a broad issue involving adverse reactions, toxicity, tolerance and dependence, teratogenicity, and consideration of special at risk populations. Suitability involves consideration of contraindications to the medication as well as other factors such as the requirements for monitoring, drug formulation and the number of daily doses. Cost includes consideration of drug acquisition as well as the total cost of therapy, including by whom the cost is borne. o far in this prescribing series we have hitting a cyclist is okay, but when you Sdiscussed the issues of therapeutic have children, you go for the Volvo 4WD Case history goals and therapeutic approaches. Now station wagon with extra heavy duty side we get to the juicy bit of how to choose impact protection and 22 front, side, rear, Harold is an active 79 year old man between different drugs to prescribe. In top, and bottom air bags! You then have who lives with his wife. He has had hypertension for years and has been this issue we will cover the choice to think about budgetary constraints, taking a beta blocker. He presents between different drug classes, and in the obviously. There is also another issue to you complaining of transient next issue of Australian Family Physician, though when choosing cars, which I can weakness of his left leg, which you different drugs within a class. The choice only describe as personality: certain cars diagnose as a transient ischemic in both cases is based on four factors: effi- are made for some and obviously not attack (TIA); you also find him to be in slow atrial fibrillation. You organise a cacy, safety, suitability and cost, and we others. Some people I know just wouldn’t CT head scan that shows he has had will be using different examples in each drive that Volvo even if it was given to previous undiagnosed strokes. issue to illustrate the case. them for free! Imagine yourself buying a car: it has to Well, the issue is much the same for get you from point A to B, and it can do drugs. Look at the case of Harold. The alone helps prevent strokes). What would that with varying degrees of efficacy in therapeutic goal in treating Harold’s you prescribe to prevent a stroke: aspirin, terms of the reliability of the car, the atrial fibrillation would be to improve the warfarin or other? amount of acceleration it has, its respon- symptoms it is giving him, and to prevent siveness, handling and fuel efficiency. complications such as stroke. The thera- Efficacy You also want the car to be safe. At dif- peutic approach would be to either aim First let’s consider the issue of efficacy: in ferent stages in your life, the importance for rate control and anticoagulation or metaanalysis of clinical trials, warfarin is of safety will differ: when you are young a rhythm control and anticoagulation associated with an approximate 70% risk sports car that comes off second best (there is no evidence that rhythm control reduction of the incidence of stroke, com- Reprinted from Australian Family Physician Vol. 32, No. 5, May 2003 • 325 n Which drug class and why? pared to only approximately 20% with cious, it cannot be said that they are all farin, and does not have a history of falls, aspirin.1 In Harold’s case his yearly risk of safe (despite the claims made for some warfarin would be suitable for him. Other a stroke without treatment would be pharmaceuticals by their manufacturers). pertinent issues to consider would be approximately 8%,2,3 hence with warfarin All drugs have some element of toxicity. regarding transport, support from his wife, his risk of stroke would go down to Most prescribers would be familiar with and his ability to alter warfarin doses approximately 2.4% (5.6% yearly predictable or idiosyncratic adverse drug according to telephone advice. absolute risk reduction) and with aspirin reactions. Other aspects of safety to con- The suitability of a medication is his risk would still be approximately 6.4% sider are: usually thought of as contraindications (only 1.6% absolute risk reduction). • the potential for chronic toxicity that a patient has to it, eg. history of falls For drugs to be approved by the (eg. pulmonary fibrosis with amiodarone, with warfarin. It is not just about con- Therapeutics Goods Administration nitrofurantoin or methotrexate) traindications, however, and is a much (TGA), they have to have proven effi- • acute toxicity (eg. digoxin, lithium, broader issue when selecting between cacy. The important issue is really relative theophylline) different drug classes. It may also have efficacy compared to the use of other • issues of dependence and withdrawal, to do with the requirements for addi- agents. In the example of Harold, antico- and tional investigations associated with the agulation with warfarin is clearly more • the possibility of teratogenicity. use of a particular drug such as elec- efficacious in preventing strokes than One also needs to consider whether trolyte monitoring with loop diuretics, aspirin, but this is not the only issue. there are particular at risk populations serum concentrations with digoxin, who are more likely to suffer from the phenytoin, perhexiline (especially in a Safety drug’s toxicity (Table 2). patient with needle phobia). Other issues A common reason why clinicians do not are the formulation of the medication, anticoagulate patients such as Harold is Suitability the number of daily doses and the pack- concerns about bleeding.4–6 The bleeding Next let’s consider the suitability of differ- aging of the medication, such as in the risk associated with aspirin use is approxi- ent forms of anticoagulation for Harold. case of paediatric antibiotic syrups mately 0.5–1.0% per year. Metaanalysis Aspirin comes as an easy to administer where the taste can be an important of trials demonstrate there is an approxi- once per day tablet, and even if he forgets issue! Suitability may also have to do mate 0.45% gastrointestinal,7 and 0.04% to take it for a day, because of its irre- with whether the medication comes in a intracerebral8 risk of bleeding per year. versible platelet inhibition, there is no loss ‘one size fits all’ dose, or whether it has There is evidence from cohort studies to of efficacy. Warfarin on the other hand, to be carefully titrated to effect. suggest the absolute rate of bleeding is requires regular monitoring as well as Suitability also has a psychological com- greater in elderly patients.9 There is some greater patient education regarding the ponent such as in the case of cancer evidence of a higher incidence of bleeding importance of compliance and drug and patients who refuse to take morphine at higher doses,10,11 but it is clear that com- food interactions. Given that Harold is because they feel that it represents plications do occur at a substantial rate at active, has no contraindications to war- giving up, or decisions regarding drug doses of 100–150 mg per day. The annual bleeding rate with war- Table 1. Five point warfarin bleeding index14 farin is considerably higher than with aspirin. The average risk of major haem- Score 1 point each for orrhage is estimated to be approximately • age >65 3% per year,12 but this varies with age, • history of gastrointestinal bleeding blood pressure, likelihood of falls, and • history of stroke excessive anticoagulation or factors pre- • any of: diabetes, recent myocardial infarction, haematocrit <30%, creatinine >.12 mmol/L disposing to it such as confusion, dementia, etc.13 A number of scoring tools Risk of bleeding in patients on warfarin treatment have been developed to help predict the Time after Low risk Intermediate risk High risk risk of haemorrhage in patients taking commencement (0 points) (1–2 points) (3–4 points) warfarin in whom absolute contraindica- 6 months 3% 8% 16% tions such as falls or alcohol abuse do not 12 months 3% 8% 30% apply (Table 1).14,15 48 months 3% 12% 53% Although it can be said that all drugs now approved by the TGA are effica- 326 • Reprinted from Australian Family Physician Vol. 32, No. 5, May 2003 Which drug class and why? n therapy being influenced by previous Table 2. At risk populations for particular medications favourable or unfavourable experiences with drugs or diseases, eg. family Medication Adverse reaction At risk group members who have had intracerebral ACE inhibitor, Acute renal impairment Elderly angiotensin II Dehydration or high diuretics dose haemorrhage from being prescribed war- antagonists Na+<130 mmol/L farin, or strokes from not being Pre-existing renal disease anticoagulated for atrial fibrillation. Taking NSAIDs or COX-II inhibitors Sulphonylureas, Hypoglycaemia Living alone Cost insulin Cognitive impairment The cost of a medication warrants an Metformin Lactic acidosis Cardiac failure, hepatic failure, entire series of articles to itself.
Recommended publications
  • PROZAC Product Monograph Page 1 of 49 Table of Contents
    PRODUCT MONOGRAPH PrPROZAC® fluoxetine hydrochloride 10 mg and 20 mg Capsules Antidepressant / Antiobsessional / Antibulimic © Eli Lilly Canada Inc. Date of Revision: January, 25 Exchange Tower 2021 130 King Street West, Suite 900 PO Box 73 Toronto, Ontario M5X 1B1 1-888-545-5972 www.lilly.ca Submission Control No: 192639 PROZAC Product Monograph Page 1 of 49 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION .......................................................3 SUMMARY PRODUCT INFORMATION...........................................................................3 INDICATIONS AND CLINICAL USE ................................................................................3 CONTRAINDICATIONS .....................................................................................................4 WARNINGS AND PRECAUTIONS ....................................................................................5 ADVERSE REACTIONS ...................................................................................................13 DRUG INTERACTIONS....................................................................................................22 DOSAGE AND ADMINISTRATION ................................................................................27 OVERDOSAGE..................................................................................................................28 ACTION AND CLINICAL PHARMACOLOGY ...............................................................30 STORAGE AND STABILITY............................................................................................32
    [Show full text]
  • The Myocardial Metabolic and Haemodynamic Effects of Perhexiline in I]Y Wvo and Nv Vitro Models
    THE MYOCARDIAL METABOLIC AND HAEMODYNAMIC EFFECTS OF PERHEXILINE IN I]Y WVO AND NV VITRO MODELS Steven Anthony Unger A Thesis submitted to The University of Adelaide as the requirement for the degree of Doctor of Philosophy The Cardiology Unit, North.Western Adelaide Health Service Department of Medicine, The University of Adelaide. September 2000 u TABLE OF CONTENTS Table of Contents ll Thesis Summary vlt Dcclaration ix Acknowledgments x CHAPTER 1: A LITERATURE REVIEW OF METABOLIC APPROACHES TO MYOCARDIAL ISCHAEMIA I 1.1 INTRODUCTION 2 7.2 CHRONIC MYOCARDIAL ISCHAEMIA 3 1.2.1 Epidemiology 3 1.2.2 Pathogenesis 4 1.3 CARDIAC METABOLISM 7 1.3.1 Overview offatty acid metabolism 8 1.3.1.1 Uptake and transport within the aqueous cytoplasm 8 1.3.1.2 Transport into mitochondria 9 1.3.1.3 B-oxidation l0 1.3.1.4 TCA cycle and electron transport chain 10 1.3.2 Regulation offatty acid metabolism 11 1.3.3 Oventiew of carbohydrate metabolism 13 1.3.4 Regulation of carbohydrate metabolism 14 ' L3.5 Substrate utilisation by the heart: the cost,in oxygen 16 1.3.6 Myocardial metabolism during ischaemia/reperfusion 18 1.3.7 The role offatty acid metabolites 22 1.4 MANAGEMENT OF CHRONIC MYOCARDIAL ISCHAEMIA 24 1.4.1 Medical therapy 24 alaaìf:a--.--nÁ 1.4. i. i i\iüa[es L+ 1.4.1.2 B-adrenoceptor antagonists 25 lrl 1.4.1.3 L-t1pe calcium antagonists 25 1.4.2 Revascularisation 26 1.4.2.1 Percutaneous transluminal coronary angioplasty 26 1.4.2.2 Coronary artery b¡pass surgery 28 I .4.2.3 Transmyocardial laser revascularisation 29 1.4.3 Limitations of current strategies 30 1.5 METABOLIC APPROACHES TO MYOCARDIAL ISCHAEMIA 32 1.5.1 Increasing glucose supply to the heart 35 1.5.
    [Show full text]
  • 2D6 Substrates 2D6 Inhibitors 2D6 Inducers
    Physician Guidelines: Drugs Metabolized by Cytochrome P450’s 1 2D6 Substrates Acetaminophen Captopril Dextroamphetamine Fluphenazine Methoxyphenamine Paroxetine Tacrine Ajmaline Carteolol Dextromethorphan Fluvoxamine Metoclopramide Perhexiline Tamoxifen Alprenolol Carvedilol Diazinon Galantamine Metoprolol Perphenazine Tamsulosin Amiflamine Cevimeline Dihydrocodeine Guanoxan Mexiletine Phenacetin Thioridazine Amitriptyline Chloropromazine Diltiazem Haloperidol Mianserin Phenformin Timolol Amphetamine Chlorpheniramine Diprafenone Hydrocodone Minaprine Procainamide Tolterodine Amprenavir Chlorpyrifos Dolasetron Ibogaine Mirtazapine Promethazine Tradodone Aprindine Cinnarizine Donepezil Iloperidone Nefazodone Propafenone Tramadol Aripiprazole Citalopram Doxepin Imipramine Nifedipine Propranolol Trimipramine Atomoxetine Clomipramine Encainide Indoramin Nisoldipine Quanoxan Tropisetron Benztropine Clozapine Ethylmorphine Lidocaine Norcodeine Quetiapine Venlafaxine Bisoprolol Codeine Ezlopitant Loratidine Nortriptyline Ranitidine Verapamil Brofaramine Debrisoquine Flecainide Maprotline olanzapine Remoxipride Zotepine Bufuralol Delavirdine Flunarizine Mequitazine Ondansetron Risperidone Zuclopenthixol Bunitrolol Desipramine Fluoxetine Methadone Oxycodone Sertraline Butylamphetamine Dexfenfluramine Fluperlapine Methamphetamine Parathion Sparteine 2D6 Inhibitors Ajmaline Chlorpromazine Diphenhydramine Indinavir Mibefradil Pimozide Terfenadine Amiodarone Cimetidine Doxorubicin Lasoprazole Moclobemide Quinidine Thioridazine Amitriptyline Cisapride
    [Show full text]
  • Drug-Induced Fatty Liver Disease
    789 Drug-induced fatty liver disease. , 2015; 14CONCISE (6): 789-806 REVIEW November-December, Vol. 14 No. 6, 2015: 789-806 Drug-induced fatty liver disease: An overview of pathogenesis and management Sanjaya K. Satapathy,* Vanessa Kuwajima,** Jeffrey Nadelson,** Omair Atiq,*** Arun J. Sanyal**** * Methodist University Hospital Transplant Institute, Division of Surgery, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA. ** Division of Gastroenterology and Hepatology, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA. *** University of Texas Southwestern, Dallas, Texas, USA. **** Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University Health System, Richmond, Virginia, USA. ABSTRACT Over the past decades, many drugs have been identified, that can potentially induce steatohepatitis in the predisposed individual. Classically this has been incriminated to amiodarone, perhexiline, and 4,4’-diethyla- minoethoxyhexestrol (DH), all of which have been found to independently induce the histologic picture of non-alcoholic steatohepatitis (NASH). Pathogenetic mechanisms of hepatotoxicity although still evolving, demonstrate that mitochondrial dysfunction, deranged ATP production and fatty acid catabolism likely play an important role. Drugs like steroid hormones can exacerbate the pathogenetic mechanisms that lead to NASH, and other drugs like tamoxifen, cisplatin and irenotecan have been shown to precipitate la- tent fatty liver as well. Further research aiming to elucidate
    [Show full text]
  • Drug-Induced Inhibition of Mitochondrial Fatty Acid Oxidation
    Drug-Induced Inhibition of Mitochondrial Fatty Acid Oxidation and Steatosis Julie Massart, Karima Begriche, Nelly Buron, Mathieu Porceddu, Annie Borgne-Sanchez, Bernard Fromenty To cite this version: Julie Massart, Karima Begriche, Nelly Buron, Mathieu Porceddu, Annie Borgne-Sanchez, et al.. Drug- Induced Inhibition of Mitochondrial Fatty Acid Oxidation and Steatosis. Current Pathobiology Re- ports, Springer, 2013, 1 (3), pp.147-157. 10.1007/s40139-013-0022-y. hal-00860237 HAL Id: hal-00860237 https://hal-univ-rennes1.archives-ouvertes.fr/hal-00860237 Submitted on 10 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Heading for SpringerLink.com: Mitochondrial Dysfunction and Diseases (H Jaeschke, Section Editor) Drug-Induced Inhibition of Mitochondrial Fatty Acid Oxidation and Steatosis Julie Massart Karima Begriche Nelly Buron Mathieu Porceddu Annie Borgne-Sanchez Bernard Fromenty K. Begriche B. Fromenty () INSERM, U991, Université de Rennes 1 2, avenue du Professeur Léon Bernard 35043 Rennes Cedex, France e-mail: [email protected]
    [Show full text]
  • Abnormal Laboratory Results Therapeutic Drug Monitoring
    Abnormal laboratory results Therapeutic drug monitoring: which drugs, why, when and how to do it RA Ghiculescu, Senior Clinical Pharmacology Registrar, Department of Clinical Pharmacology, Princess Alexandra Hospital, Brisbane Summary Which drugs? Therapeutic drug monitoring of concentrations of When an effect, such as changes in blood pressure, pain or drugs in body fluids, usually plasma, can be used serum cholesterol is readily measured, the dose of a drug during treatment and for diagnostic purposes. The should be adjusted according to the response. Monitoring drug concentration is more useful when drugs are used to selection of drugs for therapeutic drug monitoring prevent an adverse outcome, for example, graft rejection or to is important as the concentrations of many avoid toxicity, as with aminoglycosides. A drug should satisfy drugs are not clearly related to their effects. For certain criteria to be suitable for therapeutic drug monitoring. selected drugs therapeutic drug monitoring aims Examples include: to enhance drug efficacy, reduce toxicity or assist n narrow target range with diagnosis. Despite its apparent advantages, n significant pharmacokinetic variability it has inherent limitations. Some large hospitals n a reasonable relationship between plasma concentrations have services which provide support with drug and clinical effects monitoring and interpretation of results. n established target concentration range Key words: pharmacokinetics. n availability of cost-effective drug assay. (Aust Prescr 2008;31:42–4) The most commonly monitored drugs are probably Introduction carbamazepine, valproate and digoxin. However, there is little The monitoring of therapeutic drugs involves measuring drug evidence that monitoring concentrations of anticonvulsants concentrations in plasma, serum or blood.
    [Show full text]
  • DOMASYS Standard
    New Zealand Data Sheet Optisulin – insulin glargine NEW ZEALAND DATA SHEET 1 PRODUCT NAME Optisulin 100 IU/mL solution for injection in 10 mL vials. Optisulin 100 IU/mL solution for injection in 3 mL cartridges. Optisulin SoloStar 100 IU/mL solution for injection in a 3 mL pre-filled pen. 2 QUALITATIVE AND QUANTITATIVE COMPOSITION Optisulin contains 100 IU/mL (3.6378 mg/mL) insulin glargine. Optisulin 100 IU/mL solution for injection in 10 mL vials - equivalent to 1000 IU. Optisulin 100 IU/mL solution for injection in 3 mL cartridges - equivalent to 300 IU. Optisulin SoloStar 100 IU/mL solution for injection in a 3 mL pre-filled pen – equivalent to 300 IU. Insulin glargine is produced by recombinant DNA technology in Escherichia coli. For the full list of excipients, see section 6.1. 3 PHARMACEUTICAL FORM Optisulin is a sterile solution of insulin glargine in vials and cartridges for use as an injection. 4 CLINICAL PARTICULARS 4.1 THERAPEUTIC INDICATIONS Optisulin is an insulin analogue indicated for once-daily subcutaneous administration in the treatment of type 1 or type 2 diabetes mellitus patients who require insulin for the control of optisulin-ccdsv20-dsv2-27jan21 Page 1 New Zealand Data Sheet Optisulin – insulin glargine hyperglycaemia. 4.2 DOSE AND METHOD OF ADMINISTRATION Dose Optisulin is an insulin analogue, equipotent to human insulin, with a peakless glucose lowering profile and a prolonged duration of action that permits once daily dosing. The desired blood glucose levels as well as the doses and timing of any antidiabetic medication, including Optisulin, must be determined and adjusted individually.
    [Show full text]
  • Repositioning Fda-Approved Drugs in Combination with Epigenetic Drugs to Reprogram Colon Cancer Epigenome
    Author Manuscript Published OnlineFirst on December 15, 2016; DOI: 10.1158/1535-7163.MCT-16-0588 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. REPOSITIONING FDA-APPROVED DRUGS IN COMBINATION WITH EPIGENETIC DRUGS TO REPROGRAM COLON CANCER EPIGENOME Noël J.-M. Raynal1,2, Elodie M. Da Costa2, Justin T. Lee1, Vazganush Gharibyan3, Saira Ahmed3, Hanghang Zhang1,Takahiro Sato1, Gabriel G. Malouf4, and Jean-Pierre J. Issa1 1Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, PA, 19140, USA. 2Département de pharmacologie, Université de Montréal and Sainte-Justine University Hospital Research Center, 3175, Chemin de la Côte-Sainte- Catherine, Montréal (Québec) H3T 1C5, Canada. 3Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA. 4Department of Medical Oncology, Groupe Hospitalier Pitié-Salpêtrière, University Pierre and Marie Curie (Paris VI), Institut Universitaire de cancérologie, AP-HP, Paris, France. Note: Supplementary data for this article are available at Molecular Cancer Therapeutics Online (http://mct.aacrjournals.org/). Corresponding Author: Noël J.-M. Raynal, Département de Pharmacologie, Université de Montréal , Centre de recherche de l’Hôpital Sainte-Justine, 3175, Chemin de la Côte-Sainte-Catherine, Montréal (Québec), H3T 1C5, Canada. Phone : (514) 345-4931 ext. 6763. Email : [email protected] Running title: High-throughput screening for epigenetic drug combinations Key words: Drug repurposing, Drug combination, High-throughput drug screening, Epigenetic therapy The authors declare no potential conflicts of interest. 1 Downloaded from mct.aacrjournals.org on September 23, 2021.
    [Show full text]
  • Inhibition of Mitochondrial Fatty Acid Oxidation in Drug-Induced Hepatic Steatosis*
    Liver Research 3 (2019) 157e169 Contents lists available at ScienceDirect Liver Research journal homepage: http://www.keaipublishing.com/en/journals/liver-research Review Article Inhibition of mitochondrial fatty acid oxidation in drug-induced hepatic steatosis* Bernard Fromenty INSERM, UMR 1241, Universite de Rennes 1, Rennes, France article info abstract Article history: Mitochondrial fatty acid oxidation (mtFAO) is a key metabolic pathway required for energy production in Received 17 April 2019 the liver, in particular during periods of fasting. One major consequence of drug-induced impairment of Received in revised form mtFAO is hepatic steatosis, which is characterized by an accumulation of triglycerides and other lipid 16 May 2019 species, such as acyl-carnitines. Actually, the severity of this liver lesion is dependent on the residual Accepted 14 June 2019 mitochondrial b-oxidation flux. Indeed, a severe inhibition of mtFAO leads to microvesicular steatosis, hypoglycemia and liver failure. In contrast, moderate impairment of mtFAO can cause macrovacuolar Keywords: steatosis, which is a benign lesion in the short term. Because some drugs can induce both microvesicular Drug-induced liver injury (DILI) Steatosis and macrovacuolar steatosis, it is surmised that severe mitochondrial dysfunction could be favored in Mitochondria some patients by non-genetic factors (e.g., high doses and polymedication), or genetic predispositions b-Oxidation involving genes that encode proteins playing directly or indirectly a role in the mtFAO pathway. Example Acetaminophen (APAP) of drugs inducing steatosis include acetaminophen (APAP), amiodarone, ibuprofen, linezolid, nucleoside Troglitazone reverse transcriptase inhibitors, such as stavudine and didanosine, perhexiline, tamoxifen, tetracyclines, troglitazone and valproic acid. Because several previous articles reviewed in depth the mechanism(s) whereby most of these drugs are able to inhibit mtFAO and induce steatosis, the present review is rather focused on APAP, linezolid and troglitazone.
    [Show full text]
  • Perhexiline Maleate in the Treatment of Fibrodysplasia Ossificans Progressiva
    Kitoh et al. Orphanet Journal of Rare Diseases 2013, 8:163 http://www.ojrd.com/content/8/1/163 RESEARCH Open Access Perhexiline maleate in the treatment of fibrodysplasia ossificans progressiva: an open-labeled clinical trial Hiroshi Kitoh1*, Masataka Achiwa2, Hiroshi Kaneko1, Kenichi Mishima1, Masaki Matsushita1, Izumi Kadono3, John D Horowitz4, Benedetta C Sallustio4, Kinji Ohno5 and Naoki Ishiguro1 Abstract Background: Currently, there are no effective medical treatment options to prevent the formation of heterotopic bones in fibrodysplasia ossificans progressiva (FOP). By the drug repositioning strategy, we confirmed that perhexiline maleate (Pex) potentially ameliorates heterotopic ossification in model cells and mice. Here, we conducted a prospective study to assess the efficacy and safety of Pex in the treatment of FOP patients. Methods: FOP patients in this open-label single-center study were treated with Pex for a total of 12 months, and followed up for 12 consecutive months after medication discontinuation. The safety of the treatment was assessed regularly by physical and blood examinations. The efficacy of Pex for preventing heterotopic ossifications was evaluated by the presence of flare-ups, measurements of serum bone markers, and changes in the total bone volume calculated by the three-dimensional computed tomography (3D-CT) images. Results: Five patients with an average age of 23.4 years were enrolled. Within safe doses of Pex administration in each individual, there were no drug-induced adverse effects during the medication phase. Three patients showed no intense inflammatory reactions during the study period, while two patients had acute flare-ups around the hip joint without evidence of trauma during the medication phase.
    [Show full text]
  • Guidance for Industry Drug-Induced Liver Injury: Premarketing Clinical Evaluation, Final, July 2009
    Guidance for Industry Drug-Induced Liver Injury: Premarketing Clinical Evaluation U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) July 2009 Drug Safety Guidance for Industry Drug-Induced Liver Injury: Premarketing Clinical Evaluation Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave., Bldg. 51, rm. 2201 Silver Spring, MD 20993-0002 Tel: 301-796-3400; Fax: 301-847-8714; E-mail: [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm or Office of Communication, Outreach, and Development, HFM-40 Center for Biologics Evaluation and Research Food and Drug Administration 1401 Rockville Pike, Rockville, MD 20852-1448 Tel: 800-835-4709 or 301-827-1800 http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) July 2009 Drug Safety TABLE OF CONTENTS I. INTRODUCTION............................................................................................................. 1 II. BACKGROUND: DILI ................................................................................................... 2 III. SIGNALS OF DILI AND HY’S
    [Show full text]
  • Supplemental Material BMJ Open Doi: 10.1136/Bmjopen-2020-039104 :E039104. 10 2020; BMJ Open , Et Al. Randall SM
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Open Supplementary Table 1 – Injury categories Injury Category ICD Codes Fractures S02, S12, S22, S32, S42, S52, S62, S72, S82, S92, T02.1-5, T02.8-9, T08, T10, T12, T14.2, T90.2, T91.1-2 T92.1-2, T93.1-2 Open Wounds S01, S05.2, S05.3, S05.4, S05.5, S05.6, S05.7, S08.0, S09.2, S11, S21, S31.0-5, S31.7-8, S41, S51, S61, S71.0-8, S81, S91, T01.2-3, T01.9, T09.1, T11.1, T13.1, T14.1, T90.1, T92.0, T93.0, Contusions and superficial S00, S05.0-1, S10, S20, S30.0-2, S30.7-9, S40, S50, S60, S70, S80, S90, T00.2-3, T00.8- injuries 9, T09.0, T11.0, T13.0, T14.0, T90.0 Dislocations S03.0-3, S13.0-3, S23.0-3, S33.0-4, S43.0-3, S53.0-1, S63.0-2, S66, S73.0, S83, S86, S93.0-1, S93.3 Internal organ injuries S06, S14.0-2, S24.0-1, S26.0, S27.0-6, S27.8-9, S34.0-1, S34.3, S36, S37, S39.6-7, T06.5, T09.3, T90.5, T91.3-5 Foreign bodies T15-9 Amputations S08.1-9, S18, S28.1, S38.2-3, S48, S58, S68, S78, S88, S98, T05.0, T05.2-3, T05.5, T05.8-9, T09.6, T11.6, T13.6 Burns T20-T32 Randall SM, et al.
    [Show full text]