Formation of Two Methylenedioxy Bridges by a Sesamum CYP81Q Protein Yielding a Furofuran Lignan, (+)-Sesamin

Total Page:16

File Type:pdf, Size:1020Kb

Formation of Two Methylenedioxy Bridges by a Sesamum CYP81Q Protein Yielding a Furofuran Lignan, (+)-Sesamin Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (؉)-sesamin Eiichiro Ono*†, Masaaki Nakai‡, Yuko Fukui‡, Namino Tomimori‡, Masako Fukuchi-Mizutani*, Masayuki Saito*, Honoo Satake§, Takaharu Tanaka*§, Masumi Katsuta¶, Toshiaki Umezawaʈ, and Yoshikazu Tanaka* Institutes for *Advanced Technology, ‡Healthcare Science, and §Bioorganic Research, Suntory, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima, Osaka 618-8503, Japan; ¶Department of Field Crop Research, National Institute of Crop Science, 2-1-18 Kan-non dai, Tsukuba, Ibaragi 305-8518, Japan; and ʈResearch Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan Communicated by Takayoshi Higuchi, Kyoto University, Kyoto, Japan, May 11, 2006 (received for review March 10, 2006) ؉)-Sesamin, a furofuran class lignan, is widespread in vascular of achiral E-coniferyl alcohol (Fig. 1A) (19–21). (ϩ)-Piperitol is) plants and represented by Sesamum spp. (؉)-Sesamin has been of synthesized from it by formation of a methylenedioxy bridge rapidly growing interest because of its beneficial biological effects (22), and (ϩ)-sesamin also is synthesized from (ϩ)-piperitol by in mammals, but its biosynthesis and physiological roles in plants formation of such a bridge (23). These two stepwise methyl- remain to be clarified. It is speculated to be synthesized from enedioxy bridge formations were postulated to be catalyzed by (؉)-pinoresinol by means of (؉)-piperitol by formation of two two consecutively acting S. indicum cytochrome P450 (SiP450) methylenedioxy bridges mediated by two distinct Sesamum indi- enzymes, piperitol synthase (PS) and sesamin synthase (SS), cum cytochrome P450 (SiP450) proteins. Here, we report an SiP450, because only PS activity was observed in sesame seed micro- CYP81Q1, that alone catalyzes (؉)-sesamin biosynthesis from (؉)- somes, and the methylenedioxy bridge formation was inhibited .(pinoresinol by means of (؉)-piperitol by forming two methyl- by various cytochrome P450 enzyme inhibitors (22) (Fig. 1A enedioxy bridges. The CYP81Q1 gene expression profile was tem- In alkaloid biosynthesis, methylenedioxy bridge formations porally consistent with the accumulation pattern of (؉)-sesamin have for the first time been known to be cytochrome P450- during seed development. The CYP81Q1-GFP chimera protein was dependent (24, 25). Eventually, CYP719A1 was identified from colocalized with an endoplasmic reticulum (ER)-targeting chimera Coptis japonica as the first methylenedioxy bridge-forming P450 protein, indicating that (؉)-sesamin biosynthesis occurs on the ER involved in isoquinoline alkaloid biosynthesis (26). This finding cytoplasmic surface. Moreover, we isolated two CYP81Q1 ho- suggested that SiP450s, which belong to the CYP719A subfamily, mologs from other Sesamum spp. Sesamum radiatum CYP81Q2 are involved in (ϩ)-sesamin biosynthetic methylenedioxy bridge showed dual (؉)-piperitol͞(؉)-sesamin synthetic activity. formations. Since then, SiP450 genes have been identified by CYP81Q2, as well as CYP81Q1, therefore, corresponds to a (؉)- comparative EST analysis of sesame seeds, but their functions .(piperitol͞(؉)-sesamin synthase in lignan biosynthesis. In contrast, have yet to be examined (27 Sesamum alatum CYP81Q3 showed no activity, in accord with To clarify the underlying mechanism of (ϩ)-sesamin biosyn- ؉)-sesamin being deficient in S. alatum. Our findings not only thesis, we comprehensively investigated the SiP450 genes that) provide insight into lignan biosynthesis but also unravel a unique are responsible for SS. Interestingly, we identified a previously mode of cytochrome P450 action. uncharacterized SiP450, CYP81Q1, which serves both (ϩ)- sesamin and (ϩ)-piperitol by formation of methylenedioxy P450 ͉ Sesamum indicum ͉ pinoresinol ͉ piperitol bridges on (ϩ)-piperitol and (ϩ)-pinoresinol, respectively. Namely, CYP81Q1 corresponds to a (ϩ)-piperitol͞(ϩ)-sesamin esame (Pedaliaceae, Sesamum indicum L.), a major oil seed synthase (PSS). Unexpectedly, CYP81Q1 has only 24% amino crop of high nutritional value, is widely cultivated throughout acid sequence identity to CYP719A1. We also identified a S functional homolog of CYP81Q1 in Sesamum radiatum,evi- the world. Sesame oil, Ϸ50% of seed weight, contains large dence that this methylenedioxy bridge-forming enzyme is struc- amounts of natural antioxidants (1, 2). The potent antioxidant turally and functionally conserved in the Sesamum genus. Our properties of sesame seed extract mainly are attributable to the findings provide the biochemical and genetic tools to produce a presence of lignans (3). Lignans are phenylpropanoid dimers in beneficial natural product, (ϩ)-sesamin. which phenylpropane units are linked by the central carbons of the side chains, and they constitute an abundant class of phe- Results nylpropanoids (4). They are widely distributed in vascular plants. Sesame Lignans Are Synthesized Specifically in the Later Phase of (ϩ)-Sesamin, first isolated in 1890, is a major furofuran lignan Seed Development. Lignan mixtures extracted from S. indicum in sesame seeds and is distinguished by two characteristic seeds at six developmental stages, germinating seeds, and leaves methylenedioxy bridges (2) (Fig. 1A). It has a growth-retarding were analyzed by HPLC (Fig. 1B). (ϩ)-Sesamin, detected first at effect on some plants, as well as a synergistic effect with stage 4, reached a maximum at stage 5 and then was slightly pyretherum insecticides (5, 6). (ϩ)-Sesamin has been shown to decreased at stage 6 in fully matured seeds (Fig. 1C). On have a wide range of biological effects: protection against germination, (ϩ)-sesamin content markedly was decreased, in- ethanol- and carbon tetrachloride-induced liver damage (7, 8), improvement of fatty acid metabolism (9–11), antiinflammatory effects (12), increased vitamin E activities (13, 14), inhibition of Conflict of interest statement: No conflicts declared. vascular superoxide production (15, 16), and induction of nitric Abbreviations: SiP450, Sesamum indicum cytochrome P450; RT, retention time; PSS, (ϩ)- oxide (17). Therefore, it is an extremely interesting natural piperitol͞(ϩ)-sesamin synthase; PS, piperitol synthase; SS, sesamin synthase. compound from the viewpoint of health care (18). Data deposition: The sequences reported in this paper have been deposited in the DNA The (ϩ)-sesamin biosynthetic pathway has been deduced from Databank of Japan database [accession nos. AB194714 (CYP81Q1), AB194715 (CYP81Q2), results of radioisotope tracer and enzymatic experiments (19). and AB194716 (CYP81Q3)]. (ϩ)-Pinoresinol, the first lignan in the lignan pathway, is syn- †To whom correspondence should be addressed. E-mail: eiichiro࿝[email protected]. thesized by stereoselective phenoxy radical coupling of two units © 2006 by The National Academy of Sciences of the USA 10116–10121 ͉ PNAS ͉ June 27, 2006 ͉ vol. 103 ͉ no. 26 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0603865103 Downloaded by guest on September 25, 2021 Fig. 2. Gene expression analyses by RT-PCR. Temporal CYP81Q1 expression patterns during seed development (A) and in aerial organs (B). C3H is S. indicum p-coumarate 3-hydroxylase (CYP98A20) expressed in phenylpro- panoid biosynthesis (29). ger, germinating seeds treated with H2O for 2 days; l, leaves; p, petals; st, stems; sp, seed pods. in the later phases of seed development (Fig. 1C). Consequently, a cDNA library was constructed from seeds in stages 4–5 and screened with probe mixtures of 13 Arabidopsis cytochrome P450 genes. To obtain various SiP450 genes, these probes were selected from different P450 subfamilies. One hundred ninety- two positive clones were obtained after a second screening and clustered finally in 17 independent molecular species of SiP450. To further screen these candidate SiP450 genes, their expression patterns were examined by RT-PCR. One candidate SiP450, SiP189, had an expression profile consistent with the develop- mental accumulation pattern of (ϩ)-sesamin. Its expression began at stage 3, reached a maximum at stage 4, and then decreased before seed maturation was complete (Figs. 1C and 2A). It also was expressed in leaves but not in germinating seeds, petals, or stems, whereas the S. indicum p-coumarate 3-hydrox- ylase (C3H, CYP98A20) gene, which is involved in phenylpro- panoid pathway, was expressed ubiquitously (Fig. 2B) (29). SiP189 bears an ORF of 1,518 bp for 506 aa (Fig. 3B). It has 52%, 49%, and 24% amino acid sequence identity, respectively, to a functionally unknown Arabidopsis P450, CYP81D2 (NM 119899); Glycyrrhiza CYP81E1, catalyzing a 2Ј hydroxylation of isoflavone (30); and Coptis CYP719A1 (26) (Fig. 3 A and C). The SiP189 gene has a single 171-bp intron 898 bp downstream from the start codon, whereas the CYP81D2 gene has two introns in its genomic structure (Fig. 3B). Southern blot analysis showed Fig. 1. Developmental regulation of lignan biosynthesis. (A) Lignan struc- that the SiP189 gene exists as a single gene in the S. indicum tures in Sesamum spp. (B) Sesame seed development. Numbers correspond to genome (Fig. 3C). SiP189 has been designated CYP81Q1 by the developmental seed stages. (Scale bars: Upper, 1 cm; Lower, 2 mm.) (C) P450 nomenclature committee. It has conserved regions in Developmental accumulation changes in five sesame lignans determined by cytochrome P450 proteins (Fig. 6, which is published as sup- HPLC after treatment with ␤-glucosidase. ND, not detected. porting information on the PNAS web site), a helix K region, an PLANT BIOLOGY
Recommended publications
  • Evaluation of Phytochemicals Analysis, Medicinal Properties and Nutritional Value of Sesame Seeds (Sesamum Indicum.L)
    International Journal of Modern Biology and Medicine, 2015, 6(2): 129-135 International Journal of Modern Biology and Medicine ISSN: 2165-0136 Journal homepage: www.ModernScientificPress.com/Journals/IJBioMed.aspx Florida, USA Article Evaluation of Phytochemicals Analysis, Medicinal Properties and Nutritional Value of Sesame Seeds (Sesamum indicum.L) Kaliyamoorthy Jayakumar1*, T.M. Sathees kannan, P. Thamizhiniyan2 and P.Vijayarengan2 1Department of Botany, A.V.C College (Autonomous), Mannampandal 609 305, Tamil Nadu, India 2Department of Botany, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India * Author to whom correspondence should be addressed; E-Mail: [email protected]. Article history: Received 1 July 2015, Revised 1 August 2015, Accepted 18 August 2015, Published 22 August 2015. Abstract: The present investigation was carried to find out the evaluation of Phytochemicals analysis, medicinal properties and nutritional value of sesame seeds (Sesamum indicum.L). Phytochemicals such as, alkaloids, saponins, tannins, glycosides and flavonoids are present in sesame seeds. The mineral content and phytochemical of sesame seeds cure various diseases like, diabetes, anemia cardiovascular health, anti-cancer, digestive health, rheumatoid arthritis, respiratory health, protection from radiation damage, bone health, oral health, anxiety and lower cholesterol. Keywords: Seasame seeds, Phytochemicals, Medicinal properties. 1. Introduction Sesame seed is one of the oldest oilseed crops known, domesticated well over 3000 years ago. Sesame has many species, most being wild and native to sub-Saharan Africa. Sesamum indicum, the cultivated type, originated in India. (Raghay et al., 1990). Sesame is highly tolerant to drought like conditions, and grows where other crops may fail. Sesame is drought tolerant, but as with every crop will do better with more moisture.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
    Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000
    [Show full text]
  • Growth and Production of Sesame – Elly Kafiriti and Omari Mponda
    SOILS, PLANT GROWTH AND CROP PRODUCTION – Growth And Production of Sesame – Elly Kafiriti and Omari Mponda GROWTH AND PRODUCTION OF SESAME Elly Kafiriti and Omari Mponda Naliendele Agricultural Research Institute, Ministry of Agriculture Food Security and Co-operatives, Mtwara, Tanzania. Keywords: Broadcasting, capsules, drought resistance, intercropping, land clearing, low productivity, pest and diseases, plant residues, self pollination, water logging. Contents 1. Introduction 2. Origin and Distribution 3. Botany 3.1. Cultivars and Classification 3.2. Structure 3.3. Pollination and Propagation 4. Ecology and Growing Conditions 4.1. Climate Requirements 4.2. Soil Requirements 5. Land and Crop Husbandry 5.1. Land Clearing 5.2. Planting and Land Management 5.3. Pests and Diseases 5.4. Crop Forecasting 5.5. Harvesting 6. Milling and Oil Processing 7. Use 8. Production and Trade 9. Perspectives in Sesame Production Glossary Bibliography Biographical Sketch Summary SesameUNESCO is one of the most ancient oil crops – known EOLSS to mankind. It is grown as a rain fed crop throughout the tropics and subtropics. It is a short-day plant but also grows well in long-day areas. The crop thrives best on moderately fertile, well-drained soils with a pH ranging from 5.5SAMPLE to 8.0 and is sensitive to salinity. CHAPTERS Sesame is cultivated both by smallholders and at larger industrial scales. Sesame propagation is by broadcasting or seed drilling in rows. Broadcasting seeds is the most common seeding method used by smallholder farmers. The seeds are often mixed with sand, soil or ash and then broadcast or drilled by hand in small furrows.
    [Show full text]
  • Floristic Response of Herbaceous Flora to Intensive Cropping Systems: a Case of Ajibode-Sasa Arable Agroecosystem, Ibadan, Southwest Nigeria
    Journal of Agriculture and Ecology Research International 21(10): 25-37, 2020; Article no.JAERI.63899 ISSN: 2394-1073 Floristic Response of Herbaceous Flora to Intensive Cropping Systems: A Case of Ajibode-sasa Arable Agroecosystem, Ibadan, Southwest Nigeria Olayanju, Folasayo Micheal1 and Olubode, Oluseun Sunday1* 1Department of Crop Protection and Environmental Biology, University of Ibadan, Ibadan, Nigeria. Authors’ contributions This work was carried out in collaboration between both authors. Author OOS conceptualized the study. Authors OOS and OFM designed the study, performed the statistical analysis, managed literature searches, and wrote the first draft of the manuscript. Author OOS managed the revisions of manuscript. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/JAERI/2020/v21i1030171 Editor(s): (1) Dr. Nhamo Nhamo, Marondera University of Agricultural Sciences and Technology, Zimbabwe. (2) Dr. Chandra Shekhar Kapoor, Mohan Lal Sukhadia University, India. Reviewers: (1) Lim Hwee San, Universiti Sains Malaysia (USM), Malaysia. (2) Andri Wibowo, University of Indonesia, Indonesia. (3) Hari Om, Bihar Agricultural University, India. Complete Peer review History: http://www.sdiarticle4.com/review-history/63899 Received 11 October 2020 Accepted 19 December 2020 Original Research Article Published 31 December 2020 ABSTRACT Agriculture a most significant land use types which alter natural ecosystem dynamics. Arable farming exerts much pressure on plant biodiversity, especially when practiced intensively in urban centers. There is dearth of information on floristic changes due to intensive arable farming in urban agroecosystems in developing countries. The study therefore assessed floristic changes resulting from and intensive farming practices at Ajibode-Sasa agricultural landscape. Ajibode-Sasa agroecosystem is a complex mix of arable cropping system between latitude N07°28′, E003°53′ and longitude N07°28′, E003°54.
    [Show full text]
  • Drying Kinetics and Chemical Composition of Ceratotheca Sesamoides Endl Leaves
    International Journal of Engineering Applied Sciences and Technology, 2020 Vol. 5, Issue 4, ISSN No. 2455-2143, Pages 456-465 Published Online August 2020 in IJEAST (http://www.ijeast.com) DRYING KINETICS AND CHEMICAL COMPOSITION OF CERATOTHECA SESAMOIDES ENDL LEAVES T.A. Morakinyo, C.T. Akanbi, O.I. Adetoye Department of Food Science and Technology, Obafemi Awolowo University, Ile-Ife, Osun Styate, Nigeria Abstract-This study focused on the drying kinetics of (South-western Nigeria), Karkashi (Northern Nigeria), Ceratotheca sesamoides (False sesame) leaves, Tchaba-laba (Guinea Bissau) and Lalu-caminho (Senegal) determination of its proximate and mineral (Bedigian, 2003, Abiodun, 2017). Ceratotheca sesamoides compositions. The leaves of Ceratotheca sesamoides at leaves tolerates heat and drought with high resistance to 88.59% moisture content (wb) were obtained, sorted, adverse conditions, where other vegetables cannot survive. graded and subjected to a thin layer drying operation This characteristic enhances its wild distribution in various using hot air oven at varying drying temperatures of 50, parts of Africa as weed, commonly dispersed by wind and 60 and 70 oC. Drying data obtained were fitted into eight rainfalls (Bedigian, 2003). In Nigeria and Uganda, it is mathematical models; Page, Modified Page, Midili, sown in fields and intercropped with okra, eggplant, Newton, Two-term, Henderson and Pabis, Logarithmic cowpea, amaranth, sorghum, sweet potato and sesame on and Modified Henderson and Pabis. They were well-drained sandy soils (Bedigian, 2004). compared in values according to their coefficients of determination (R2) and Standard Error of Estimate The harvested fresh green leaves are consumed as a (SEE). Results showed that Page model provided the vegetable mixed with groundnut flour, salt and a little hot best fit for the drying of Ceraotheca sesamoides leaves.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Agromorphological Characterization of Sesamum Radiatum (Schum. and Thonn.), a Neglected
    African Journal of Agricultural Research Vol. 7(24), pp. 3569-3578, 26 June, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.1845 ISSN 1991-637X ©2012 Academic Journals Full Length Research Paper Agromorphological characterization of Sesamum radiatum (Schum. and Thonn.), a neglected and underutilized species of traditional leafy vegetable of great importance in Benin Adéoti K.1, Dansi A.2,3*, Ahoton L.4, Vodouhè R.5, Ahohuendo B. C.4, Rival A.6 and Sanni A.1 1Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences and Technology (FAST), University of Abomey-Calavi (UAC), Cotonou, Republic of Benin. 2Laboratory of Agricultural Biodiversity and Tropical Plant Breeding, Faculty of Sciences and Technology (FAST), University of Abomey-Calavi (UAC), 071BP28, Cotonou, Republic of Benin. 3Crop, Aromatic and Medicinal Plant Biodiversity Research and Development Institute (IRDCAM), 071 BP 28, Cotonou, Republic of Benin. 4Department of Plant Production, Faculty of Agricultural Sciences (FSA), University of Abomey-Calavi (UAC), BP 526 Cotonou, Republic of Benin. 5Bioversity International, Office of West and Central Africa, 08 BP 0931, Cotonou, Republic of Benin. 6Cirad-BioS, UMR DIAPC, Centre IRD. F-34394 Montpellier Cedex5, France. Accepted 14 May, 2012 Sesamum radiatum (Schum. and Thonn) is a traditional leafy vegetable of national importance in Benin. Although, it is cultivated and consumed in many regions of the country, it is still unfortunately neglected by scientific research. In order to fill in the knowledge gaps necessary for its varietal improvement, 16 accessions collected from different agro-ecological zones were characterized using 16 quantitative morphological traits. A significant variability was found among the accessions.
    [Show full text]
  • Plant Biotechnol. 27(4): 317-324 (2010)
    Plant Biotechnology 27, 317–324 (2010) Original Paper Molecular and functional characterization of novel furofuran- class lignan glucosyltransferases from Forsythia Eiichiro Ono1,*, Hyun Jung Kim2, Jun Murata2, Kinuyo Morimoto2, Atsushi Okazawa3, Akio Kobayashi3, Toshiaki Umezawa4, Honoo Satake2 1 Core Research Group, R&D Planning Division, Suntory Holdings Ltd., Suntory Research Center, Mishima, Osaka 618-8503, Japan; 2 Suntory Institute for Bioorganic Research, Mishima, Osaka, 618-8503 Japan; 3 Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; 4 Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan * E-mail: [email protected] Tel: ϩ81-75-962-2244 Fax: ϩ81-75-962-3791 Received February 23, 2010; accepted April 8, 2010 (Edited by T. Aoki) Abstract Lignan is a large class of plant secondary metabolites, which has long attracted pharmacological interest because of its anti-tumor and estrogenic activities. Forsythia plants are known to produce a wide variety of lignans, such as (Ϫ)-matairesinol, (Ϫ)-secoisolariciresinol, (ϩ)-pinoresinol, and (ϩ)-phillygenin. The majority of such lignans are accumulated in glucoside forms. However, their glucosylation mechanisms largely remain to be elucidated. Here we describe the sequence, enzymatic activities, and gene expression profiles of UDP-sugar dependent-glycosyltransferases (UGT) from Forsythia koreana through a reverse-genetic approach. A Forsythia UGT, UGT71A18 protein, expressed in E. coli, preferentially glucosylated furofuran-class lignans, including (ϩ)-pinoreisnol, (ϩ)-epipinoreisnol, and (ϩ)- phylligenin. Moroeover, the recombinant UGT71A18 exhibited specificity to UDP-glucose as a glycosyl donor. Gene expression analysis revealed that UGT71A18 is expressed predominantly in leaves and the suspension cell culture of F.
    [Show full text]
  • Effect of Plant Maturity on the Antinutritent of Sesamum Radiatum Leaves
    Global Journal of Scientific Researches Available online at gjsr.blue-ap.org ©2014 GJSR Journal. Vol. 2(1), pp. 7-11, 31 January, 2014 E-ISSN: 2311-732X Effect of plant maturity on the antinutritent of Sesamum radiatum leaves Oduntan AO*, Olaleye O, Akinwande BA and Fasoyiro SB Corresponding Author: Oduntan AO Received: 25 December, 2013 Accepted: 10 January, 2014 Published: 31 January, 2014 A B S T R A C T This study investigated the effect of maturity on the some antinutritional factors of Sesamum radiatum leaves. Sesamum radiatum seeds were sown on an unfertilized land and the leaves were harvested on weekly basis from the fourth to the tenth week after planting (WAP) when s enenescence has started setting in. Phytate, tannin and oxalate of the plant were determined using A.O.A.C standard methods. The results obtained showed that the tannin ranges between 1.20 mg/100g – 5.60mg/100g, phytate ranges between 1.65 mg/100g – 3.82 mg/100g and oxalate increase from 4WAP (2.84 mg/100g) to 10WAP (4.64 mg/100g). The antinutritional factors were significantly (p< 0.05) affected by the maturity of the leaves. Furthermore, oxalate increase with increase in mat urity of the leaves. The study indicated that as the leaf matures the antinutrient increases. The optimum value for tannin, oxalate and phytate for human use was observed at 9 WAP. Keywords: Antinutrient, age of plant, leaves, Sesamum radiatum. ©2014 GJSR Journal All rights reserved. INTRODUCTION Sesamum radiatum belongs to the family Pedaliaceae, It is a leafy vegetable locally called Ekuku gogoro in Yoruba language, beni or gingelly (English), ‘ridi’ (Hausa) (Gill, 1992) and belonging to the group of indigenous vegetables that grow in small quantity in the rural areas.
    [Show full text]
  • Functional Properties of Sesame (Sesamum Indicum Linn) Seed Protein Fractions Atinuke O
    Idowu et al. Food Production, Processing and Nutrition (2021) 3:4 Food Production, Processing https://doi.org/10.1186/s43014-020-00047-5 and Nutrition RESEARCH Open Access Functional properties of sesame (Sesamum indicum Linn) seed protein fractions Atinuke O. Idowu1,2* , Adeola M. Alashi2 , Ifeanyi D. Nwachukwu2,3 , Tayo N. Fagbemi4 and Rotimi E. Aluko2,5* Abstract This work evaluated the functional properties of sesame protein fractions in order to determine their potential in food applications. Sesame seed protein fractions were prepared according to their solubility: water-soluble (albumin), salt- soluble (globulin), alkaline-soluble (glutelin) and ethanol-soluble (prolamin). Globulin was the most abundant fraction, consisting of 91% protein, followed by glutelin, albumin and prolamin in decreasing order. Non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed polypeptides of sizes ≥20 kDa for albumin while glutelin and globulin had similar polypeptide sizes at 19, 85 and 100 kDa. Prolamin had polypeptide sizes 20, 40 and 100 kDa. The albumin and globulin fractions had higher intrinsic fluorescence intensity (FI) values than the glutelin. Albumin had a higher solubility (ranging from 80 to 100%) over a wide pH range when compared with the other fractions. Water holding capacity (g/g) reduced from 2.76 (glutelin) to 1.35 (prolamin) followed by 0.42 (globulin) and 0.08 (albumin). Oil holding capacity (g/g) reduced from: 4.13 (glutelin) to 2.57 (globulin) and 1.56, 1.50 for albumin and prolamin respectively. Gelling ability was stronger for prolamin and glutelin than albumin and globulin, while higher emulsion (p < 0.05) quality was obtained for prolamin and albumin than for glutelin and globulin.
    [Show full text]