Observational Learning in the Jumping Spider <I>Phidippus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Novel Trade-Off for Batesian Mimics Running Title
Out of the frying pan and into the fire: A novel trade-off for Batesian mimics Running title: Salticids that mimic ants and get eaten by ant specialists Ximena J. Nelson*†, Daiqin Li§ and Robert R. Jackson† *Department of Psychology, Animal Behaviour Laboratory, Macquarie University, Sydney, NSW 2109, Australia Email: [email protected] Phone: 61-2-98509232 Fax: 61-2-98509231 §Department of Biological Sciences, National University of Singapore, Singapore †School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand Key words: Ants, Batesian mimicry, myrmecophagy, predation, spiders, trade-off Abstract A mimicry system was investigated in which the models were ants (Formicidae) and both the mimics and the predators were jumping spiders (Salticidae). By using motionless lures in simultaneous-presentation prey-choice tests, how the predators respond specifically to the static appearance of ants and ant mimics was determined. These findings suggest a rarely considered adaptive trade-off for Batesian mimics of ants. Mimicry may be advantageous when it deceives ant-averse potential predators, but disadvantageous in encounters with ant- eating specialists. Nine myrmecophagic (ant-eating) species (from Africa, Asia, Australia and North America) and one araneophagic (spider-eating) species (Portia fimbriata from Queensland) were tested with ants (5 species), with myrmecomorphic (ant-like) salticids (6 species of Myrmarachne) and with non-ant-like prey (dipterans and ordinary salticids). The araneophagic salticid chose an ordinary salticid and chose flies significantly more often than ants. P. fimbriata also chose the ordinary salticid and chose flies significantly more often than myrmecomorphic salticids. However, there was no significant difference in how P. -
Curriculum Vitae Bradley Evan Carlson, Ph.D
Curriculum Vitae Bradley Evan Carlson, Ph.D. Byron K. Trippet Assistant Professor of Biology Wabash College Crawfordsville, IN 47933 Email: [email protected] Telephone: (765) 361-6460 Website: carlsonecolab.weebly.com Professional Experience 2014 - present Byron K. Trippet Assistant Professor of Biology, Wabash College Education 2009-2014 PhD in Ecology, minor in Statistics, The Pennsylvania State University, University Park, PA Advisor: Dr. Tracy Langkilde Dissertation: The evolutionary ecology of intraspecific trait variation in larval amphibians 2008 B.S. in Biology, Bethel University, St. Paul, MN Summa cum laude, Honors Graduate Thesis: Temperature and desiccation effects on the antipredator behavior of Centruroides vittatus (Scorpiones: Buthidae) Research Interests Evolutionary ecology – phenotypic diversity, local adaptation, trait integration Behavioral ecology – phenotypic plasticity, predator-prey interactions, personality traits Community ecology – trait-mediated indirect interactions, predation, aquatic ecology Zoology – herpetology, arachnology, comparative morphology Publications (*co-author was undergraduate) Kashon*, EAF, and BE Carlson. 2018. Consistently bolder turtles maintain higher body temperatures in the field but may experience greater predation risk. Behavioral Ecology and Sociobiology 72:9. Carlson, BE, and T Langkilde. 2017. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecology and Evolution 7:9978-9990. Lambert, MR, Carlson, BE, Smylie, MS, and L Swierk. 2017. Ontogeny of sexual dichromatism in the explosively breeding Wood Frog. Herpetological Conservation and Biology 12:447-456. Media coverage: InsideEcology.com (https://insideecology.com/2018/02/12/amphibians-that-change-colour/) Carlson, BE, and T Langkilde. 2016. The role of resources in microgeographic variation in Red- spotted Newt (Notophthalmus v. viridescens) morphology. Journal of Herpetology 50:442-448. -
Sexual Selection Research on Spiders: Progress and Biases
Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters. -
SPIDERS of WASHINGTON COUNTY, MISSISSIPPI Orrey P. Young Southern Field Crop Insect Management Laboratory USDA-ARS, P.O. Box
Young, O . P., T. C . Lockley and G . B . Edwards . 1989 . Spiders of Washington County, Mississippi . J . Arachnol ., 17 :27-41 . SPIDERS OF WASHINGTON COUNTY, MISSISSIPPI Orrey P. Young Southern Field Crop Insect Management Laboratory USDA-ARS, P.O. Box 346 Stoneville, Mississippi 38776 USA Timothy C. Lockley Imported Fire Ant Station USDA-APHIS-PPQ 3505 25th Avenue Gulfport, Mississippi 39501 USA and G. B. Edwards Florida State Collection of Arthropods Division of Plant Industry Florida Dept. Agric. & Cons . Serv. P.O. Box 1269 Gainesville, Florida 32602 USA ABSTRACT Over a seven-year period, approximately 35,000 spiders representing 26 families, 133 genera, and 234 species were captured in Washington County, Mississippi, by pitfall, sweepnet, vacuum, bag, and hand. Specimens were collected in 10 different habitat types and in four vegetational strata . Old-field habitats yielded the most species (152) and residential lawns the fewest (14) . Considering all habitats sampled, the ground layer produced 111 species, the herbaceous strata 133, the shrub layer 49, and the tree strata 30 species . The sweepnet method of capture obtained 128 species, pitfall 95, hand 61, vacuum 53, and bagging 19 species. The largest number of species were obtained in spring and early summer (maximum of 125 in May), with the fewest in mid-winter (Jan . = 24) . Twenty-one species were considered abundant, 51 common, 67 uncommon, and 95 rare . Additions to the state list of Dorris (1972) number 102 species, for a new state total of 364 species . A comparison with the North American fauna and with other surveys indicates that Washington County is underrepresented both in cursorial forms active on the soil surface and web-spinning forms typical of undisturbed habitats . -
Kirill Glebovich Mikhailov: on the Occasion of His 60Th Birthday
Zootaxa 5006 (1): 006–012 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Biography ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.5006.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:B883A8B0-F324-400F-B670-304511C53963 Kirill Glebovich Mikhailov: On the occasion of his 60th Birthday YURI M. MARUSIK1 & VICTOR FET2 1Institute for Biological Problems of the North, Portovaya Street 18, Magadan 685000, Russia Department of Zoology & Entomology, University of the Free State, Bloemfontein 9300, South Africa [email protected]; https://orcid.org/0000-0002-4499-5148 2Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755-2510, USA [email protected]; https://orcid.org/0000-0002-1016-600X Kirill Glebovich Mikhailov was born on 29 July 1961 in Moscow, Russia. Both of his parents, Gleb K. Mikhailov (1929–2021) and Galina R. Mikhailova (1926–2019), were research scientists. Kirill’s father was an expert in the history of mechanics, and mother, a biologist. Since early childhood Kirill was raised mainly by his maternal grandparents, Ro- man P. Nosov and Antonina V. Nosova. Kirill’s grandfather, a CPSU official and a career administrator at the Ministry of Energetics, retired from his post in 1965 to take care of the grandson. Kirill’s grandmother, an obstetrician by profession, received disability at a military plant during the WWII in evacuation, and was a housewife after the war. In 1978, Kirill began his studies at the Division of Biology (Biologicheskii Fakul’tet) of the Moscow State University (below, MSU). Even earlier, as a schoolboy, Kirill used to buy books on zoology, especially separate issues of the Fauna of the USSR and Keys to the Fauna of the USSR, then relatively cheap and available. -
Giant Spiders Cast Webs Over River Using Super Biomaterial 17 September 2010
Giant spiders cast webs over river using super biomaterial 17 September 2010 access journal for the communication of all peer- reviewed scientific and medical research published by the Public Library of Science. Caerostris darwini, a giant orb spider and namesake of Charles Darwin, weaves a web of tremendous strength and size never before seen. Photo courtesy of Matjaz Gregoric. (PhysOrg.com) -- The antithesis of the itsy-bitsy spider, Caerostris darwini, a giant orb spider and namesake of Charles Darwin, weaves a web of super strength never before seen, says Dr. Todd Blackledge, Leuchtag Endowed Chair at The University of Akron. This close-up view of a giant orb spider web spanning a Blackledge, an associate professor of biology; Ingi river demonstrates the tremendous strength and elasticity of this type of silk. Photo courtesy of Matjaz Kuntner. Agnarsson, Blackledge’s former postdoctoral researcher at UA and current assistant professor and director of Museum of Zoology at the University of Puerto Rico; and Matjaž Kuntner, In their PLoS ONE paper, Agnarsson, Kuntner and chair of the Institute of Biology at the Scientific Blackledge report on the testing of material Research Centre, Slovenian Academy of Sciences properties of Darwin’s bark spider. The authors and Arts, reveal this new spider species from predicted that the expansive webs would be spun Madagascar and its incredibly expansive web. using extraordinary silk and they proved their prediction correct. First, the researchers considered “Darwin’s bark spider or C. darwini,” as it is that spider silks already combine high strength with referenced, makes one of the largest known webs elasticity, demonstrate exceptional toughness and and suspends the giant webs across rivers and are able to absorb three times more energy than lakes, according to the researchers. -
Visual Reactions to Auditory Stimulus by the Jumping Spider Phidippus Princeps (Araneae, Salticidae)
Visual reactions to auditory stimulus by the jumping spider Phidippus princeps (Araneae, Salticidae) Philip Denbaum Degree project in biology, Master of science (2 years), 2019 Examensarbete i biologi 45 hp till masterexamen, 2019 Biology Education Centre, Uppsala University, and Elizabeth Jakob lab, University of Massachusetts Supervisors: Elizabeth Jakob and Anders Berglund External opponent: Emilie Laurent & Julian Baur Table of contents Abstract 2 Introduction 3 Methods and Materials 5 Spider collection and care 5 General experimental setup 5 Overview of the eyetracker 5 Securing the spider 6 Aligning spider and finding retinas 6 Experiment 7 Data analysis 8 Statistical analyses 9 Results 10 Analysis 1 10 Analysis 2 13 Discussion 14 Future studies 15 Conclusions 16 Acknowledgements 16 References 17 Appendix 19 !1 Abstract Jumping spiders (Family Salticidae) are known for their exceptional vision, including color vision and spatial acuity. Salticids use their vision in many behaviors, including predation and courtship. Recently evidence of their ability to sense airborne vibrations, i.e. sound, was published. I used a specialized jumping-spider-specific eyetracker to study the visual reaction of the retinas of the jumping spider Phidippus princeps when exposed to the sound of a predator. I used a generic wasp sound, previously shown to induce a startle response, as stimulus and played it from different directions. The spiders showed strong reactions to the sound stimulus by large increases in retinal movement when exposed to the stimulus, and they showed no habituation to the stimulus over three rounds of exposure. However, I found no indication that the direction of retinal movement corresponded to the location of the sound source. -
Kirill Glebovich Mikhailov: on the Occasion of His 60Th Birthday
Zootaxa 5006 (1): 006–012 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Biography ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.5006.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:B883A8B0-F324-400F-B670-304511C53963 Kirill Glebovich Mikhailov: On the occasion of his 60th Birthday YURI M. MARUSIK1 & VICTOR FET2 1Institute for Biological Problems of the North, Portovaya Street 18, Magadan 685000, Russia Department of Zoology & Entomology, University of the Free State, Bloemfontein 9300, South Africa �[email protected]; https://orcid.org/0000-0002-4499-5148 2Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755-2510, USA �[email protected]; https://orcid.org/0000-0002-1016-600X Kirill Glebovich Mikhailov was born on 29 July 1961 in Moscow, Russia. Both of his parents, Gleb K. Mikhailov (1929–2021) and Galina R. Mikhailova (1926–2019), were research scientists. Kirill’s father was an expert in the history of mechanics, and mother, a biologist. Since early childhood Kirill was raised mainly by his maternal grandparents, Ro- man P. Nosov and Antonina V. Nosova. Kirill’s grandfather, a CPSU official and a career administrator at the Ministry of Energetics, retired from his post in 1965 to take care of the grandson. Kirill’s grandmother, an obstetrician by profession, received disability at a military plant during the WWII in evacuation, and was a housewife after the war. In 1978, Kirill began his studies at the Division of Biology (Biologicheskii Fakul’tet) of the Moscow State University (below, MSU). Even earlier, as a schoolboy, Kirill used to buy books on zoology, especially separate issues of the Fauna of the USSR and Keys to the Fauna of the USSR, then relatively cheap and available. -
ZOOLOGY Exploring the Biodiversity of Colorado and Theworld
CHAPTER 4 — ZOOLOGY Exploring the Biodiversity of Colorado and the World CHAPTER 4 ZOOLOGY Exploring the Biodiversity of Colorado and the World Jeffrey T. Stephenson, Before the Museum Paula E. Cushing, The first collections of specimens that make up what is now the Denver John R. Demboski, and Museum of Nature & Science were actually established well before the Frank-T. Krell founding of the institution in 1900, the selection of a board of trustees, or the construction of a building to house and exhibit the specimens. Edwin Carter (1830–1900) (Fig. 4.1) collected Colorado birds and mammals from the 1860s through the 1890s. Born in New York in 1830, Carter arrived in Colorado in 1859 hoping to make it rich in the goldfields, but he soon became interested in the region’s natural history. He learned hide tanning and, as his prospects for hitting the mother lode faded, he earned his living selling buckskin clothing that he handcrafted. Carter supplemented these earnings by mar- keting foodstuffs and other provisions to the growing population of successful and (mostly) unsuccessful prospectors flooding the region. His interest in nature turned to concern as he observed dwindling numbers of mammals and birds, owing largely to habitat destruction and overhunting. Period photographs of the area’s mining district show a landscape largely denuded of vegetation. By the 1870s, Carter noted that many animal species were becoming scarce. The state’s forests were being devastated, ranches and farms were replacing open prairie, and some species, including the last native bison in Colorado, were on the verge of extirpation or extinction. -
SA Spider Checklist
REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region. -
REVISION of the JUMPING SPIDERS of the GENUS PHIDIPPUS (ARANEAE: SALTICIDAE) by G
Occasional Papers of the Florida State Collection of Arthropods Volume 11 2004 REVISION OF THE JUMPING SPIDERS OF THE GENUS PHIDIPPUS (ARANEAE: SALTICIDAE) by G. B. Edwards Florida Department of Agriculture and Consumer Services Charles H. Bronson, Commissioner 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Occasional Papers of the Florida State Collection of Arthropods Volume 11 REVISION OF THE JUMPING SPIDERS OF THE GENUS PHIDIPPUS (ARANEAE: SALTICIDAE) by G. B. EDWARDS Curator: Arachnida & Myriapoda Florida State Collection of Arthropods FDACS, Division of Plant Industry Bureau of Entomology, Nematology, and Plant Pathology P. O. Box 147100, 1911 SW 34th Street Gainesville, Florida 32614-7100 USA 2004 FLORIDA DEPARTMENT OF AGRICULTURE AND CONSUMER SERVICES DIVISION OF PLANT INDUSTRY and THE CENTER FOR SYSTEMATIC ENTOMOLOGY Gainesville, Florida FLORIDA DEPARTMENT OF AGRICULTURE AND CONSUMER SERVICES Charles H. Bronson, Commissioner . Tallahassee Terry L. Rhodes, Assistant Commissioner . Tallahassee Craig Meyer, Deputy Commissioner . Tallahassee Richard D. Gaskalla, Director, Division of Plant Industry (DPI) . Gainesville Connie C. Riherd, Assistant Director, Division of Plant Industry . Gainesville Wayne N. Dixon, Ph.D., Bureau Chief, Entomology, Nematology and Plant Pathology . Gainesville Don L. Harris, Bureau Chief, Methods Development and Biological Control . Gainesville Richard A. Clark, Bureau Chief, Plant and Apiary Inspection . Gainesville Gregory Carlton, Bureau Chief, Pest Eradication and Control . Winter Haven Michael C. Kesinger, Bureau Chief, Budwood Registration . Winter Haven CENTER FOR SYSTEMATIC ENTOMOLOGY BOARD OF DIRECTORS G. B. Edwards, Ph.D., President . DPI, Gainesville Paul E. Skelley, Ph.D., Vice-President . DPI, Gainesville Gary J. Steck, Ph.D., Secretary . -
Arachnologische Arachnology
Arachnologische Gesellschaft E u Arachnology 2015 o 24.-28.8.2015 Brno, p Czech Republic e www.european-arachnology.org a n Arachnologische Mitteilungen Arachnology Letters Heft / Volume 51 Karlsruhe, April 2016 ISSN 1018-4171 (Druck), 2199-7233 (Online) www.AraGes.de/aramit Arachnologische Mitteilungen veröffentlichen Arbeiten zur Faunistik, Ökologie und Taxonomie von Spinnentieren (außer Acari). Publi- ziert werden Artikel in Deutsch oder Englisch nach Begutachtung, online und gedruckt. Mitgliedschaft in der Arachnologischen Gesellschaft beinhaltet den Bezug der Hefte. Autoren zahlen keine Druckgebühren. Inhalte werden unter der freien internationalen Lizenz Creative Commons 4.0 veröffentlicht. Arachnology Logo: P. Jäger, K. Rehbinder Letters Publiziert von / Published by is a peer-reviewed, open-access, online and print, rapidly produced journal focusing on faunistics, ecology Arachnologische and taxonomy of Arachnida (excl. Acari). German and English manuscripts are equally welcome. Members Gesellschaft e.V. of Arachnologische Gesellschaft receive the printed issues. There are no page charges. URL: http://www.AraGes.de Arachnology Letters is licensed under a Creative Commons Attribution 4.0 International License. Autorenhinweise / Author guidelines www.AraGes.de/aramit/ Schriftleitung / Editors Theo Blick, Senckenberg Research Institute, Senckenberganlage 25, D-60325 Frankfurt/M. and Callistus, Gemeinschaft für Zoologische & Ökologische Untersuchungen, D-95503 Hummeltal; E-Mail: [email protected], [email protected] Sascha