Sustainable Process Synthesis- Intensification
Total Page:16
File Type:pdf, Size:1020Kb
SPEED Sustainable Process Synthesis- Intensification Rafiqul Gani Department of Chemical & Biochemical Engineering Technical University of Denmark DK-2800 Lyngby, Denmark [email protected] IETS Experts Workshop, Berlin, 4-5 April 2017 1 SPEED Chemical and bio-based industry faces enormous challenges to achieve and/or respond to: Establish Survive sustainable global Raw Product(s) production Materials competition Adopt to Demands for changing Utilities Process Waste innovative markets products Processes need to be: Sustainable (Economically feasible; Reduced waste; Utility efficient; Environmentally acceptable); Safe; Operable; ……. IETS Experts Workshop, Berlin, 4-5 April 2017 2 SPEED Find innovative solutions Target: Intensify (reduce number of operations) as well as operational costs Methyl acetate in multifunctional reactor (Eastman Chemicals) IETS Experts Workshop, Berlin, 4-5 April 2017 3 SPEED Industrial example of process intensification Deordorization Plant – Alfa Laval, Copenhagen IETS Experts Workshop, Berlin, 4-5 April 2017 4 SPEED Concept of 3-stages synthesis-design approach Decompose the problem into stages to manage the complexity Given: set of feedstock & products Given: feasible design (base case) Find: processing route Find: alternative more sustainable design Define problem Generate sustainable intensified alternatives Babi et al. (2015) Generate Stage 1 Stage 3 superstructure Synthesis Innovation Mathematical formulation Solve optimization problem Stage 2 Quaglia et al. (2012) Design Detailed analyses to identify process bottlenecks Carvalho et al. (2013) Given: processing route Find: feasible design IETS Experts Workshop, Berlin, 4-5 April 2017 5 SPEED Sustainable Product-Process Development Raw material Synthesis stage: find the optimal processing route IETS Experts Workshop, Berlin, 4-5 April 2017 6 SPEED Synthesis problem solution: Biorefinery network Sugar Sugarcane Sugar production Hardwood Citric acid Size reduction Molasses Citric acid chips fermentation Lactic acid Switchgrass Lignocellulose Lactic acid fermentation L-lysine Wheat straw L-lysine acid fermentation Cassava STEX NREL Ethanol Ethanol Int2 Int3 Int4 Ethanol rhizome pretreatment hydrolysis fermentation purification Dilute acid Conc. acid Corn stover pretreatment hydrolysis Sugarcane Lime Dilute acid bagasse pretreatment hydrolysis ARP LT Fischer- Gasoline-diesel Gasoline-diesel Int5 Reforming Int6 Gasoline pretreatment Tropsch mix sep. Controlled pH HT Fischer- Methanol to Methanol (int) Diesel pretreatment Tropsch gasoline AFEX Methanol Methanol Int7 Methanol pretreatment synthesis purification Gasification Alkali-cat. Phase FAME Oil palm fruit Oil extraction Virgin palm oil - Triglycerides Int8 Organic phase Diesel transesterif. separation purification Acid-cat. Acid-cat. Glycerol WC palm oil Aqueous phase Glycerol esterification transesterif. purification Open pond Flocculation Microalgae GR in liquid SFEC Microalgae Int9 Int10 GR-assisted LE Lipids cultivation polyelectrolyt. (int) nitrogen transesterif. Flocculation US-assisted LE CSEC PBR cultivation DR+US Int11 NaOH by IL transesterif. Flocculation DR+GR+ US+MW- Int12 PGA MW+US assisted LE Flocculation - Int13 Wet LE chitosan Bio- SE (Bligh-Dyer Drying Int14 flocculation method) SE (modifed Enzymatic Centri-fugation Residue Int15 Fast pyrolysis Bio-oil Bligh-Dyer) hydrolysis Autofloccula- Supercritical Ethanol Ethanol tion (high pH) fluid extract. fermentation Microfilt. + Extraction IL Alkaline insitu Anaerobic Biogas centrifugat. mixture transesterif. digestion Extraction IL Acidic insitu [Bmim][MeSo5] transesterif. Dry micro- Enzym. insitu - algae (int) transesterif. IETS Experts Workshop, Berlin, 4-5 April 2017 7 SPEED Stage-2: Design Stage – CO2 conversion Superstructure for stage -1 CO2 Conversion Network Capture Mixing Intermediate Purification Feedstock Capture Step 1 Capture Step 2 Splitter Mixing 1 Intermediate Production Mixing 2 Product 1 Conversion Purification Mixing 3 Product 2 Conversion Products Mixing Intermediate Production 2 2 H2 BP M3 meohdirsyn S1 MeOH Purge CH4, H2O M1 comref meohsynsyn meohsynsyn* S2 CH4 H2 Purge H2O M2 dryref dryref* M4 meohsyn2syn S3 H2 Purge BP M3 meohdirsyn S1 DME CH4, H2O Purge M1 comref meohsynsyn meohsynsyn* S2 dmesyn S4 MEA, CH4 H2 H2O Purge CO2 Purge Cap coalCO2_1 CapABS1 CapDES1 Splitter M2 dryref dryref* M4 meohsyn2syn S3 M1 Purge Flue MEA, gas H2O CH4 DMC M2 dryref dryref* dmedirsyn dmedirsyn* dmedirsyn** PurgeS5 H2 BP M3 meohdirsyn S1 NH3 CH4, H2O Purge M1 comref meohsynsyn meohsynsyn* S2 EG CH4 H2 Purge M2 dryref dryref* M4 meohsyn2syn S3 Purge PG M8 DMCDirSyn S6 NH3 Purge Model Number of equations 450663 M5 ureasyn M9 DMCUreaSyn S7 C2H4O and Purge M6 ecsyn M10 DMCECSyn S8 Solver C3H6O Number of variables 444505 Purge M7 pcsyn M11 DMCPCSyn S9 Discrete variables 176 Purge Problem type MIP Solver CPLEX IETS Experts Workshop, Berlin, 4-5 April 2017 8 SPEED Sustainable Product-Process Development Design targets: more profit; less energy consumption; less waste; lower environmental impact; ….. IETS Experts Workshop, Berlin, 4-5 April 2017 9 SPEED Biodiesel production: 2-stage analysis RCY-3 RCY-1 E-103 T-101 MIX-101 V-100 T-103 V-101 P-102 MIX-100 MIX-103 E-102 T-104 E-100 E-105 Flash-1 R-101 E-101 Cutter-1 P-103 P-101 E-104 OP 3 RCY-2 E-107 OP 4 T-102 Cutter-2 CP 2 Flash-2 Path MVA Probability E-106Path TVA Probability OP3 –14174.30098 High OP3 –14898.0917 High OP4 –2047.234859 High - - - C 2 496.6545095 High C2 496.6545095 High IETS Experts Workshop, Berlin, 4-5 April 2017 10 SPEED Stage-2: Design analysis HP steam Off-gas Fuel gas Purge HP steam Flue gas Recycle T-101 T-102 F-101 F-102 Air E-102 C-103 E-101 Dry syngas E-104 P-101 Natural gas R-101 R-102 R-103 Clean flue gas H-101 C-102 Water P-102 E-103 CO2 MEA C-101 F-MEOH Flue gas PURIFICATION 2 Absorber Desorber PURGE CAPTURE R-GAS STEP 1 CAPTURE RECYCLE STEP 2 F-CO2 PRODUCT 2 CONVERSION V-204 Parameter Value Unit PROD-2 P-DMC F-EO MIXING 1 V-203 F-EC CAPEX 20.39 Million $ V-101 F-MIX 2 PROD-1 R-EC synthesis P-EG EG OPEX 13.41 Million $/year INTERMEDIATE MIXING 3 PRODUCTION V-201 Excess R-DMC synthesis Feed Net CO2 4.97 kgCO2/kgDMC EC route V-202 Indirect CO2 (energy) 4.76 kgCO2/kgDMC Bottleneck: CO2 utilized 1.79 kgCO2/kgDMC energy intensive separation CO2 direct 2.00 kgCO2/kgDMC IETS Experts Workshop, Berlin, 4-5 April 2017 11 SPEED Innovative, sustainable & intensfied designs for stage 3 Note: for existing process, stage-1 is not necessary and we start with stage-2 to define the targets for sustainable & innovative design IETS Experts Workshop, Berlin, 4-5 April 2017 12 SPEED Sustainable Product-Process Development Design targets: more profit; less energy consumption; less waste; lower environmental impact; ….. IETS Experts Workshop, Berlin, 4-5 April 2017 13 SPEED Tasks to Phenomena (SPB) R, Ml, MT, MR MV, SPB Interconnection Phenomena In Out 2phM, PC(V-L), PT(V- SPB.1 M 1..n(L) 1(L) L), PT(P:V-L), PS (V- SPB2 M=R 1..n(L) 1(L) SPB.7 M=R=2phM=PC=PT(VL) 1..n(L,VL) 1(V/L) L), D, H, C 13 in SPB.8 M=R=2phM=PC=PT(VL)=PS(VL) 1..n(L,VL) 2(V;L) total SPB.9 M=R=2phM=PC=PT(PVL)=PS(VL) 1..n(L,VL) 2(V;L) SPB.58 D 1(L;VL,V) 1..n(L;V; VL) Reduced from 4017→58 using connectivity rules SPB Interconnection Phenomena In Out Connectivity Rules: M=R=H=C 1..n(L) 1(L) 1. H+C should not exist in the same SPB 2. PC phenomena exists SPB Interconnection Phenomena In Out together with PT SPB.7 M=R=2phM=PC=PT(VL) 1..n(L,VL) 1(V/L) phenomena 3. SPB can contain SPB Interconnection Phenomena In Out simultaneous R and SPB.8 M=R=2phM=PC=PT(VL)=PS(VL) 1..n(L,VL) 2(V;L) separation SPB.9 M=R=2phM=PC=PT(PVL)=PS(VL) 1..n(L,VL) 2(V;L) Lutze et al. (2013) IETS Experts Workshop, Berlin, 4-5 April 2017 14 SPEED Combine phenomena: New operations MeAC HOAc MeOH H2O Not feasible* MeAC Feasible* HOAc MeAC MeOH H2O HOAc MeOH H2O * With respect to the target IETS Experts Workshop, Berlin, 4-5 April 2017 15 SPEED Innovative solution Non- reactive Zone Reactive Zone Non- reactive Zone IETS Experts Workshop, Berlin, 4-5 April 2017 16 SPEED Design of hybrid –intensified modules Which is the product design problem? xD1 xD1 VP xF CD 1 xF xD2 6 PV xB1 xB2 xD1 xF Permeate CD xF 2 5 Raffinate xB1 xD1 xD2 xF1 xF1 RD 3 RD CD 4 xF2 xF2 xB1 xB1 xB2 Close to 50% or more energy reduction compared to original process achievable IETS Experts Workshop, Berlin, 4-5 April 2017 17 SPEED Stage 3: Targeted rocess improvement RCY-3 RCY-1 E-103 T-101 MIX-101 V-100 T-103 V-101 P-102 MIX-100 MIX-103 E-102 T-104 E-100 E-105 Flash-1 R-101 E-101 Cutter-1 P-103 P-101 E-104 OP 3 RCY-2 E-107 OP 4 T-102 Cutter-2 CP 2 Flash-2 Path MVA Probability E-106Path TVA Probability OP3 –14174.30098 High OP3 –14898.0917 High OP4 –2047.234859 High - - - C 2 496.6545095 High C2 496.6545095 High IETS Experts Workshop, Berlin, 4-5 April 2017 18 SPEED Biodiesel production: Identify tasks Methanol Recycle Methanol Methanol Mixing Separation Task Separation Task Separation Task Feed Recycle Wa ter Waste cooking oil Mixing Reaction Task Separation Task Feed Separation Task Separation Task Biodiesel Separation Task Methanol Separation Task Recycle Wa ste Oil Separation Task Wa ter Glycerol IETS Experts Workshop, Berlin, 4-5 April 2017 19 SPEED Biodiesel production: Identify phenomena Methanol Recycle M, 2phM, C/H, Methanol M, C/H, PC(LL), M, C/H, PC(LL), Methanol M, PC PC(VL), PT(VL), Recycle PS(LL) PS(LL) Feed PS(VL) Wa ter M, 2phM, C/H, Waste cooking oil M, 2phM, C/H, M, PC M, 2phM, C/H, R PC(VL), PT(VL), M, C/H, PC(LL), Feed PC(VL), PT(VL), PS(LL) PS(VL) PS(VL) Biodiesel M, 2phM, C/H, PC(VL), PT(VL), M, 2phM, C/H, PS(VL) Methanol PC(VL), PT(VL), Recycle PS(VL) M, 2phM, C/H, Wa ste Oil PC(VL), PT(VL), Wa ter PS(VL) Glycerol Mansouri et al.