Native Bee Nesting Shelter & Tubes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nest Architecture, Life Cycle, and Natural
Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis) maculata (Hymenoptera: Megachilidae) in a montane forest William de O. Sabino, Yasmine Antonini To cite this version: William de O. Sabino, Yasmine Antonini. Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis) maculata (Hymenoptera: Megachilidae) in a mon- tane forest. Apidologie, Springer Verlag, 2017, 48 (4), pp.450-460. 10.1007/s13592-016-0488-9. hal- 01681897 HAL Id: hal-01681897 https://hal.archives-ouvertes.fr/hal-01681897 Submitted on 11 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2017) 48:450–460 Original article * INRA, DIB and Springer-Verlag France, 2017 DOI: 10.1007/s13592-016-0488-9 Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis ) maculata (Hymenoptera: Megachilidae) in a montane forest 1,2 1 William De O. SABINO , Yasmine A NTONINI 1Laboratório de Biodiversidade—Instituto de Ciências Exatas -
NATIVE POLLINATORS Who Are They and Are They Important?
NATIVE POLLINATORS Who are they and are they important? Compiled by Jim Revell, Bedford Extension Master Gardener Reproduction – the goal One goal of all living organisms, including plants, is to create offspring for the next generation. One method for plants to accomplish this is by producing seed. Pollen – a fine-to-coarse yellow dust or powder – “bears a plant’s male sex cells and is a vital link in the reproductive cycle.” USDA Forest Service • Pollination is usually an unplanned event due to an animal’s activity on a flower Pollination • It is calculated that one out of every three or four mouthfuls of food or drink “The act of transferring consumed is provided by pollinators pollen grains from the • male anther of a flower to More than 150 food crops in the U.S. depend on pollinators; this includes almost all fruit the female stigma.” and grain crops (see Handout, “List of USDA Forest Service Pollinated Foods” by Pollinator Partnership) • 80% or more of all plants worldwide Pollinator Methods: (including food crops) are pollinated by animals (biotic pollination) ABIOTIC: Without • Of the ≤20% abiotic method involvement of • organisms 98% are pollinated by wind • 2% are pollinated by water BIOTIC: Mediated by • ±200,000 species of animals around the animals world act as pollinators • Of the ±200,000 about 1,000 species are vertebrates (birds, bats, small mammals) Abiotic Pollinators: Wind | Water Left: Diagram of how Wind Pollination works; picture of windblown pollen from male cone of a Lodgepole Pine. Right: Diagram of how Water Pollination works; Seagrasses (marine angiosperms / flowering plants) have adapted to aquatic environments allowing for pollination, seed formation and germination in water. -
Supplemental Information For: Biotic and Abiotic Drivers of Plant
Supplemental Information for: Biotic and abiotic drivers of plant-pollinator community assembly across wildfire gradients Joseph A. LaManna1,2*, Laura A. Burkle3, R. Travis Belote4, and Jonathan A. Myers5 1 Department of Biological Sciences, Marquette University, PO Box 1881, Milwaukee, Wisconsin 53201 USA, [email protected] * Corresponding author 2 Departments of Botany & Zoology, Milwaukee Public Museum, Milwaukee, Wisconsin 53233 USA 3 Department of Ecology, Montana State University, Bozeman, Montana 59717 USA, [email protected] 4 The Wilderness Society, Bozeman, Montana 59717 USA, [email protected] 5 Department of Biology & Tyson Research Center, Washington University in St. Louis, St. Louis, Missouri 63130 USA, [email protected] 1 Supplemental Methods Study site Our study took place in three sites (named Helena, Paradise, and Whitefish) within the Northern Rocky Mountains, which encompasses the Crown of the Continent and the Greater Yellowstone Ecosystem in western Montana, USA (Fig. 1; Burkle, Myers, & Belote, 2015). Historically, this region has experienced mixed-severity fire regimes (Baker, 2009; Fischer & Bradley, 1987), which favor understory and early successional plant species and a mosaic of forest successional stages (Hessburg & Agee, 2003; Perry et al., 2011). Wildfires have largely been suppressed over the past century, however, leading to denser stands and more intense and extensive wildfires in the past few decades (e.g. Miller, Safford, Crimmins, & Thode, 2009). The Helena site is characterized by low primary productivity, Paradise by intermediate productivity, and Whitefish by high productivity (Burkle et al., 2015). These three site include a variety of forested ecosystems, including ponderosa-pine dominated forests and woodlands in Helena, lodgepole- pine and Douglas-fir forests in Paradise, and western-larch, lodgepole-pine and mixed-conifer forests in Whitefish (Burkle et al., 2015). -
An Inventory of Native Bees (Hymenoptera: Apiformes)
An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming BY David J. Drons A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Plant Science South Dakota State University 2012 ii An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming This thesis is approved as a credible and independent investigation by a candidate for the Master of Plant Science degree and is acceptable for meeting the thesis requirements for this degree. Acceptance of this thesis does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. __________________________________ Dr. Paul J. Johnson Thesis Advisor Date __________________________________ Dr. Doug Malo Assistant Plant Date Science Department Head iii Acknowledgements I (the author) would like to thank my advisor, Dr. Paul J. Johnson and my committee members Dr. Carter Johnson and Dr. Alyssa Gallant for their guidance. I would also like to thank the South Dakota Game Fish and Parks department for funding this important project through the State Wildlife Grants program (grant #T2-6-R-1, Study #2447), and Custer State Park assisting with housing during the field seasons. A special thank you to taxonomists who helped with bee identifications: Dr. Terry Griswold, Jonathan Koch, and others from the USDA Logan bee lab; Karen Witherhill of the Sivelletta lab at the University of New Mexico; Dr. Laurence Packer, Shelia Dumesh, and Nicholai de Silva from York University; Rita Velez from South Dakota State University, and Jelle Devalez a visiting scientist at the US Geological Survey. -
Historical Changes in Northeastern US Bee Pollinators Related to Shared Ecological Traits Ignasi Bartomeusa,B,1, John S
Historical changes in northeastern US bee pollinators related to shared ecological traits Ignasi Bartomeusa,b,1, John S. Ascherc,d, Jason Gibbse, Bryan N. Danforthe, David L. Wagnerf, Shannon M. Hedtkee, and Rachael Winfreea,g aDepartment of Entomology, Rutgers University, New Brunswick, NJ 08901; bDepartment of Ecology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden; cDivision of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024-5192; dDepartment of Biological Sciences, Raffles Museum of Biodiversity Research, National University of Singapore, Singapore 117546; eDepartment of Entomology, Cornell University, Ithaca, NY 14853; fDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043; and gDepartment of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901 Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved February 1, 2013 (received for review October 24, 2012) Pollinators such as bees are essential to the functioning of ter- characterized by particularly intensive land use and may not be restrial ecosystems. However, despite concerns about a global representative of changes in the status of bees in other parts of pollinator crisis, long-term data on the status of bee species are the world. Thus, the existence of a widespread crisis in pollinator limited. We present a long-term study of relative rates of change declines, as often portrayed in the media and elsewhere (4), rests for an entire regional bee fauna in the northeastern United States, on data of limited taxonomic or geographic scope. based on >30,000 museum records representing 438 species. Over Environmental change affects species differentially, creating a 140-y period, aggregate native species richness weakly de- “losers” that decline with increased human activity, but also creased, but richness declines were significant only for the genus “winners” that thrive in human-altered environments (14). -
Megachilidae
FAMILY MEGACHILIDAE Females of the non-parasitic groups in 6. Hind margin of scutellum produced to this family are most easily recognized by form a carinate and broadly truncate the location of the pollen-collecting scopa lip over-hanging posterior surface of on the venter of the abdomen. Also, the propodeum ...... Anthidiellum (p. 18) Hind margin of scutellum rounded ... front wings, without exception, have but 7 two submarginal cells, and the stigma is 7. Anterior margin of pronotal tubercle small. These are typical "long-tongued" broadly expanded, conspicuously cari- bees, having a greatly elongated and slen- nate, extending along anterior border of der glossa. Segments 1 and 2 of the labial notun1 ......Dianthidi~cw~ (p. 15) palpi also are much elongated and flattened, Pronotal tubercles not broadly expanded, not appreciably produced along anterior with the two apical segments very short. border of notum .............. 8 The galeae of the maxillae are similarly elongated, the maxillary palpi with a vari- 8. Second recurrent vein received within or able number of relatively short segments. very near apex of second submarginal Except for the primitive genus Lithurgus, cell; abdominal terga with entire or the pygidial area is absent, and without ex- nearly entire, transverse, apical or sub- apical, yellow or ivory bands; ocelli rela- ception there are no facial foveae. tively large Hetev-anlhidium (p. 23) KEY TO GENERA Second recurrent vein received consider- ably beyond apex of second submarginal 1. Pygideal area well developed in male, in cell; abdomii~alyellow bands submedian, female represented by a short terminal interrupted medially, not strongly nar- spine; scopa present in female, hind rowed toward mid-line; ocelli extremely tibiae beset with coarse spicules or short small Paranthidium (p. -
Nomina Insecta Nearctica Liopteridae Megachilidae
262 NOMINA INSECTA NEARCTICA Anthidium cockerelli Schwarz 1928 (Anthidium) LIOPTERIDAE Anthidium collectum Huard 1896 (Anthidium) Anthidium compactum Provancher 1896 Homo. Anthidium angelarum Titus 1906 Syn. Anthidium transversum Swenk 1914 Syn. Kiefferiella Ashmead 1903 Anthidium puncticaudum Cockerell 1925 Syn. Anthidium bilderbacki Cockerell 1938 Syn. Kiefferiella acmaeodera Weld 1956 (Kiefferiella) Anthidium catalinense Cockerell 1939 Syn. Kiefferiella rugosa Ashmead 1903 (Kiefferiella) Anthidium clementinum Cockerell 1939 Syn. Anthidium dammersi Cockerell 1937 (Anthidium) Paramblynotus Cameron 1908 Anthidium edwardsii Cresson 1878 (Anthidium) Kiefferia Ashmead 1903 Homo. Anthidium tricuspidum Provancher 1896 Syn. Allocynips Kieffer 1914 Syn. Anthidium hesperium Swenk 1914 Syn. Mayrella Hedicke 1922 Syn. Anthidium depressum Schwarz 1927 Syn. Baviana Barbotin 1954 Syn. Anthidium ehrhorni Cockerell 1900 (Anthidium) Decellea Benoit 1956 Syn. Anthidium emarginata Say 1824 (Megachile) Anthidium atrifrons Cresson 1868 Syn. Paramblynotus zonatus Weld 1944 (Paramblynotus) Anthidium atriventre Cresson 1878 Syn. Anthidium saxorum Cockerell 1904 Syn. Anthidium ultrapictum Cockerell 1904 Syn. Anthidium titusi Cockerell 1904 Syn. MEGACHILIDAE Anthidium aridum Cockerell 1904 Syn. Anthidium astragali Swenk 1914 Syn. Anthidium fresnoense Cockerell 1925 Syn. Anthidium angulatum Cockerell 1925 Syn. Anthidium hamatum Cockerell 1925 Syn. Anthidium Fabricius 1804 Anthidium spinosum Cockerell 1925 Syn. Paraanthidium Friese 1898 Syn. Anthidium lucidum Cockerell -
(Hymenoptera: Apoidea) of St. Louis, Missouri, USA Author(S): Gerardo R
A Checklist of the Bees (Hymenoptera: Apoidea) of St. Louis, Missouri, USA Author(s): Gerardo R. Camilo, Paige A. Muñiz, Michael S. Arduser, and Edward M. Spevak Source: Journal of the Kansas Entomological Society, 90(3):175-188. Published By: Kansas Entomological Society https://doi.org/10.2317/0022-8567-90.3.175 URL: http://www.bioone.org/doi/full/10.2317/0022-8567-90.3.175 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 90(3), 2017, pp. 175–188 A Checklist of the Bees (Hymenoptera: Apoidea) of St. Louis, Missouri, USA GERARDO R. CAMILO,1,*PAIGE A. MUNIZ˜ ,1 MICHAEL S. ARDUSER,2 AND EDWARD M. SPEVAK3 ABSTRACT: Concern over the declines of pollinator populations during the last decade has resulted in calls from governments and international agencies to better monitor these organisms. -
Notes on the Nesting of Three Species of Megachilinae in the Dubai Desert
JHR 54: 43–56 (2017) Notes on the nesting of three species of Megachilinae in the Dubai... 43 doi: 10.3897/jhr.54.11290 RESEARCH ARTICLE http://jhr.pensoft.net Notes on the nesting of three species of Megachilinae in the Dubai Desert Conservation Reserve, UAE Sarah Kathleen Gess1, Peter Alexander Roosenschoon2 1 Albany Museum and Rhodes University, Grahamstown, 6139 South Africa 2 Dubai Desert Conservation Reserve, Dubai, United Arab Emirates Corresponding author: Sarah Kathleen Gess ([email protected]) Academic editor: J. Neff | Received 22 November 2016 | Accepted 31 January 2017 | Published 27 February 2017 http://zoobank.org/B68BE62E-69C4-40D9-87BE-27D604E6DD61 Citation: Gess SK, Roosenschoon PA (2017) Notes on the nesting of three species of Megachilinae in the Dubai Desert Conservation Reserve, UAE. Journal of Hymenoptera Research 54: 43–56. https://doi.org/10.3897/jhr.54.11290 Abstract Some observations on the nesting of three species belonging to phylogenetically interesting lineages of Meg- achilinae are presented. Published knowledge of the nesting of these species, Megachile (Maximegachile) maxillosa Guérin-Méneville (Megachilini), Megachile (Eurymella) patellimana Spinola (Megachilini), and Pseudoheriades grandiceps Peters (currently assigned to the Osmiini), is fragmentary making the notes pre- sented here a worthwhile addition. The brood cells ofM. maxillosa and of P. grandiceps, constructed from a mixture of resin and sand, were positioned in pre-existing cavities, trap-nests, above ground. The cells of the former are equal in diameter to the boring and are constructed in linear series. Those of the latter are small ovoid and are grouped to form a cluster. Megachile patellimana was nesting in burrows in compacted sandy ground beneath a plant and in the banks of an irrigation furrow. -
Bee Communities on Managed Emergent Wetlands in the Lower Mississippi Alluvial Valley of Arkansas Phillip Lee Stephenson University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2017 Bee Communities on Managed Emergent Wetlands in the lower Mississippi Alluvial Valley of Arkansas Phillip Lee Stephenson University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Entomology Commons, and the Zoology Commons Recommended Citation Stephenson, Phillip Lee, "Bee Communities on Managed Emergent Wetlands in the lower Mississippi Alluvial Valley of Arkansas" (2017). Theses and Dissertations. 2427. http://scholarworks.uark.edu/etd/2427 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Bee Communities on Managed Emergent Wetlands in the lower Mississippi Alluvial Valley of Arkansas A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Biology by Phillip Lee Stephenson University of Tennessee - Knoxville Bachelors of Science in Wildlife and Fisheries Science, 2013 August 2017 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ___________________________________ Dr. David G. Krementz Thesis Director ___________________________________ __________________________________ Dr. Ashley P. G. Dowling Dr. John D. Willson Committee Member Committee Member __________________________________ Dr. Johnnie L. Gentry Jr. Committee Member ABSTRACT Native bee communities that use emergent wetlands are among the least studied systems in bee research. Most native bee species are thought to be in decline based on the loss of usable habitat across the United States. I surveyed emergent wetlands in the lower Mississippi Alluvial Valley of Arkansas during the summers of 2015 and 2016 using pan traps, blue-vane traps, and sweep nets to determine the current status of bee communities in this system. -
Journal of Melittology Bee Biology, Ecology, Evolution, & Systematics the Latest Buzz in Bee Biology No
Journal of Melittology Bee Biology, Ecology, Evolution, & Systematics The latest buzz in bee biology No. 69, pp. 1–6 1 May 2017 BRIEF COMMUNICATION Unusual nesting behavior in Megachile (Eutricharaea) rotundata (Hymenoptera: Megachilidae) Cory S. Sheffield1 Abstract. The Alfalfa Leafcutter Bee, Megachile (Eutricharaea) rotundata (Fabricius), is one of the most studied solitary bees in the world. Although its nesting biology is well documented, it has not yet been reported nesting in cavities that expose the nests to open environments. Reported here for the first time is evidence of this species nesting in an unusual manner which would subject the natal cells to exposure and increased parasite attack. Bees of the genus Megachile Latreille s.l. (Hymenoptera: Megachilidae) are com- monly called leafcutters as females of most species cut circular leaf pieces, less com- monly flower petals (e.g., Orr et al., 2015), or combinations of materials (e.g., Zillikens & Steiner, 2004) that are used in the construction of individual natal cells (Fig. 1), each of which will contain one developing bee. Other species of Megachile are masons or daubers, creating nest partitions out of plant resins or similar pliable materials (Mi- chener, 2007; MacIvor & Moore, 2013). Leafcutter bees will construct nests in a variety of places, including cavities excavated into the soil (Eickwort et al., 1981) or decom- posing wood (Hobbs & Lilly, 1954; Stephen, 1956), but most species nest in natural pre-existing cavities in wood, stone, or other substrates; see Sheffield et al. (2011) for a summary of nesting sites used by species occurring in Canada. Regardless of the nest- ing substrate used, female leafcutter bees normally exhibit the behavior of building and provisioning their nests in a linear series, with eggs destined to become females being laid first (i.e., at the rear of the rear of the series in the nesting cavity), with males being produced towards the nest entrance. -
The Role of Pollinator Preference in the Maintenance of Pollen Colour
BList1=SubBList1=BList1=SubBList BList1=SubBList3=BList1=SubBList2 Annals of Botany XX: 1–10, 2018 SubBList1=SubSubBList3=SubBList1=SubSubBList2 doi: 10.1093/aob/mcy211, available online at www.academic.oup.com/aob SubSubBList3=SubBList=SubSubBList=SubBList SubSubBList2=SubBList=SubSubBList=SubBList SubBList2=BList=SubBList=BList Keywords=Keywords=Keywords_First=Keywords The role of pollinator preference in the maintenance of pollen colour variation Downloaded from https://academic.oup.com/aob/advance-article-abstract/doi/10.1093/aob/mcy211/5253586 by College of Wooster user on 20 December 2018 Keywords=HeadA=Keywords_Last=HeadA Jennifer L. Ison1,*,†, Elizabeth S. L. Tuan1,†, Matthew H. Koski2, Jack S. Whalen1 and Laura F. Galloway2 HeadA=HeadB=HeadA=HeadB/HeadA HeadB=HeadC=HeadB=HeadC/HeadB 1The College of Wooster, Department of Biology, 1189 Beall Ave., Wooster, OH 44691, USA and 2University of Virginia, HeadC=HeadD=HeadC=HeadD/HeadC Department of Biology, 485 McCormick Rd, Charlottesville, VA 22904, USA †These authors contributed equally to this work. Extract3=HeadA=Extract1=HeadA * For correspondence. E-mail [email protected] CORI_HeadA=CORI_HeadB=CORI_HeadA=CORI_HeadB/HeadA CORI_HeadB=CORI_HeadC=CORI_HeadB=CORI_HeadC/HeadB Received: 16 June 2018 Returned for revision: 31 August 2018 Editorial decision: 30 October 2018 Accepted: 12 November 2018 CORI_HeadC=CORI_HeadD=CORI_HeadC=CORI_HeadD/HeadC • Background and Aims Pollinators often drive the evolution of floral traits, but their capacity to influence CORI_Extract3=CORI_HeadA=CORI_Extract1=CORI_HeadA the evolution of pollen colour remains unclear. Pollen colour in Campanula americana is variable and displays ERR_HeadA=ERR_HeadB=ERR_HeadA=ERR_HeadB/HeadA a longitudinal cline from prevalence of deep purple in western populations to white and light-purple pollen in eastern populations.