Mechanisms of Calcite Replacement by Whewellite: Implications for The

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Calcite Replacement by Whewellite: Implications for The macla nº 15 . septiembre 2011 revista de la sociedad española de mineralogía 187 Mechanisms of Calcite Replacement by Whewellite: Implications for the Conservation of Building Stone / ENCARNACIÓN RUIZ-AGUDO (1,*), PEDRO ÁLVAREZ-LLORET (1), CHRISTINE V. PUTNIS (2), ALEJANDRO RODRÍGUEZ-NAVARRO (1), ANDREW PUTNIS (2) (1) Departamento de Mineralogía y Petrología. Universidad de Granada. Fuentenueva s/n. 18071, Granada (Spain) (2) Institut für Mineralogie. Universität Münster. Corrensstrasse 24. 48149, Münster (Germany) INTRODUCTION. METHODOLOGY. cross-sections of reacted samples show that calcite is progressively replaced by Calcium oxalates are commonly found Replacement reactions in Teflon® calcium oxalate (whewellite, as in the alteration crusts of stone reactors. confirmed by 2D-XRD analysis). The monuments. From a macroscopic point replacement product is polycrystalline. of view, these layers have a smooth, The replacement experiments were Figure 1 shows the typical morphologies uniform appearance, although a more performed at room temperature (23 ±1 of these newly formed crystals growing detailed observation reveals a porous °C) in sealed Teflon® reactors. Two on the calcite surface during the early and irregular surface. The oxalate types of reactors were used with precipitation stages. patinas cover the original surfaces internal volumes of 50 and 250 mL, reproducing fine details such as the respectively. Fragments of optical signs of the instruments used for their quality Iceland Spar single crystals (ca. carving (Del Monte et al., 1987). 0.020 ± 0.005 mg) were weighed and Observations of natural patinas on placed into the reactors before the calcitic stone surfaces seem to suggest reaction solutions were added. 50 mL that these patinas play a preservative and 250 mL of reaction solutions were role on marbles and limestones; introduced into the Teflon reactors. calcium oxalates replace calcite in the After the reaction, the reactors were stone surface producing less reactive opened and the solids were rinsed with layers towards chemical attack due to ethanol and dried overnight at 60 ºC. fig 1. SEM secondary electron image of a calcite crystal partially replaced by whewellite. The its lower solubility (e.g. Del Monte and Experiments were performed at pH 3 whewellite crystals are clearly oriented on the Sabbioni, 1983; Del Monte et al, 1987). starting from aqueous oxalate-bearing calcite surfaces, and dissolution of the parent Thus, this natural process could be used solutions with oxalate concentration of calcite is seen by the formation of deep etch pits. in the design of conservation treatments 1 mM and with reaction times ranging that mimic the natural process taking from 1 day to 2 weeks. The product crystals appear clearly place in the environment (Doherty et al., oriented on the calcite substrate, 2007). However, the lack of an in-depth Textural and two-dimensional X-Ray forming a thick coating (Fig 1). From the mechanistic knowledge of the calcium diffraction analysis of reacted solids. analysis of the pole figures obtained carbonate-calcium oxalate from the bidimensional XRD analysis transformation has limited the A JEOL 6300F Field Emission Scanning and calculated for the main calcite and development of effective conservation Electron Microscope (FESEM) was used whewellite reflections (Figure 2), it can protocols for calcitic building stones. for surface morphology and texture be concluded that whewellite crystals Knowledge of the factors that control examinations. Solids were carbon- precipitated onto Iceland Spar crystals texture and porosity developed during coated and examined in the FESEM in with their {100} and {010} planes the replacement and the adhesion of both secondary electron and parallel to {10 4} calcite faces. Epitaxial the product layer to the substrate seems backscattered electron mode. 2D-XRD relationships will be further developed in critical before considering the analyses were performed to establish the next section. Dissolution of the application of such treatments in real the three-dimensional orientation of parent phase is seen by the cases. It is the aim of this work to calcite and Ca-oxalate overgrowth using development of deep etch pits on the investigate the mechanism of the an X-ray single crystal diffractometer substrate surface underlying the newly replacement of calcite by whewellite equipped with a CCD area detector (D8 formed phase. SEM images of cross- (CaC2O4·H2O), including the possible SMART APEX, Bruker, Germany). Pole sections show that partially replaced epitaxial relationships between the densities/figures for the main calcite crystals retain the external dimensions substrate and the product. This has and whewellite reflections were and crystallographic - characteristics of been done on experimental samples calculated from the registered frames the initial calcite, i.e. calcium oxalate using a combination of Scanning using XRD2DScan software (Rodriguez- pseudomorphically replaces calcite. The Electron Microscopy (SEM) and Navarro, 2006). replacement rim showed limited, bidimensional X-Ray Diffraction (2D- apparently non-connected porosity, with XRD). RESULTS AND DISCUSSION. most of the empty spaces observed in the reaction product related to the SEM examinations of surfaces and formation and widening of fractures. palabras clave: Calcita, Whewellita, Reemplazamiento, Piedra key words: Calcite, Whewellite, Replacement, Building stone. ornamental. resumen SEM 2011 * corresponding author: [email protected] macla nº 15 . septiembre 2011 revista de la sociedad española de mineralogía 188 These fractures are frequently observed dissolution - reprecipitation process solutions and calcite cleavage surfaces both within the replacement rim and (Putnis, 2002). As shown by Xia et al. follows the typical pattern of a within the still unaltered calcite crystals (2009), the coupling between the pseudomorphic, interface-coupled (Fig. 3). dissolution and precipitation in dissolution-reprecipitation reaction, with replacement reactions is achieved by a the dissolution of the substrate and the combination of substrate-assisted subsequent precipitation of whewellite nucleation and solution chemistry at the crystals, which grow epitaxially on the reaction interface. The fast dissolution (101 4) calcite surface. There are two of calcite at the low pH conditions of our orientations of the whewellite crystals experiments raises the activity of on the calcite surface: calcium in the solution at the interface (010)COM║(10 4)Cc, [100]COM ║[ 41]Cc, with the solid, increasing its 1 4 supersaturation degree with respect to and (100)COM ║(101 4)Cc, [001]COM whewellite and therefore enhancing its ║[010]Cc. The coupling between the dissolution and precipitation reactions fig 2. (010) pole figure from whewellite showing a nucleation. Furthermore, the structural maxima that indicates that these planes are similarities between calcite and in replacement processes is a oriented approximately parallel to the (104) calcite whewellite seem to promote epitaxial consequence of substrate-assisted plane. nucleation of the latter on calcite epitaxial nucleation and solution surfaces, decreasing the energy barrier chemistry at the reaction interface. for whewellite nucleation. Epitaxial Under the conditions of our relationships and structural matching experiments, formation of cracks and between these phases will be explored subsequent detachment of the in the next section. Our observations replacement rim was observed, most point towards a “Volmer-Weber” probably due to the increase in volume mechanism of epitaxial growth, in which occurring upon the reaction. Changes in the overgrowth precipitates as thick the chemistry of the replacement fluid three-dimensional crystals and that can modify the relative solubility of the typically occurs when there is a weak parent crystal and the product and lead fig 3. SEM-backscattered electron image showing a adhesion between substrate and to the eventual development of a cross section of a calcite crystal partially replaced porous, coherent interface. The results by whewellite. overgrowth. of this research are expected to With increasing reaction time, the Epitaxial relationships. represent a source of information for replacement product detaches from the the design of protective treatments for calcitic stones based on the calcite surface and breaks up into fine For (010) whewellite and (1014) calcite precipitation of calcium oxalate upon particles. The fragility of the reaction faces a very good matching was calcite dissolution, and highlight the product may be the combined result of observed along [101]COM and [010]Cc reaction parameters that must be its low adhesion to the substrate and the (misfit -0.05 %) and along [100]COM and presence of cracks. Fracture formation optimize before such a treatment can [ 4 41]Cc (misfit of 4.26 %), the angular and the observed limited porosity may be effectively implemented. misfit between both directions being - be the consequence of a positive volume 5.31 °. These misfit values are clearly change in the replacement reaction, REFERENCES. within the limits required for epitaxial most probably due to the higher molar nucleation from solution. Similarly, a volume of whewellite compared to Del Monte, M., Sabbioni, C., Zappia, G. good structural matching was found (1983): The origin of calcium oxalates on calcite. These fractures are critical in the along whewellite [001] and calcite historical buildings, monuments and progress of the
Recommended publications
  • DESCRIPTIVE HUMAN PATHOLOGICAL MINERALOGY 1179 but Still Occursregularly
    Amerkan Mincraloght, Volume 59, pages I177-1182, 1974 DescriptiveHuman Pathological Mineralogy Rrcneno I. Gmsox P.O. Box I O79, Dauis,C alilornia 95 6 I 6 Absfract Crystallographic, petrographic, and X-ray powder difiraction analysis of approximately 15,000 samples showed that the most common mineral constituents of human pathological concretions are calcium oxalates (whewellite and weddellite), calcium phosphates (apatite, brushite, and whitlockite), and magnesium phosphates (struvite and newberyite). Less are monetite, hannayite, calcite, aragonite, vaterite, halite, gypsum, and hexahydrite."o-rnon of the variables determining which minerals precipitate, the effects of different pH values on deposi- tional conditions are most apparent, and are shown by occurrences and relationships among many of the minerals studied. A pH-sensitive series has been identified among magnesium phosphatesin concretions. Introduction The study was carried out over a period of three The importanceof mineralogyin the field of medi- years.Composition was confirmedby X-ray powder cine lies in the applicationof mineralogicalmethods diffraction and polarizing microscopy;sequence was to study pathologicalmineral depositsin the human arrived at from considerationsof microscopic tex- body. Urology benefitsgreatly becauseconcretions tural and crystallographicrelationships. More than of mineral matter (calculi) are common in the 14,500samples were derivedfrom the urinary sys- urinary system.The value of mineralogicalanalysis tem of kidneys,ureters, bladder, and urethra; the of urinary material was first describedby prien and remaining samples are not statistically significant Frondel (1947). Mineralogistsmay be unawareof and arediscussed only briefly. the variability and nature of such compounds be- Calcium cause reports are usually published in medical Oxalates journals. This investigationreports the mineralogy Whewellite, CaCzOE.H2O,and weddellite, CaCz- and possiblepathological significanceof these min- O4'2H2O,are very uncommonin the mineralworld.
    [Show full text]
  • 503.Pdf by Guest on 30 September 2021 504 the CANADIAN MINERALOGIST
    Canadian Mineralogist Vol. 2l; pp. 503-508(1983) WEDDELLITE FROM BIGGS, OREGON, U.S.A. J. A. MANDARINO Depdrtmentof Mineralogltand Geology,Royal Ontario Museum,100 Queen's Park, Toronto, Anturio M5S 2C6 and Department of Geologl, University of Toronto, Toronto, Ontario MSS lAl NOBLE V. WITT I319 N.E. IITth Street, Vancouver,Washington 98665, U.S.A. ABSTRACT coeur r6sineux brun fonc€ renfermant un matdriau organique ind€termin6. Le matdriau brun pdle possddeune The rare mineral weddellite, CaCrOo.(2+x)H2O, has duretdd'environ 4 et une densit€de2.02Q), La weddellite beenidentified from an occurrencenear Biggs, Oregon, est tetra&onale,de grpupe spatial I4/m, o 12,33(2),c U.S.A. Crystal$up to 5 x 5 x 40 mm occur in cavities 7.353(3)A, V 1117.9et, z = 8. L'analysechimique du in nodulesof the so-called"Biggs jasper". The nodules materiau blanc donne CaO 35.4, CzO343,2, }J2O 24.7, are in lake-bottom sedimentssandwiched between basalt somme 103.3%oen poids. La formule empiriqueobtenue flows of Mioceneage. Associated minerals are quartz and d partir de cesdonn€es est Ca1.04C1.97O0.6,2.26H2Oott, whewellite (CaC2O4.H2O).The whewellite appears to id6alement, CaC2Oa.2.26HtO;la densite calcul€e est replacesome of the weddellite.The weddelliteoccurs as 2.020(4).Le mat6riaublanc est optiquementuniaxe ( + ), tan, euhedral crystals and as white, fibrous aggregates d'indices principaux ot 1,524 et e 1.5U. L'indice de surroundingsome of the euhedralcrystals. The euhedral compatibilit6,0.008, indique une compatibilitt supdieure crystalsAre dull to vitreousin lustre and often havea dark de la ddnsitdavec donn6esoptiques et chimiques.
    [Show full text]
  • The Importance of Minerals in Coal As the Hosts of Chemical Elements: a Review
    The importance of minerals in coal as the hosts of chemical elements: A review Robert B. Finkelmana,b, Shifeng Daia,c,*, David Frenchd a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, China b University of Texas at Dallas, Richardson, TX 75080, USA c College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China d PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia *, Corresponding author: [email protected]; [email protected] Abstract Coal is a complex geologic material composed mainly of organic matter and mineral matter, the latter including minerals, poorly crystalline mineraloids, and elements associated with non- mineral inorganics. Among mineral matter, minerals play the most significant role in affecting the utilization of coal, although, in low rank coals, the non-mineral elements may also be significant. Minerals in coal are often regarded as a nuisance being responsible for most of the problems arising during coal utilization, but the minerals are also seen as a potentially valuable source of critical metals and may also, in some cases, have a beneficial effect in coal gasification and liquefaction. With a few exceptions, minerals are the major hosts of the vast majority of elements present in coal. In this review paper, we list more than 200 minerals that have been identified in coal and its low temperature ash, although the validity of some of these minerals has not been confirmed. Base on chemical compositions, minerals found in coal can be classified into silicate, sulfide and selenide, phosphate, carbonate, sulfate, oxide and hydroxide, and others.
    [Show full text]
  • Lite Geology 36: New Mexico's Coal and Electricity Industries
    Lite fall 2014 New Mexico’s Coal and Electricity issue 36 Industries Escalante Generating Station. Photo courtesy of Tri-State Generating and Transmission Association. In This Issue... New Mexico’s Coal and Electricity Industries and the Clean Air Act Caron Dioxide Emissions: New Guidelines and Economic Challenges Global Impacts of Coal Production • Replacement Fuels for Coal-Fired Electricity Water Use at Coal-Fired Power Plants Earth Briefs • Crossword Puzzle New Mexico’s Most Wanted Minerals—Whewellite New Mexico’s Enchanting Geology Classroom Activity: Cupcake Core Sampling Through the Hand Lens • Short Items of Interest NEW MEXICO BUREAU OF GEOLOGY & MINERAL RESOURCES A DIVISION OF NEW MEXICO TECH http://geoinfo.nmt.edu/publications/periodicals/litegeology/current.html NEW MEXICO’S COAL AND ELECTRICITY INDUSTRIES AND THE CLEAN AIR ACT Gretchen Hoffman Editor’s Note: This issue of Lite Geology is the second in a series of totaled $121.9 million. Along with the economic impact of three issues, all related to new technologies in the energy industries. coal mining in the state, 68% of the total electricity generated The last issue addressed new technologies in the oil and gas industry, in New Mexico comes from coal combustion. Approximately this issue focuses on coal and coal-fired electrical generation industries, and the third will address the renewable energy sector. one-third of this electricity is consumed in other states. In New Mexico, 34% of the total energy consumed comes from coal. Coal in New Mexico Generating Stations Using New Coal has played a significant role in New Mexico’s history. Coal was used by the early forts and settlements, the rail- Mexico Coal roads, and the smelters built in the territory after the Civil New Mexico’s three major coal-fired power generating sta- War.
    [Show full text]
  • Origin of the Whewellite-Rich Rock Crust in the Lower Pecos Region of Southwest Texas and Its Significance to Paleoclimate Reconstructions
    Origin of the Whewellite-Rich Rock Crust in the Lower Pecos Region of Southwest Texas and its Significance to Paleoclimate Reconstructions JON RUSS Department of Chemistry, Newberry College, Newberry, South Carolina 29108 RUSSELL L. PALMA Department of Physics, Sam Houston State University, Huntsville, Texas 77341 DAVID H. LOYD Department of Physics, Angelo State University, San Angelo, Texas 76909 THOMAS W. BOUTTON Department of Rangeland Ecology and Management, Texas A&M University, College Station, Texas 77843 AND MICHAEL A. COY Electron Microscopy Center, Texas A&M University, College Station, Texas 77843 Received February 2I, 1996 A calcium oxalate (whewellite)-rich crust occurs on exposed limestone surfaces in dry rock and open air shelters in the Lower Pecos region of southwest Texas. The crust, which also contains gypsum and clay, formed over silica-rich limestone during the Holocene. SEM and optical photomicrographs reveal similarities between whewellite microstructures and the lichen Aspicilia calcarea. This desert lichen is known to produce calcium oxalate, and has been found in several sites in the region. The ubiquity of the whewellite-rich crust in the Lower Pecos shelters suggests that the lichen flourished in the past. Since A. calcarea is a desert species, the virulence of the organism likely peaked during xeric climate episodes then waned during mesic periods. Thus, radiocarbon ages of whewellite would correspond to dry climate periods experienced in the region, while periods with few or no 14C data would indicate wet climate episodes. A preliminary paleoclimate reconstruction based on fourteen AMS 14C dates indicates the Lower Pecos experienced dry to wet climate fluctuations during the late Holocene.
    [Show full text]
  • A Calcium Oxalate Phase Stability and Dissolution Study
    A CALCIUM OXALATE PHASE STABILITY AND DISSOLUTION STUDY By NAUF SALEH Al-JUHANI A thesis submitted to the Graduate School-Camden Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Master of Science Graduate Program in Chemistry Written under the direction of Dr. George Kumi and approved by ________________________ Dr. George Kumi ________________________ Dr. Georgia Arbuckle-Keil ________________________ Dr. Hao Zhu Camden, New Jersey May 2017 THESIS ABSTRACT A calcium oxalate phase stability and dissolution study By NAUF SALEH Al-JUHANI Thesis Director: Dr. George Kumi The presence of calcium oxalate (CaOx) hydrate crystals, which have low solubility in water, is widespread in nature. These crystals cause undesirable effects in certain aspects of human life, and many of these problems are still unsolved due to the lack of necessary information about the crystallization and dissolution mechanisms of these crystals. To obtain more insight into the thermal stability of CaOx crystals, a comparative study of calcium oxalate monohydrate (COM) dendritic and calcium oxalate dihydrate (COD) bipyramidal crystals has been undertaken using a combination of Raman microscopy and thermal stage. Crystal structure transformations in these crystals with respect to various temperatures were determined. Experimental results indicate that COM is stable up to ~110 °C, and above this temperature the anhydrous calcium oxalate (COA) forms. This transformation is reversible since the COA crystals created convert back to the COM phase upon cooling to temperatures below this transition temperature. In contrast, the COD phase is stable up to ~120 °C, and above this temperature COD dehydrates and transforms to COA.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 59, pages 873-475, 1974 NEWMINERAL NAMES* Mrcnapl Frprscnpn Bjarebyite* Borovskite* P. B. MooRE, D. H. LuNo, eNo K, L. KBrsrBn (1923) A. A. Yerovor, A. F. Sroonov, N. S. RuomnEvsKrr AND Bjarebyite, (Ba,Sr)(Mn,Fe,Mg),AL(Olt)s(por)a a new I. A. Buo'ro (1973) Borovskite, PdSbTer, ? n€w mineral. species. Mineral. Rec. 4, 282-285, Zapiski Vses.Mineral. Obshch. 102, 427431 (in Russian). Microprobe pure Microprobe analysis by G. Z. Zecttnan gave (av. 60 area analyses, using metals and BirTer as standards, on 4 grains gave scan) Ba 21.81, Sr O.79, Ca 0.06, Mn 7.15, Fe 6.95, Pd 32.94, 31.90, 32.37, 32.37, av. 32.39; Pt. 1.21, 1.25, 1.23, Mg 0.84, Al 7.01, giving the formula above with pOr and 1.20, av. 1.23; Ni 0.26, O.24,0.26, O.25,av.0.25; Fe OH on the basis of the structure. The ratio Mn/Fe is 0.04, 0.04, 0.06, 0.02, av. 0.04; Sb 1,0.92,10.97, 11.01, 11.00, av. 10.98; variable, indicating the likelihood of the occurrence of an Bi 3.35,3.34,3.34, Fe'g*analogue. av. 3.34; Te 51.86, 52.39, 51.70, 51.93, av. 51.97; sum 100.58, 99.98, percent, Weissenberg and rotation photographs show the mineral 10O.14, 100.11, av. 10O.21 corre- sponding to (Pd" (Sbo to be monoclinic, space grotp P2r/m, a 8.930, b lZ.O73, 6PtowNio orFeo o.) *Bio ru)Te" or, or PdaSbTe+.
    [Show full text]
  • Calcium Oxalate Crystal Types in Three Oak Species (Quercus L.) in Turkey
    Turk J Biol 36 (2012) 386-393 © TÜBİTAK doi:10.3906/biy-1109-35 Calcium oxalate crystal types in three oak species (Quercus L.) in Turkey Bedri SERDAR1, Hatice DEMİRAY2 1Karadeniz Technical University, Faculty of Forestry, Department of Forest Botany, Trabzon - TURKEY 2Ege University, Faculty of Science, Department of Botany, İzmir - TURKEY Received: 30.09.2011 ● Accepted: 17.02.2012 Abstract: Crystal types from 3 oak species representing 3 diff erent sections of the genus Quercus were identifi ed. Crystals were studied with scanning electron microscopy aft er localisation by light microscopy. Th e crystals were composed of calcium oxalate silicates as whewellite (calcium oxalate monohydrate) composites. In Quercus macranthera Fisch. et Mey. subsp. syspirensis (C.Koch) Menitsky (İspir oak) from the white oaks (section Quercus: Leucobalanus), whewellite and trihydrated weddellites coexisted. Axial parenchyma cells included 30 crystal chains with walls as chambers in uniseriate ray cells; some cells had many crystals without any chambers and were small. Long thin crystals were found adherent to the membrane in the tracheary cell lumens of latewood. Quercus cerris L. var. cerris (hairy oak/Turkey oak) from the red oak group (section Cerris Loudon) is extremely rich in rhomboidal crystals. In species Quercus aucheri Jaub. et Spach (grey pırnal) from the evergreen oak group (section Ilex Loudon) rhomboidal crystals were found in axial parenchyma and multiseriate ray cells. Lignifi ed wall layers were not observed around the crystals with chambers. Key words: Calcium oxalate silicate, crystals, crystal morphology, Quercus, Turkey Introduction some Araceae (e.g., Xanthosoma sagittifolium) (2). Most plants invest considerable resources in In monocotyledons 3 main types of calcium oxalate cytoplasmic inclusions such as starch, tannins, crystal occur: raphides, styloids, and druses.
    [Show full text]
  • Origin of the Whewellite-Rich Rock Crust in the Lower Pecos Region of Southwest Texas and Its Significance to Paleoclimate Reconstructions
    QUATERNARY RESEARCH 46, 27±36 (1996) ARTICLE NO. 0041 Origin of the Whewellite-Rich Rock Crust in the Lower Pecos Region of Southwest Texas and Its Signi®cance to Paleoclimate Reconstructions JON RUSS Department of Chemistry, Newberry College, Newberry, South Carolina 29108 RUSSELL L. PALMA Department of Physics, Sam Houston State University, Huntsville, Texas 77341 DAVID H. LOYD Department of Physics, Angelo State University, San Angelo, Texas 76909 THOMAS W. BOUTTON Department of Rangeland Ecology and Management, Texas A&M University, College Station, Texas 77843 AND MICHAEL A. COY Electron Microscopy Center, Texas A&M University, College Station, Texas 77843 Received February 21, 1996 generally considered rare in geological environments A calcium oxalate (whewellite)-rich crust occurs on exposed (Graustein et al., 1977; ZÏaÂk and SkaÂla, 1993), but are now limestone surfaces in dry rock and open air shelters in the Lower known to be common components in natural rock accretions Pecos region of southwest Texas. The crust, which also contains (Del Monte and Sabbioni, 1987; Del Monte et al., 1987; Watch- gypsum and clay, formed over silica-rich limestone during the man, 1990, 1991; Edwards et al., 1991; Scott and Hyder 1993; Holocene. SEM and optical photomicrographs reveal similarities Chaffee et al., 1994; Watchman et al., 1995). Evidence indi- between whewellite microstructures and the lichen Aspicilia calc- area. This desert lichen is known to produce calcium oxalate, and cates that some oxalate-rich crusts are produced by lichens (Del has been found in several sites in the region. The ubiquity of the Monte and Sabbioni, 1987; Del Monte et al., 1987; Russ et al., whewellite-rich crust in the Lower Pecos shelters suggests that the 1995), although other biological and nonbiological mechanisms lichen ¯ourished in the past.
    [Show full text]
  • Structural Crystal Chemistry of Organic Minerals: the Synthetic Route
    STRUCTURAL CRYSTAL CHEMISTRY OF ORGANIC MINERALS: THE SYNTHETIC ROUTE (1) Oscar E. Piro (1) Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata e Instituto IFLP (CONICET, CCT-La Plata), C. C. 67, 1900 La Plata, Argentina Correo Electrónico: [email protected] ‘Organic minerals’ means naturally occurring crystalline organic compounds including metal salts of formic, acetic, citric, mellitic and oxalic acids. The primary tool to disclose their crystal structure and their mutual relationship with each other and with synthetic analogues and also to understand their physicochemical properties is X-ray diffraction. The structure of several synthetic organic minerals was solved well before the discovery of their natural counterpart. On the other hand, complete crystal structure determination of early discovered organic minerals had to await the advent of combined synthetic and advanced X-ray diffraction methods. We review here the crystallography of organic minerals showing the importance of structural studies on their synthetic analogues. This will be highlighted by the cases of synthetic novgorodovaite, Ca 2(C 2O4)Cl 2·2H 2O, and its heptahydrate analogue, Ca 2(C 2O4)Cl 2·7H 2O, and the isotypic to each other stepanovite, NaMg[Fe(C 2O4)3]·9H 2O, and zhemchuzhnikovite, NaMg[Al xFe 1-x(C 2O4)3]·9H 2O. 1. Introduction Full crystallographic characterization of minerals by structural X-ray diffraction methods is frequently hampered by several drawbacks, including unavailability of natural samples, lack of purity and other disorders of these materials, and the difficulty in finding natural single crystals suitable for detailed structural work.
    [Show full text]
  • Oxalate Formation Under the Hyperarid Conditions of the Atacama Desert As a Mineral Marker to Provide Clues to the Source Of
    PUBLICATIONS Journal of Geophysical Research: Biogeosciences RESEARCH ARTICLE Oxalate formation under the hyperarid conditions 10.1002/2016JG003439 of the Atacama desert as a mineral marker Key Points: to provide clues to the source • Oxalate minerals were found in the hyperarid conditions of the Salar of organic carbon on Mars Grande basin, Atacama desert • Biological versus abiotic pathways Z. Y. Cheng1, D. C. Fernández-Remolar2, M. R. M. Izawa3,4,5, D. M. Applin4, M. Chong Díaz6, were recognized using mineral and 7 7 1 1,8 7 geochemical techniques M. T. Fernandez-Sampedro , M. García-Villadangos , T. Huang , L. Xiao , and V. Parro • Such information can be used to 1 2 reveal the origin of organic carbon Planetary Science Institute, School of Earth Sciences, China University of Geosciences, Wuhan, China, Environmental 3 on Mars Science Centre, British Geological Survey, Keyworth, UK, Department of Earth Sciences, Brock University, St. Catharines, Ontario, Canada, 4Hyperspectral Optical Sensing for Extraterrestrial Reconnaissance Laboratory, Department of Geography, University of Winnipeg, Winnipeg, Manitoba, Canada, 5Planetary Science Institute, Tucson, Arizona, USA, 6Department of Supporting Information: 7 • Supporting Information S1 Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile, Centro de Astrobiologia (INTA-CSIC), Torrejon de Ardoz, Spain, 8Space Science Institute, Macau University of Science and Technology, Macau, China Correspondence to: D. C. Fernández-Remolar, [email protected] Abstract In this study, we report the detection and characterization of the organic minerals weddellite (CaC2O4 ·2H2O) and whewellite (CaC2O4 ·H2O) in the hyperarid, Mars-like conditions of the Salar Grande, Citation: Atacama desert, Chile. Weddellite and whewellite are commonly of biological origin on Earth and have great Cheng, Z.
    [Show full text]
  • Phase Transitions of Calcium Oxalate Trihydrate and Epitaxy in the Weddellite-Whewellite System
    Scanning Electron Microscopy Volume 1986 Number 4 Article 45 8-30-1986 Phase Transitions of Calcium Oxalate Trihydrate and Epitaxy in the Weddellite-Whewellite System Sergio Deganello University of Chicago Follow this and additional works at: https://digitalcommons.usu.edu/electron Part of the Life Sciences Commons Recommended Citation Deganello, Sergio (1986) "Phase Transitions of Calcium Oxalate Trihydrate and Epitaxy in the Weddellite- Whewellite System," Scanning Electron Microscopy: Vol. 1986 : No. 4 , Article 45. Available at: https://digitalcommons.usu.edu/electron/vol1986/iss4/45 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Electron Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. SCANNING ELECTRON MICROSCOPY /1986/IV (Pages 1721-1728) 0586-5581/86$1.00+0S SEM Inc., AMF O'Hare (Chicago), IL 60666-0507 USA PHASE TRANSITIONS OF CALCIUM OXALATE TRIHYDRATE AND EPITAXY IN THE WEDDELLITE-WHEWELLITESYSTEM Sergio Deganello * Nephrology Program, University of Chicago, IL and Institute of Mineralogy, University of Palermo, Italy (Received for publication April 07, 1986, and in revised form August 30, 1986) Abstract Introduction The phase changes calcium oxalate Only rarely is calcium oxalate trihydrate-weddellite, weddellite-calcium trihydrate (COT) found in urine or in oxalate monohydrate and calcium oxalate renal calculi. Nevertheless COT has trihydrate-whewellite are individually received much attention (i.e., Gardner, examined at the atomic level from a 1975) due to the possibility that it may theoretical point of view; concomitantly be a precursor to the formation of the topological requirements necessary for whewellite (COM) and weddellite (COD) in phase stability are clarified for each human kidney stones.
    [Show full text]