Physocalycoside, a New Phenylethanoid Glycoside from Phlomis Physocalyx Hub.-Mor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amanicadol, a Pimarane-Type Diterpene from Phlomis Amanica Vierch
Amanicadol, a Pimarane-type Diterpene from Phlomis amanica Vierch. Funda N. Yalc¸ına, Tayfun Ers¨oza, Erdal Bedirb, Ali A. D¨onmezc, Michael Stavrid, Mire Zlohe, Simon Gibbonsd, and Ihsan˙ C¸ alıs¸a a Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, 06100, Sıhhiye, Ankara, Turkey b Ege University, Faculty of Engineering, Department of Bioengineering, 35100, Bornova, Izmir,˙ Turkey c Hacettepe University, Faculty of Science, Department of Biology, 06532, Beytepe, Ankara, Turkey d Centre for Pharmacognosy and Phytotherapy, The School of Pharmacy, University of London, 29 – 39 Brunswick Square, London WC1N 1AX, United Kingdom. e Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29 – 39 Brunswick Square, London WC1N 1AX, United Kingdom Reprint requests to Dr. Funda N. Yalc¸ın. Fax: +90 312 311 4777. E-mail: [email protected] Z. Naturforsch. 61b, 1433 – 1436 (2006); received March 16, 2006 Fractionation of the methanol extract of Phlomis amanica resulted in the isolation of a new pi- marane type diterpene, amanicadol (1), together with the known glycosides lamiide, verbascoside (= acteoside), syringaresinol-4-O-β-glucoside, liriodendrin, syringin, and a caffeic acid ester, chloro- genic acid. The structure of the new compound was established on the basis of extensive 1D and 2D NMR spectroscopic data interpretation. Molecular modeling studies on 1 were conducted and showed that it exhibited low conformational flexibility. Additionally, NMR chemical shifts were cal- culated for 1 in vacuo, and calculated values were in very close agreement with those found experi- mentally. Key words: Phlomis amanica, Lamiaceae, Amanicadol, Diterpene, Pimarane Introduction on the basis of a HRESIMS molecular ion peak at m/z = 299 [M+H]+, and the analysis of its 1H and The genus Phlomis (Lamiaceae) is represented by 13C NMR spectroscopic data (Table 1). -
LIBERTO's SEEDS and BULBS
LIBERTO’s SEEDS AND BULBS GARDEN SEEDS 2018/2019 Here is a selection of seeds collected from my gardens, Please scroll to the end of the catalog for sowing and ordering instructions. Listings of orange color, are new items in the 2018/2019 list. Acacia cognata 3€/20seeds. A small tree with an interesting weeping form and a light canopy that is very playful with the sun above. Acacia greggii 3€/20seeds. Small deciduous tree with small leaves that gets covered with yellow flowers in late spring. Acacia karoo 4€/20seeds. Slow in the beginning but as soon as it anchors itself onto the ground it creates an umbrella like tree with sweet scented late spring flowers and most importantly 10cm white spines that will protect it from giraffes (if you have them!) and are very ornamental nevertheless. Acacia mearnsii 4€/20seeds. A nice medium sized tree with ferny foliage and pic panicles of soft lemon flowerheads in late spring. Don’t plant in areas where there is a danger of becoming invasive. Aechmea recurvata ´Big Mama´ 3€/20seeds. One of the best (and biggest) recurvata selections that colors up in pinks and oranges when in flower and then goes back to green when in fruit. Aethionema grandiflorum 3€/20seeds. Tough and long lived Aethionema that takes summer drought excellent. Gets covered in pink in spring. Alyssoides utriculata 3.30€/20seeds. Perfectly suited to screes and rocky soils on a big rock garden or equally at home at a Mediterranean drought tolerant border with good air circulation, this useful shrublet has both vibrant yellow flowers and peculiar round seedpods in short stems above the leaves. -
Lamiaceae) Taxa on Different Elevations of the Lakes District in Turkey
Sarikaya and Fakir The Journal of Animal & Plant Sciences, 28(2): 2018, Page:The J.55 Anim.2-560 Plant Sci. 28(2):2018 ISSN: 1018-7081 DETERMINATION TO VOLATILE COMPONENTS OF NATURAL PHLOMIS L. (LAMIACEAE) TAXA ON DIFFERENT ELEVATIONS OF THE LAKES DISTRICT IN TURKEY A. G. Sarıkaya*1 and H. Fakir2 1Vocational School, 2Faculty of Forestry, Suleyman Demirel University 32260 Isparta, Turkey. Corresponding author: [email protected] ABSTRACT Samples of Phlomis taxa were collected from 16 sampling areas in lower and upper altitudes levels and volatile components were determined by SPME analyses. (E)-2-Hexenal (10.07%), β-Caryophyllene (16.55%) and Germacrene- D (27.03%) have been determined in lower elevation level and also (E)-2-Hexenal (9.64%), β-Caryophyllene (15.73%) and Germacrene-D (25.45%) in upper elevation level for Phlomis armeniaca; α-Cubebene (16.70%), β-Caryophyllene (13.96%) and Germacrene-D (13.31%) were determined in lower elevation level and also α -Cubebene (13.18%), β- Caryophyllene (12.37%) and Germacrene-D (11.13%) have been determined in upper elevation for P. bourgei; Pinene (24.40%), α-Cedrene (31.15%) and α-Curcumene (13.92%) have been determined in lower elevation and also α-Pinene (23.29%), α-Cedrene (25.87%) and α-Curcumene (7.91%) have been determined in upper elevation for Phlomis grandiflora var. grandiflora; (E)-2-Hexenal (8.74%), Limonene (14.56%) and β-Caryophyllene (22.45%) have been determined in lower elevation and (E)-2-Hexenal (10.81%), Limonene (17.55%) and β-Caryophyllene (24.09%) have been determined in upper elevation level for Phlomis leucophracta; Limonene (10.68%), β-Caryophyllene (25.66%) and Germacrene-D (26.88%) have been determined in lower elevation and Limonene (5.75%), β-Caryophyllene (22.50%) and Germacrene-D (25.13%) have been determined in upper elevation for Phlomis lycia; Limonene (20.65%), β- Caryophyllene (14.28%) and Germacrene-D (8.27%) have been determined in lower elevation and also Limonene (14.95%), β-Caryophyllene (14.15%) and Germacrene-D (7.71%) have been determined in upper elevation for P. -
The Evolutionary Origins of the Cat Attractant Nepetalactone in Catnip
This is a repository copy of The evolutionary origins of the cat attractant nepetalactone in catnip. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/161043/ Version: Published Version Article: Lichman, Benjamin Robert orcid.org/0000-0002-0033-1120, Godden, Grant, Hamilton, John et al. (14 more authors) (2020) The evolutionary origins of the cat attractant nepetalactone in catnip. Science Advances. eaba0721. ISSN 2375-2548 https://doi.org/10.1126/sciadv.aba0721 Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new works must also acknowledge the authors and be non-commercial. You don’t have to license any derivative works on the same terms. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ SCIENCE ADVANCES | RESEARCH ARTICLE BIOSYNTHESIS Copyright © 2020 The Authors, some The evolutionary origins of the cat attractant rights reserved; exclusive licensee nepetalactone in catnip American Association for the Advancement Benjamin R. Lichman1*, Grant T. Godden2, John P. Hamilton3, Lira Palmer4, of Science. No claim to 4 3† 3 3 original U.S. Government Mohamed O. Kamileen , Dongyan Zhao , Brieanne Vaillancourt , Joshua C. Wood , Works. -
Phlomis Tuberosa L
Iridoid and Phenylethanoid Glycosides fromPhlomis tuberosa L. Tayfun Ersöz 3 *, Stefanka Ivanchevab, Pinar Akbayc, Otto Sticherc and İhsan Çalişa a Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University TR-06100, Ankara, Turkey. Fax: +90-312-3114777. E-mail: [email protected] b Institute of Botany, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria c Department of Applied BioSciences, Institute of Pharmaceutical Sciences, ETH-Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland * Author for correspondence and reprint requests Z. Naturforsch. 56c, 695-698 (2001); received April 17/May 22, 2001 Phlomis, Iridoid Glucosides, Phenylethanoid Glycosides A new iridoid glucoside, 8 -O-acetylshanzhiside (1), was isolated from the aerial parts of Phlomis tuberosa, together with two known iridoid glucosides, shanzhiside methyl ester and lamalbide. The known phenylethanoid glycosides acteoside and forsythoside B were also obtained and characterized. The structure of 1 was determined by means of ID - and 2D- NMR spectroscopic evidence. Introduction photometer in MeOH. FTIR spectra were re corded on a Perkin-Elmer 2000 FT-IR spectrome Phlomis tuberosa L. (Lamiaceae) is a wide ter in KBr pellets. NMR measurements in CD3OD spread plant in Bulgaria (Stojanovet al., 1967). There exist several reports on the flavonoids and at room temperature were performed on a Bruker DRX 500 spectrometer operating at 500 and 125 polyphenolic compounds (Gella et al., 1972; MHz for XH and 13C NMR, respectively. 1H -1H Glyzin et al., 1972; Vavilova and Gella, 1973a and COSY, ^ -^ C HSQC, and XH-13C HMBC experi 1973b) and alkaloids (Khokhrina and Peshkova, 1974) from this plant. However, C9 iridoids, har- ments were recorded by employing conventional pagide and 8-O-acetyl harpagide have been de pulse sequences. -
The Olea Europaea L. Var. Sylvestris (Mill.) Lehr. Forests in the Mediterranean Area
Plant Sociology, Vol. 56, No. 2, December 2019, pp. 3-34 DOI 10.7338/pls2019562/01 The Olea europaea L. var. sylvestris (Mill.) Lehr. forests in the Mediterranean area L. Gianguzzi1, G. Bazan2 1Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy. 2Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy. Lorenzo Gianguzzi https://orcid.org/0000-0002-9007-7604, Giuseppe Bazan https://orcid.org/0000-0002-4827-9579 Abstract This paper examines the forest communities dominated by Olea europaea L. var. sylvestris (Mill.) Lehr. that have been described up until now in the Mediterranean Region (including other isolated extrazonal areas in the northwestern Iberian Peninsula and in Northern Turkey) as more or less evolved aspects of woods, microwoods and high maquis that principally tend to make up climacic and edapho-climacic “series heads”. These forma- tions maintain a significant large-scale distributive potential within the infra- and thermomediterranean bioclimate belts (with a few penetrations into the mesomediterranean) with a dry-subhumid (and sometimes humid) ombrotype; however, they are currently quite rare and fragmented in the wake of large-scale deforestation and the impoverishment of old-growth communities dominated by a species known to live for millennia. The study was conducted through the analysis of phytosociological data taken from the scientific literature and other unpublished data regarding North-Africa (Morocco, Algeria), the Iberian Peninsula, the Balearic Islands as well as other islands from the Tyrrhenian area (Sardinia, Corsica, Sicily and its minor islands), the Italian Peninsula, the Balkan Peninsula, the Aegean region, Turkey and the southern Anatolian coast. -
GC/MS Evaluation and in Vitro Antioxidant Activity of Essential Oil and Solvent Extracts of an Endemic Plant Used As Folk Remedy in Turkey: Phlomis Bourgaei Boiss
Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2013, Article ID 293080, 7 pages http://dx.doi.org/10.1155/2013/293080 Research Article GC/MS Evaluation and In Vitro Antioxidant Activity of Essential Oil and Solvent Extracts of an Endemic Plant Used as Folk Remedy in Turkey: Phlomis bourgaei Boiss. Cengiz Sarikurkcu,1 M. Sabih Ozer,2 Ahmet Cakir,3 Mustafa Eskici,2 and Ebru Mete4 1 DepartmentofGastronomyandCulinaryArts,FacultyofTourism,UniversityofNecmettinErbakan,Meram,Konya42100,Turkey 2 Department of Chemistry, Faculty of Science and Literature, Celal Bayar University, Muradiye, Manisa 45030, Turkey 3 Department of Chemistry, Faculty of Arts and Sciences, Kilis 7 Aralık University, Kilis 79000, Turkey 4 Department of Chemistry, Faculty of Science, Ataturk¨ University, Erzurum 25240, Turkey Correspondence should be addressed to M. Sabih Ozer; [email protected] Received 10 February 2013; Accepted 12 April 2013 AcademicEditor:F.R.F.Nascimento Copyright © 2013 Cengiz Sarikurkcu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This study was outlined to examine the chemical composition of hydrodistilled essential oil and in vitro antioxidant potentials of the essential oil and different solvent extracts of endemic Phlomis bourgaei Boiss. used as folk remedy in Turkey. The chemical composition of the oil was analyzed by GC and GC-MS, and the predominant components in the oil were found to be - caryophyllene (37.37%), (Z)--farnesene (15.88%), and germacrene D (10.97%). Antioxidant potentials of the solvent extracts and the oil were determined by four testing systems including -carotene/linoleic acid, DPPH, reducing power, and chelating effect. -
Phylogeny and Biogeography of the Lamioid Mint Genus Phlomis L
Photograph by Jim Mann Taylor Phylogeny and biogeography of the lamioid mint genus Phlomis L. Cecilie Mathiesen Candidata scientiarum thesis 2006 NATURAL HISTORY MUSEUM UNIVERSITY OF OSLO Forord Endelig, etter en noe lengre hovedfagsprosess enn planlagt, sitter jeg her med et ferdig produkt. En stor takk rettes til min veileder, Victor og min medveileder, Charlotte. Dere har vært til stor hjelp gjennom hele prosessen. Dere dyttet meg i gang igjen da jeg slet med motivasjonen etter fødselspermisjonen, det er jeg utrolig glad for. Uvurderlig hjelp har jeg også fått fra Tine, som aldri sa nei til å lese gjennom og komme med konstruktiv kritikk til mine skriblerier. Jan Wesenberg skal også takkes for all hjelp med russisk oversettelse, og Wenche H. Johansen for stor hjelp i et virvar av russiske tidsskrifter på museets bibliotek. Many thanks to Jim Mann Taylor for his hospitality, transport and help during the material sampling in his private Phlomis garden in Gloucester. He has also been a great resource in the processing of the material and his book on Phlomis made things a lot easier for a complete stranger to the genus. Videre vil jeg takke: Kasper, som er grunnen til at denne jobben tok litt lenger tid en planlagt, Mamma og Pappa for at dere alltid stiller opp, Marte og Marianne, mine aller beste venner og Nina, for all forståelse når graviditeten tok mer plass i hodet enn Phlomis og støtte på at mye er viktigere enn hovedfaget. Og selvfølgelig en spesiell takk til Terje, for at du er den du er og for at du er Kaspers pappa. -
Korkuteli/Antalya) Florasi Üzerine Bir Araştirma
T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İMECİK DAĞI (KORKUTELİ/ANTALYA) FLORASI ÜZERİNE BİR ARAŞTIRMA Gönül SÖNMEZ YÜKSEK LİSANS TEZİ BİYOLOJİ ANABİLİM DALI 2014 T.C. AKDENİZ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İMECİK DAĞI (KORKUTELİ/ANTALYA) FLORASI ÜZERİNE BİR ARAŞTIRMA Gönül SÖNMEZ YÜKSEK LİSANS TEZİ BİYOLOJİ ANABİLİM DALI Bu tez 2012.02.0121.021 proje numarası ile Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir. 2014 ÖZET İMECİK DAĞI (KORKUTELİ/ANTALYA) FLORASI ÜZERİNE BİR ARAŞTIRMA Gönül SÖNMEZ Yüksek Lisans Tezi, Biyoloji Ana Bilim Dalı Danışman: Prof. Dr. Hüseyin SÜMBÜL Aralık 2014, 214 sayfa Bu çalışma, İmecik Dağı (Korkuteli/Antalya) ve yakın çevresinin florasını kapsamaktadır. İmecik Dağı, Antalya ili Korkuteli ilçesi sınırları içerisinde yer almaktadır. Araştırma alanından Mart 2012-Kasım 2013 tarihleri arasında 1122 bitki örneği toplanmıştır. Araştırma kapsamında, 1122 bitki örneğinin değerlendirilmesi sonucunda 86 familyaya ait 338 cins ve 702 tür tespit edilmiştir. Toplam takson sayısı ise 714’dür. Toplam taksondan 32 takson C3 karesinden ilk kez toplanmıştır. 86 familyadan 5’i Pteridophyta (Eğreltiler) divisiosuna, 81’i Magnoliophyta (Tohumlu Bitkiler) divisiosuna aittir. Teşhis edilen 714 taksondan 7 takson Pteridophyta divisiosu, 707 takson Magnoliophyta divisiosu içinde yer almaktadır. Magnoliophyta divisiosuna dahil olan Pinophytina (Açık Tohumlular) alt divisiosu 8 takson; Magnoliophytina (Kapalı Tohumlular) alt divisiosu 699 takson içermektedir. Magnoliophytina alt divisiosundan -
19. + 124-0110. + Evren, Kaş, 17.4.210
www.biodicon.com Biological Diversity and Conservation ISSN 1308-8084 Online; ISSN 1308-5301 Print 3/2 (2010) 170-184 The flora of Kaş Plateau and its surroundings (Anamur – Mersin/Turkey) Evren YILDIZTUGAY *1, Mustafa KÜÇÜKÖDÜK 1 1Department of Biology, Faculty of Science, Selçuk University, Campus, 42075, Selçuklu, Konya, Turkey Abstract This research has been made to determine the flora of Kaş Plateau and its surroundings (Anamur - Mersin). The research area is in the C4 square according to the grid system. As a result of the examination of 840 plants specimens which were collected from the research area between 2006-2008, 470 taxa that belong to 73 families and 279 genera have been determined. In the research area the number of endemic taxa is 62 (13.2%). The phytogeographic region of plants in this area are represented as follows; Mediterranean 33.6%, Irano-Turanian 10.2%, Euro-Siberian 4.3%. Key words: Flora, Kaş Plateau, Anamur, Mersin, Turkey ---------- ∗ ---------- Kaş Yaylası ve çevresinin (Anamur - Mersin) florası Özet Bu araştırma Kaş Yaylası ve çevresinin (Anamur - Mersin) florasını tespit etmek için yapılmıştır. Araştırma alanı kareleme sistemine göre C4 karesi içerisindedir. Çalışma alanından 2006-2008 yılları arasında toplanan 840 bitki örneğinin değerlendirilmesi sonucu 73 familyaya ait 470 takson ve 279 cins tespit edilmiştir. Çalışma alanındaki endemik takson sayısı 62 (% 13.2)’dir. Bitkilerin fitocoğrafik bölgelere göre dağılımları şöyledir: Akdeniz elementi % 33.6, Đran-Turan elementi % 10.2, Avrupa-Sibirya elementi % 4.3’dür. Anahtar kelimeler: Flora, Kaş Yaylası, Anamur, Mersin, Türkiye 1. Introduction The research area locate in Anamur-Ermenek highway 42nd kilometers north of the district of Anamur and is in square C4, according to the grid system used in the Flora of Turkey (Davis, 1965-1985). -
The Leipzig Catalogue of Plants (LCVP) ‐ an Improved Taxonomic Reference List for All Known Vascular Plants
Freiberg et al: The Leipzig Catalogue of Plants (LCVP) ‐ An improved taxonomic reference list for all known vascular plants Supplementary file 3: Literature used to compile LCVP ordered by plant families 1 Acanthaceae AROLLA, RAJENDER GOUD; CHERUKUPALLI, NEERAJA; KHAREEDU, VENKATESWARA RAO; VUDEM, DASHAVANTHA REDDY (2015): DNA barcoding and haplotyping in different Species of Andrographis. In: Biochemical Systematics and Ecology 62, p. 91–97. DOI: 10.1016/j.bse.2015.08.001. BORG, AGNETA JULIA; MCDADE, LUCINDA A.; SCHÖNENBERGER, JÜRGEN (2008): Molecular Phylogenetics and morphological Evolution of Thunbergioideae (Acanthaceae). In: Taxon 57 (3), p. 811–822. DOI: 10.1002/tax.573012. CARINE, MARK A.; SCOTLAND, ROBERT W. (2002): Classification of Strobilanthinae (Acanthaceae): Trying to Classify the Unclassifiable? In: Taxon 51 (2), p. 259–279. DOI: 10.2307/1554926. CÔRTES, ANA LUIZA A.; DANIEL, THOMAS F.; RAPINI, ALESSANDRO (2016): Taxonomic Revision of the Genus Schaueria (Acanthaceae). In: Plant Systematics and Evolution 302 (7), p. 819–851. DOI: 10.1007/s00606-016-1301-y. CÔRTES, ANA LUIZA A.; RAPINI, ALESSANDRO; DANIEL, THOMAS F. (2015): The Tetramerium Lineage (Acanthaceae: Justicieae) does not support the Pleistocene Arc Hypothesis for South American seasonally dry Forests. In: American Journal of Botany 102 (6), p. 992–1007. DOI: 10.3732/ajb.1400558. DANIEL, THOMAS F.; MCDADE, LUCINDA A. (2014): Nelsonioideae (Lamiales: Acanthaceae): Revision of Genera and Catalog of Species. In: Aliso 32 (1), p. 1–45. DOI: 10.5642/aliso.20143201.02. EZCURRA, CECILIA (2002): El Género Justicia (Acanthaceae) en Sudamérica Austral. In: Annals of the Missouri Botanical Garden 89, p. 225–280. FISHER, AMANDA E.; MCDADE, LUCINDA A.; KIEL, CARRIE A.; KHOSHRAVESH, ROXANNE; JOHNSON, MELISSA A.; STATA, MATT ET AL. -
Theophanis Constantinidis the Flora of the Kastellorizo
Fl. Medit. 23: 69-86 doi: 10.7320/FlMedit23.069 Version of Record published online on 30 December 2013 Theophanis Constantinidis The flora of the Kastellorizo island group (East Aegean Islands, Greece): new records and comments Abstract Constantinidis, T.: The flora of the Kastellorizo island group (East Aegean Islands, Greece): new records and comments. — Fl. Medit. 23: 69-86. 2013. — ISSN: 1120-4052 printed, 2240- 4538 online. The Kastellorizo island group, the south-easternmost part of Greece, supports a flora rich in Anatolian elements. Although that flora is relatively well known since 1973, some additional plant taxa are reported here, based on collections made between 1999 and 2012. Among them, Galium pseudocapitatum is a species new for the East Aegean Islands and the whole of Greece. The rare Galanthus peschmenii, previously known from Megisti, was also found on the Strongili island. Daucus conchitae is critically revised and, based on additional material, included in D. guttatus. In total, 64 records are new either for the whole island group or for one of its constituent islands. Key words: Anatolian elements, Megisti, Ro, Taxonomy, Strongili. Introduction The Kastellorizo island group (East Aegean Islands, Greece) forms a small archipelago consisting of three main islands, Megisti (or Kastellorizo), Ro and Strongili, and several smaller islets mostly situated to the east of Megisti (Fig. 1). The large islands are situated at only 2-3 km S or SW of the Turkish coast (Antalya vilayet), where Kaş is the closest large city. The nearest Greek island is Rodos, at a distance of c. 125-128 km to the west.