Pro Gradu Miia Farstad 2021

Total Page:16

File Type:pdf, Size:1020Kb

Pro Gradu Miia Farstad 2021 04 Master's thesis in Geography Physical Geography Biotic Interactions with Distributions of Arctic and Alpine Flora in Fennoscandia Miia Farstad 2021 Supervisors: Miska Luoto Pekka Niittynen UNIVERSITY OF HELSINKI FACULTY OF SCIENCE DEPARTMENT OF GEOSCIENCES AND GEOGRAPHY GEOGRAPHY P. O. Box 64 (Gustaf Hällströmin katu 2) 00014 University of Helsinki Tiedekunta – Fakultet – Faculty Osasto – Institution – Department Faculty of Science Department of Geosciences and Geography Tekijä – Författare – Author Miia Farstad Tutkielman otsikko – Avhandlings titel – Title of thesis Biotic Interactions with Distributions of Arctic and Alpine Flora in Fennoscandia Koulutusohjelma ja opintosuunta – Utbildningsprogram och studieinriktning – Programme and study track Master's programme in geography, Physical geography Tutkielman taso – Avhandlings nivå – Level of the thesis Aika – Datum – Date Sivumäärä – Sidoantal – Number of pages Master's thesis May 2021 88 pages + 4 appendices Tiivistelmä – Referat – Abstract Due to the harsh conditions in high latitude alpine and arctic regions, climate or land use changes make them very vulnerable. Thus, it is vital to study the habitats of these regions and increase our understanding of what factors impact species distributions. Species distribution modelling can be used to predict possible habitats for species and further inspect the relationships between different environmental variables and species. Generally, these species distribution models have been created using variables describing the topographical and climatic conditions of the study area. Recently there has been more evidence supporting the inclusion of biotic variables to species distribution models at all scales. Including biotic variables can be difficult, as these relationships can be challenging to quantify. This study uses the Normalized Difference Vegetation Index (NDVI) as a surrogate for plant biomass, thus representing biotic interactions. This study aims to answer what are the relationships between environmental variables and the predicted distributions and will including a biotic variable improve the species distribution models. The study data includes observational data from 683 arctic and alpine plant species from Norway, Sweden, and Finland. The observation data were collected from the three national databanks of Norway, Sweden and Finland and completed with observations from the Global Biodiversity Information Facility and observation data collected by the BioGeoClimate Modelling Lab. The cohesive study area was outlined with the biogeographical regions defined by the European Environment Agency. Overall, six environmental variables are used in this study: annual mean temperature, the maximum temperature of the warmest month, annual precipitation, elevation difference in a cell, bedrock class, and NDVI. The NDVI data was gathered by NASA’s MODIS sensors. The observations and the environmental variables were projected into a grid consisting of 1 x 1 km cells covering the whole study area. This study uses the ensemble modelling technique with four individual modelling methods: generalized linear models (GLM), generalized additive models (GAM), generalized boosted models (GBM) and random forests (RF). The modelling process consisted of two modelling rounds so that the impact of NDVI could be evaluated. The first modelling round included all the environmental variables except NDVI (the topoclimate model) and the second modelling round included all the environmental variables (the full model). The two temperature variables, annual mean temperature and the maximum temperature of the warmest month, had the highest mean variable importance values. With the topoclimate model, annual precipitation ranked third with the rest of the climate variables, but when NDVI was added to the models, it rose above annual precipitation. Overall, among the studied arctic and alpine species, the variable importance values of both the edaphic and topographical variables were low. In general, both the topoclimate models and full models performed very well. The mean AUC- and TSS-values were all higher for the full models, indicating that including a biotic variable improved the models. When the binary predictions of both modelling rounds were compared, it was clear that NDVI refined the projected distributions for most species. The results from this study confirm the discovery that including a biotic variable, such as NDVI, has the potential to increase the predictive power of species distribution models. One of the main problems with including biotic variables in species distribution models has been the difficulty of quantifying biotic interactions. NDVI can thus be a promising tool to overcome these difficulties, as it is one of the most direct variables to describe ecosystem productivity, can be acquired at various scales, and as remotely sensed data, it can also cover areas that are difficult to access. Avainsanat – Nyckelord – Keywords biogeography, species distribution modelling, biotic interactions, NDVI, arctic and alpine plant species Säilytyspaikka – Förvaringställe – Where deposited University of Helsinki electronic theses library E-thesis/HELDA Muita tietoja – Övriga uppgifter – Additional information Tiedekunta – Fakultet – Faculty Osasto – Institution – Department Matemaattis-luonnontieteellinen tiedekunta Geotieteiden ja maantieteen osasto Tekijä – Författare – Author Miia Farstad Tutkielman otsikko – Avhandlings titel – Title of thesis Bioottiset vuorovaikutukset arktisen ja alpiinisen kasvilajiston levinneisyyksien kanssa Fennoskandiassa Koulutusohjelma ja opintosuunta – Utbildningsprogram och studieinriktning – Programme and study track Maantieteen maisteriohjelma, luonnonmaantiede Tutkielman taso – Avhandlings nivå – Level of the thesis Aika – Datum – Date Sivumäärä – Sidoantal – Number of pages Pro gradu Toukokuu 2021 88 sivua + 4 liitettä Tiivistelmä – Referat – Abstract Korkeiden leveysasteiden alpiinisten ja arktisten alueiden ankarien olosuhteiden vuoksi muutokset ilmastossa tai maankäytössä tekevät niistä erityisen haavoittuvia. Siksi on erittäin tärkeää tutkia näitä elinympäristöjä lisätäksemme ymmärrystä siitä, mitkä tekijät vaikuttavat lajien levinneisyyksiin näillä alueilla. Lajien levinneisyysmallinnusta voidaan käyttää ennustamaan lajien mahdollisia elinympäristöjä ja tutkimaan myös eri ympäristömuuttujien ja lajien keskinäisiä suhteita. Yleensä lajien levinneisyysmalleissa käytetyt muuttujat ovat kuvanneet topografisia ja ilmastollisia olosuhteita, mutta viime vuosina on tullut enemmän todisteita siitä, että bioottisten muuttujien sisällyttäminen lajien levinneisyysmalleihin parantaa niitä kaikissa mittakaavoissa. Bioottisten muuttujien sisällyttäminen voi olla vaikeaa, sillä näiden suhteiden kvantifiointi voi olla haastavaa. Tässä tutkimuksessa käytetään normalisoitua kasvillisuusindeksiä (NDVI) edustamaan kasvien biomassaa ja samalla edustamaan bioottisia vuorovaikutuksia. Tämän tutkimuksen tarkoituksena on vastata siihen, että mitkä ovat ennustettujen levinneisyyksien ja niissä käytettyjen ympäristömuuttujien suhteet tutkimuslajeihin, sekä parantaako bioottisen muuttujan sisällyttäminen lajien levinneisyysmalleja. Tässä tutkimuksessa käytetään 683 arktisen ja alpiinisen kasvilajin havaintodataa Norjasta, Ruotsista ja Suomesta. Havaintodata on kerätty Norjan, Ruotsin ja Suomen kansallisista datapankeista ja havaintoja on myös täydennetty Global Biodiversity Information Facility-databankin havainnoilla sekä BioGeoClimate Modelling Lab -tutkimusryhmän keräämillä havainnoilla. Yhtenäinen tutkimusalue rajattiin käyttämällä Euroopan ympäristökeskuksen määrittelemiä biogeografisia alueita. Kaiken kaikkiaan tässä tutkimuksessa käytettiin kuutta ympäristömuuttujaa: vuotuinen keskilämpötila, lämpimimmän kuukauden maksimilämpötila, vuotuinen sadanta, korkeusero solussa, kallioperä, sekä NDVI. NDVI-data on kerätty NASA:n MODIS-sensoreilla. Havainnot ja ympäristömuuttujat projisointiin koko tutkimusalueen kattavaan 1 x 1 km ruudukkoon. Tässä tutkimuksessa käytettiin kokoomamallia, joka muodostuu neljästä erillisestä mallintamismenetelmästä: yleistetty lineaarinen malli (GLM), yleistetty additiivinen malli (GAM), yleistetty luokittelupuumenetelmä (GBM) ja satumetsä (RF). Mallinnus koostui kahdesta mallintamiskerroksesta, jotta NDVI:n vaikutus ennusteisiin voitiin arvioida. Ensimmäinen mallintamiskierros sisälsi kaikki ympäristömuuttujat paitsi NDVI:n (topoklimaattinen malli) ja toinen mallintamiskierros sisälsi kaikki ympäristömuuttujat (täysmalli). Mallinnuksessa käytetyt kaksi lämpötilamuuttujaa, vuoden keskilämpötila ja lämpimimmän kuukauden maksimilämpötila, saivat korkeimmat keskimääräiset muuttujien tärkeysarvot. Topoklimaattisilla malleilla vuotuinen sadanta sijoittui kolmanneksi muiden ilmastomuuttujien kanssa, mutta kun malleihin lisättiin NDVI, nousi se vuotuisen sadannan yläpuolelle. Kaiken kaikkiaan tutkittujen arktisten ja alpiinisten lajien joukossa sekä edafisen ja topografisen muuttujien tärkeysarvot olivat matalimmat. Yleisesti sekä topoklimaattiset että täysmallit suoriutuivat hyvin. Keskimääräiset AUC- ja TSS-arvot olivat kuitenkin korkeammat täysmallissa (niin kokoomamalleilla kuin yksittäisillä malleilla), mikä osoitti, että bioottisen muuttujan lisääminen paransi malleja. Kun molempien mallintamiskierrosten binaarisia ennusteita verrattiin, oli selkeää, että useimmille lajeille NDVI:n sisällyttäminen tarkensi ennustettuja levinneisyyksiä. Tämä tutkimuksen tulokset vahvistavat havainnon siitä, että lisäämällä
Recommended publications
  • Bulletin / New York State Museum
    Juncaceae (Rush Family) of New York State Steven E. Clemants New York Natural Heritage Program LIBRARY JUL 2 3 1990 NEW YORK BOTANICAL GARDEN Contributions to a Flora of New York State VII Richard S. Mitchell, Editor Bulletin No. 475 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 NEW YORK THE STATE OF LEARNING Digitized by the Internet Archive in 2017 with funding from IMLS LG-70-15-0138-15 https://archive.org/details/bulletinnewyorks4751 newy Juncaceae (Rush Family) of New York State Steven E. Clemants New York Natural Heritage Program Contributions to a Flora of New York State VII Richard S. Mitchell, Editor 1990 Bulletin No. 475 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 THE UNIVERSITY OF THE STATE OF NEW YORK Regents of The University Martin C. Barell, Chancellor, B.A., I. A., LL.B Muttontown R. Carlos Carballada, Vice Chancellor , B.S Rochester Willard A. Genrich, LL.B Buffalo Emlyn 1. Griffith, A. B., J.D Rome Jorge L. Batista, B. A., J.D Bronx Laura Bradley Chodos, B.A., M.A Vischer Ferry Louise P. Matteoni, B.A., M.A., Ph.D Bayside J. Edward Meyer, B.A., LL.B Chappaqua Floyd S. Linton, A.B., M.A., M.P.A Miller Place Mimi Levin Lieber, B.A., M.A Manhattan Shirley C. Brown, B.A., M.A., Ph.D Albany Norma Gluck, B.A., M.S.W Manhattan James W.
    [Show full text]
  • Piano Di Gestione Del Sic/Zps It3310001 “Dolomiti Friulane”
    Piano di Gestione del SIC/ZPS IT 3310001 “Dolomiti Friulane” – ALLEGATO 2 PIANO DI GESTIONE DEL SIC/ZPS IT3310001 “DOLOMITI FRIULANE” ALLEGATO 2 ELENCO DELLE SPECIE FLORISTICHE E SCHEDE DESCRITTIVE DELLE SPECIE DI IMPORTANZA COMUNITARIA Agosto 2012 Responsabile del Piano : Ing. Alessandro Bardi Temi Srl Piano di Gestione del SIC/ZPS IT 3310001 “Dolomiti Friulane” – ALLEGATO 2 Classe Sottoclasse Ordine Famiglia Specie 1 Lycopsida Lycopodiatae Lycopodiales Lycopodiaceae Huperzia selago (L.)Schrank & Mart. subsp. selago 2 Lycopsida Lycopodiatae Lycopodiales Lycopodiaceae Diphasium complanatum (L.) Holub subsp. complanatum 3 Lycopsida Lycopodiatae Lycopodiales Lycopodiaceae Lycopodium annotinum L. 4 Lycopsida Lycopodiatae Lycopodiales Lycopodiaceae Lycopodium clavatum L. subsp. clavatum 5 Equisetopsida Equisetatae Equisetales Equisetaceae Equisetum arvense L. 6 Equisetopsida Equisetatae Equisetales Equisetaceae Equisetum hyemale L. 7 Equisetopsida Equisetatae Equisetales Equisetaceae Equisetum palustre L. 8 Equisetopsida Equisetatae Equisetales Equisetaceae Equisetum ramosissimum Desf. 9 Equisetopsida Equisetatae Equisetales Equisetaceae Equisetum telmateia Ehrh. 10 Equisetopsida Equisetatae Equisetales Equisetaceae Equisetum variegatum Schleich. ex Weber & Mohr 11 Polypodiopsida Polypodiidae Polypodiales Adiantaceae Adiantum capillus-veneris L. 12 Polypodiopsida Polypodiidae Polypodiales Hypolepidaceae Pteridium aquilinum (L.)Kuhn subsp. aquilinum 13 Polypodiopsida Polypodiidae Polypodiales Cryptogrammaceae Phegopteris connectilis (Michx.)Watt
    [Show full text]
  • Molecular Phylogeny and Evolutionary Trends in Hieracium (Asteraceae, Lactuceae)
    Charles University in Prague, Faculty of Science Department of Botany Molecular phylogeny and evolutionary trends in Hieracium (Asteraceae, Lactuceae) Molekulární fylogeneze a evoluční trendy v rodě Hieracium (Asteraceae, Lactuceae) Karol Krak Ph.D. thesis Prague, May 2012 Supervised by: Dr. Judith Fehrer Content Declaration.........................................................................................................1 Acknowledgements............................................................................................2 Sumary...............................................................................................................3 Introduction.........................................................................................................4 Aims of the thesis.............................................................................................14 References.......................................................................................................15 Papers included in the thesis 1. Intra-individual polymorphism in diploid and apomictic polyploid.................22 hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. Fehrer J., Krak K., Chrtek J. BMC Evolutionary Biology (2009) 9: 239 2. Genome size in Hieracium subgenus Hieracium (Asteraceae) is...............45 strongly correlated with major phylogenetic groups. Chrtek J., Zahradníček J., Krak K., Fehrer J. Annals of Botany (2009) 104: 161–178 3. Development of novel low-copy nuclear markers
    [Show full text]
  • 2. LUZULA De Candolle in Lamarck & De Candolle, Fl. Franç., Ed. 3, 3: 158. 1805, Nom. Cons
    Flora of China 24: 64–69. 2000. 2. LUZULA de Candolle in Lamarck & de Candolle, Fl. Franç., ed. 3, 3: 158. 1805, nom. cons. 地杨梅属 di yang mei shu Juncoides Séguier, nom. rej. Herbs perennial, usually tufted. Rhizome short. Stems usually terete. Leaves mostly basal; leaf sheath closed, auricles absent; leaf blade lanceolate to linear, flat, usually channeled, margin long white ciliate. Inflorescences cymose, umbellate, umbel-like, corymbose, or paniculate, sometimes condensed into heads. Flowers often solitary, subtended by a scarious bract and enclosed at base by 2 short bracteoles; bracteoles usually lacerate or denticulate at margin. Perianth segments 6. Stamens 6, usually shorter than perianth; filaments thin; anthers oblong to linear. Ovary 1-loculed; ovules 3, erect from a basal, very short placenta. Style short. Capsule 3-valved. Seeds 3, oblong, indistinctly reticulate, often with a basal or apical appendage (caruncle). About 75 species: mainly in cool regions of both hemispheres, in tropical regions restricted to high elevations; 16 species (six endemic) in China. Luzula capitata (Miquel) Nakai (from Japan, Korea, and Russia) has been reported from NE China. However, the present authors could not find this species among the many Chinese specimens they examined. Further investigation is required. 1a. Flowers solitary or in pairs (rarely in clusters of 3 at apex of inflorescence in L. wahlenbergii). 2a. Seed appendage slightly shorter than or equaling seed. 3a. Perianth segments 2.5–3 mm; filaments 0.6–0.9 mm, anthers 1–1.3 mm ...................................................... 1. L. rufescens 3b. Perianth segments 3–4 mm; filaments ca. 1 mm, anthers ca.
    [Show full text]
  • Jan Ptáček, Tomáš Urfus: Vyřešení Poslední Biosystematické Záhady U Kapradin? Příběh Z Evoluce Rodu Puchýřník (Živa 2020, 4: 173–176)
    Jan Ptáček, Tomáš Urfus: Vyřešení poslední biosystematické záhady u kapradin? Příběh z evoluce rodu puchýřník (Živa 2020, 4: 173–176) Citovaná a doporučená literatura Blasdell R. F. (1963): A Monographic Study of the Fern Genus Cystopteris. – Mem. Torrey Bot. Club 21: 1–102. Dostál J. (1984): Cystopteris. In Kramer K.U. & Hegi G. (eds.), Illustrierte Flora von Mitteleuropa. Band I, Teil 1. Pteridophyta., pp. 192–201. – Verlag Paul Parey, Berlin, Hamburg, Germany. Dyer A. F., Parks J. C., & Lindsay S. (2000): Historical review of the uncertain taxonomic status of Cystopteris dickieana R. Sim (Dickie’s bladder fern). – Edinburgh J. Bot. 57: 71–81. Gamperle E. & Schneller J. J. (2002): Phenotypic and isozyme variation in Cystopteris fragilis (Pteridophyta) along an altitudinal gradient in Switzerland. – Flora 197: 203–213. Gastony G. J. (1986): Electrophoretic Evidence for the Origin of Fern Species by Unreduced Spores. – Am. J. Bot. 73: 1563–1569. Hadinec J. & Lustyk P. (2012): Additamenta ad floram Reipublicae Bohemicae. X. – Zprávy České Bot. společnosti 47: 43–158. Haufler C. H. & Ranker T. A. (1985): Differential Antheridiogen Response and Evolutionary Mechanisms in Cystopteris. – Am. J. Bot. 72: 659–665. Haufler C. H. & Windham M. D. (1991): New species of North American Cystopteris and Polypodium, with Comments on Their Reticulate Relationships. – Am. Fern J. 81: 7–23. Haufler C. H., Windham M. D., Britton D. M., & Robinson S. J. (1985): Triploidy and its evolutionary significance in Cystopteris protrusa. – Can. J. Bot. 63: 1855–1863. Haufler C. H., Windham M. D., & Ranker T. A. (1990): Biosystematic Analysis of the Cystopteris tennesseensis (Dryopteridaceae) Complex. – Ann.
    [Show full text]
  • (2009) Red Data List of Derbyshire's Vascular Plants
    Red Data List of Derbyshire’s Vascular Plants Moyes, N.J. & Willmot, A. Derby Museum & Art Gallery 2009 Contents 1. Introduction Page 2 2. Red Data List Categories – What’s Included? Page 3 3. What’s Not Included? Page 4 4. Conclusion & Recommendations Page 4 5. Table 1 List of Category 1 Plants Page 5 6. Table 2 List of Category 2 Plants Page 5 7. Table 3 List of Category 3 Plants Page 7 8. Table 4 List of Category 4 Plants Page 8 9. Table 5 List of Category 5 Plants Page 9 10. Table 6 List of Category 6 Plants Page 11 11. References Page 12 Appendix 1 History of Derbyshire Red Data Lists Page 13 Appendix 2 Assessing Local Decline Page 15 Appendix 3 Full List of Derbyshire Red Data Plants Page 18 CITATION: Moyes, N.J. & Willmot, A. (2009) Red Data List of Derbyshire’s Vascular Plants. Derby Museum. 1 1) Introduction County Rare Plant Lists – or Red Data Lists – are a valuable tool to identify species of conservation concern at the local level. These are the plants we should be most concerned about protecting when they are still present, or looking out for if they seem to have declined or become extinct in the locality. All the species named in this Red Data List are native vascular plants in the area, and they either: have a national conservation status in the UK, or are rare in Derbyshire, or have exhibited a significant local decline in recent times, or have become locally extinct. The geographic area in the definition of Derbyshire used here includes: the modern administrative county of Derbyshire, the City of Derby the historic botanical recording area known as the “vice-county” of Derbyshire (VC57).
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Ecological Changes in the British Flora WALKER, KEVIN,JOHN How to cite: WALKER, KEVIN,JOHN (2009) Ecological Changes in the British Flora, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/121/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Ecological Changes in the British Flora Kevin John Walker B.Sc., M.Sc. School of Biological and Biomedical Sciences University of Durham 2009 This thesis is submitted in candidature for the degree of Doctor of Philosophy Dedicated to Terry C. E. Wells (1935-2008) With thanks for the help and encouragement so generously given over the last ten years Plate 1 Pulsatilla vulgaris , Barnack Hills and Holes, Northamptonshire Photo: K.J. Walker Contents ii Contents List of tables vi List of figures viii List of plates x Declaration xi Abstract xii 1.
    [Show full text]
  • Resolving Rapid Radiations Within Families Using Anchored Phylogenomics
    bioRxiv preprint doi: https://doi.org/10.1101/110296; this version posted February 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Léveillé-Bourret et al. 2016 Anchored phylogenomics resolves plant radiation Resolving Rapid Radiations Within Families Using Anchored Phylogenomics 5 Étienne Léveillé-Bourret1,*, Julian R. Starr1, Bruce A. Ford2, Emily Moriarty Lemmon3, Alan R. Lemmon4 1Department of Biology, University of Ottawa, K1N 6N5, Ottawa, Ontario, Canada. 2Department of Biological Sciences, University of Manitoba, R3T 2N2, Winnipeg, Manitoba, Canada. 10 3Department of Biological Science, Florida State University, Tallahassee, Florida 32306, United States. 4Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306, United States. *Corresponding author. E-mail: [email protected] 15 1/52 bioRxiv preprint doi: https://doi.org/10.1101/110296; this version posted February 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Léveillé-Bourret et al. 2016 Anchored phylogenomics resolves plant radiation Abstract. – Despite the promise that molecular data would provide a seemingly unlimited source of independent characters, many plant phylogenetic studies are based on only two regions, the plastid genome and nuclear ribosomal DNA (nrDNA). Their popularity can be explained by high copy numbers and universal PCR primers that make their sequences easily amplified and 20 converted into parallel datasets. Unfortunately, their utility is limited by linked loci and limited characters resulting in low confidence in the accuracy of phylogenetic estimates, especially when rapid radiations occur.
    [Show full text]
  • Cyperaceae of Alberta
    AN ILLUSTRATED KEY TO THE CYPERACEAE OF ALBERTA Compiled and writen by Linda Kershaw and Lorna Allen April 2019 © Linda J. Kershaw & Lorna Allen This key was compiled using information primarily from and the Flora North America Association (2008), Douglas et al. (1998), and Packer and Gould (2017). Taxonomy follows VASCAN (Brouillet, 2015). The main references are listed at the end of the key. Please try the key this summer and let us know if there are ways in which it can be improved. Over the winter, we hope to add illustrations for most of the entries. The 2015 S-ranks of rare species (S1; S1S2; S2; S2S3; SU, according to ACIMS, 2015) are noted in superscript ( S1; S2;SU) after the species names. For more details go to the ACIMS web site. Similarly, exotic species are followed by a superscript X, XX if noxious and XXX if prohibited noxious (X; XX; XXX) according to the Alberta Weed Control Act (2016). CYPERACEAE SedgeFamily Key to Genera 1b 01a Flowers either ♂ or ♀; ovaries/achenes enclosed in a sac-like or scale-like structure 1a (perigynium) .....................Carex 01b Flowers with both ♂ and ♀ parts (sometimes some either ♂ or ♀); ovaries/achenes not in a perigynium .........................02 02a Spikelets somewhat fattened, with keeled scales in 2 vertical rows, grouped in ± umbrella- shaped clusters; fower bristles (perianth) 2a absent ....................... Cyperus 02b Spikelets round to cylindrical, with scales 2b spirally attached, variously arranged; fower bristles usually present . 03 03a Achenes tipped with a rounded protuberance (enlarged style-base; tubercle) . 04 03b Achenes without a tubercle (achenes 3a 3b often beaked, but without an enlarged protuberence) .......................05 04a Spikelets single; stems leafess .
    [Show full text]
  • Flora Montiberica 57: 3-16 (24-V-2014)
    FLORA MONTIBERICA Publicación periódica especializada en trabajos sobre la flora del Sistema Ibérico Vol. 57 Valencia, V-2014 FLORA MONTIBERICA Volumen 57 Gonzalo Mateo Sanz, ed. Valencia, mayo de 2014 (Distribución electrónica el 24 de mayo de 2014) FLORA MONTIBERICA Publicación independiente sobre temas relacionados con la flora y la vegetación (plantas vasculares) de la Península Ibérica, especialmente de la Cordillera Ibérica y tierras vecinas. Fundada en diciembre de 1995, se publican tres volúmenes al año con una periodicidad cuatrimestral. Editor y redactor general: Gonzalo Mateo Sanz. Jardín Botánico. Universidad de Valencia. C/ Quart, 80. E-46008 Valencia. [email protected] Redactor adjunto: Javier Fabado Alós. Redactor página web y editor adjunto: José Luis Benito Alonso, Jaca. Edición en Internet: www.floramontiberica.org, donde están las normas de publicación. Flora Montiberica.org es la primera revista de botánica en español que ofrece de forma gratuita todos sus contenidos a través de la red. Consejo editorial: Antoni Aguilella Palasí (Universidad de Valencia) Juan A. Alejandre Sáenz (Herbarium Alejandre, Vitoria) Vicente J. Arán Redó (Consejo Superior de Investigaciones Científicas, Madrid) Manuel Benito Crespo Villalba (Universidad de Alicante) José María de Jaime Lorén (Universidad Cardenal Herrera−CEU, Moncada) Emilio Laguna Lumbreras (Departamento de Medio Ambiente. Gobierno de la Comunidad Valenciana) Editan: Flora Montiberica (Valencia) y Jolube Consultor y Editor Botánico (Jaca) ISSN papel: 1138-5952 – ISSN edición internet: 1988-799X Depósito Legal: V-5097-1995 – Impreso en España por Ulzama Digital Los contenidos de Flora Montiberica están indexados en: Portada: Serapias vomeracea (Burm. Fil.) Briq., procedente de Griegos (Teruel). Véase pág. 85 de este número.
    [Show full text]
  • ENSCONET Seed Collecting Manual for WILD SPECIES
    ENSCONET Seed Collecting Manual FOR WILD SPECIES Main editors: Royal Botanic Gardens, Kew (UK) & Universidad Politécnica de Madrid (Spain) Edition 1: 17 March 2009* * This document will be updated as improvements become apparent ISBN: 978-84-692-3926-1 Citation: ENSCONET (2009) ENSCONET Seed Collecting Manual for Wild Species ENSCONET member and associate member institutes that have assisted with the development of this manual: Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, GREECE Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, 845 23 Bratislava, SLOVAKIA Budapest Zoo & Botanical Garden, P.O. Box 469, Állatkerti körút 6-12, 1146 Budapest, HUNGARY Mediterranean Agronomic Institute of Chania, Alsyllion Agrokepion, P.O. Box 85, 73100 Chania (Crete), GREECE IMGEMA - Jardín Botánico de Córdoba, Avda. de Linneo s/n, 14004 Córdoba, SPAIN Trinity College Botanic Garden, Palmerston Park, Dartry, Dublin 6, IRELAND Jardin Botanico Viera y Clavijo del Cabildo de Gran Canaria, Apdo 14, 35017 Tafira Alta, Las Palmas de Gran Canaria, SPAIN Agricultural Research Institute, P.O.Box 22016, 1516 Nicosia, CYPRUS Departamento de Biología Vegetal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, SPAIN National Botanic Garden of Belgium, Domein van Bouchout, 1860 Meise, BELGIUM Muséum National d’Histoire Naturelle, Département des Jardins Botaniques et Zoologiques, Case postale 45, 57, rue Cuvier, 75231 Paris Cedex 05, FRANCE Università degli Studi di Pavia, Dipartimento di Ecologia del Territorio e degli Ambienti Terrestri, Via S.
    [Show full text]
  • The Nyárády Erazmus Gyula's Herbarium in The
    ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 71-78 ORIGINAL PAPER THE NYÁRÁDY ERAZMUS GYULA’S HERBARIUM IN THE DEBRECEN UNIVERSITY’S PLANT COLLECTION Katalin BARTÓK1*, Attila TAKÁCS2 1Department of Taxonomy and Ecology, Babeș-Bolyai University, Romania 2Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary *Correspondence: Katalin BARTÓK [email protected] Received: 5 July 2018; Accepted: 10 July 2018; Published: 15 July 2018 Abstract: After the publication of the book entitled “Recollection of Gyula E. Nyárády” (2016), the interest of his inheritance increased significantly. His left behind herbarium was estimated to have 55,000 sheets (1988), while till 2016 its number increased up to 85,000. The herbarial investigations are taking place over the Romania’s borders too, such as in the plant collection of the Debrecen University. With this occasion, we have studied the part collections of Rezső Soó (40,000 specimens), the Zoltán Siroki’s (20,000 specimens), together with the kryptogame (3,000 bryophytes) ones. In the Debrecen University plant collection we found 166 plant species collected and determined by E. Gy. Nyárády, among them 154 are superior plant and 12 are moss. In the Soó collection 112 plants arose from E. Gy. Nyárády, 69% of them are from Slovakia, 29% from Romania and 1% from Poland. The Slovakian collections took place in the 1905-1916 period, the most of them (34 species) are from 1910, being collected in Késmárk and Tatra’s region, where E. Gy. Nyárády was secondary school teacher. The Romanian collections took place in the 1905-1942 period, the 33 species mainly arise from the high mountains (especially Rodna Mountains), as well as from the Transylvanian Plain.
    [Show full text]