Geologic Assessment of Undiscovered Oil and Gas in the Powder River Basin Province, Wyoming and Montana

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Assessment of Undiscovered Oil and Gas in the Powder River Basin Province, Wyoming and Montana Geologic Assessment of Undiscovered Oil and Gas in the Powder River Basin Province, Wyoming and Montana By Lawrence O. Anna Chapter 1 Digital Data Series DDS–69–U U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2009 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Lawrence O. Anna, 2009, Geologic assessment of undiscovered oil and gas in the Powder River Basin Province: U.S. Geological Survey Digital Data Series DDS–69–U, 93 p. iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1 Pennsylvanian-Permian Composite Total Petroleum System ...............................................................2 Petroleum Source Rocks .....................................................................................................................3 Source Rock Thermal Maturity ..........................................................................................................8 Hydrocarbon Migration........................................................................................................................9 Reservoir Rocks ....................................................................................................................................9 Minnelusa Formation..........................................................................................................................10 Tensleep Sandstone ...........................................................................................................................14 Leo Formation ......................................................................................................................................14 Traps and Seals ...................................................................................................................................14 Mowry Total Petroleum System ...............................................................................................................17 Petroleum Source Rocks ...................................................................................................................17 Source Rock Thermal Maturity ........................................................................................................18 Hydrocarbon Migration......................................................................................................................20 Reservoir Rocks ..................................................................................................................................21 Fall River–Lakota Sandstones ................................................................................................21 Muddy Sandstone .....................................................................................................................22 Traps and Seals ...................................................................................................................................27 Mowry TPS as a Continuous Reservoir ..........................................................................................27 Niobrara Total Petroleum System .............................................................................................................28 Source Rocks.......................................................................................................................................28 Source Rock Thermal Maturity ........................................................................................................32 Hydrocarbon Migration......................................................................................................................32 Reservoir Rocks ..................................................................................................................................34 Frontier Formation......................................................................................................................34 Belle Fourche Member .............................................................................................................37 Emigrant Gap Member ..............................................................................................................37 Wall Creek Sandstone Member ..............................................................................................37 Turner Sandy Member ..............................................................................................................37 Cody Shale ...........................................................................................................................................38 Shannon Sandstone Member ..................................................................................................38 Sussex Sandstone Member .....................................................................................................38 Mesaverde Formation ........................................................................................................................41 Parkman Sandstone Member ..................................................................................................41 Teapot Sandstone Member ......................................................................................................41 Lewis Shale ..........................................................................................................................................42 Teckla Sandstone Member ......................................................................................................42 Traps and Seals ...................................................................................................................................42 Niobrara Total Petroleum System as a Continuous Reservoir ....................................................44 Paleozoic-Mesozoic Composite Total Petroleum System ...........................................................44 Petroleum Source Rocks ...................................................................................................................47 iv Source Rock Thermal Maturity ........................................................................................................48 Hydrocarbon Migration......................................................................................................................48 Reservoir Rocks ..................................................................................................................................49 Traps and Seals ...................................................................................................................................49 Tertiary-Upper Cretaceous Coalbed Methane Total Petroleum System ...........................................49 Cretaceous Biogenic Gas Total Petroleum System ..............................................................................49 Assessment of Undiscovered Petroleum Resource ..............................................................................50 Assessment of Undiscovered Petroleum Resources in Conventional Assessment Units ..............52 Minnelusa-Tensleep-Leo Sandstone AU (50330501) .....................................................................52 Fall River–Lakota Sandstones AU (50330201) .......................................................................53 Muddy Sandstone AU (50330202) ............................................................................................53 Frontier-Turner Sandstones AU (50330301) ...........................................................................54 Sussex-Shannon Sandstones AU (50330302) ........................................................................56 Mesaverde-Lewis Sandstones AU (50330303) ......................................................................57 Basin Margin AU (50330601) ....................................................................................................58 Eastern Basin Margin Upper Fort Union Sandstone AU (50330101) ..................................58 Conventional Assessment Summary ...............................................................................................58 Assessment of Undiscovered Petroleum Resources in Continuous Assessment Units .................59 Mowry Continuous Oil AU (50330261) ..............................................................................................59 Niobrara Continuous Oil AU (50330361) ..........................................................................................59
Recommended publications
  • Geologic Assessment of Undiscovered Oil and Gas in the Powder River Basin Province, Wyoming and Montana Click Here to Return to Volume Title Page by Lawrence O
    Chapter 1 Geologic Assessment of Undiscovered Oil and Gas in the Powder River Basin Province, Wyoming and Montana Click here to return to Volume Title Page By Lawrence O. Anna Chapter 1 of Total Petroleum Systems and Geologic Assessment of Oil and Gas Resources in the Powder River Basin Province, Wyoming and Montana By U.S. Geological Survey Powder River Basin Assessment Team U.S. Geological Survey Digital Data Series DDS–69–U U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 Revised: April 2010 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Lawrence O. Anna, 2010, Geologic assessment of undiscovered oil and gas in the Powder River Basin Province Wyoming and Montana, in Total Petroleum Systems and Geologic Assessment of Oil and Gas Resources in the Powder River Basin Province, Wyoming and Montana: U.S.
    [Show full text]
  • Morrison Formation 37 Cretaceous System 48 Cloverly Formation 48 Sykes Mountain Formation 51 Thermopolis Shale 55 Mowry Shale 56
    THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING By CHRISTOPHER JAY CARSON Bachelor of Science Oklahoma State University 1998 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2000 THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING Thesis Approved: Thesis Advisor ~~L. ... ~. ----'-"'-....D~e~e:.-g-e----- II ACKNOWLEDGEMENTS I wish to express appreciation to my advisor Dr. Arthur Cleaves for providing me with the opportunity to compile this thesis, and his help carrying out the fieldwork portion of the thesis. My sincere appreciation is extended to my advisory committee members: Dr. Stan Paxton, Dr. Gary Stewart, and Mr. David Schmude. I wish to thank Mr. Schmude especially for the great deal of personal effort he put forth toward the completion of this thesis. His efforts included financial, and time contributions, along with invaluable injections of enthusiasm, advice, and friendship. I extend my most sincere thank you to Dr. Burkhard Pohl, The Big Hom Basin Foundation, and the Wyoming Dinosaur Center. Without whose input and financial support this thesis would not have been possible. In conjunction I would like to thank the staff of the Wyoming Dinosaur Center for the great deal of help that I received during my stay in Thermopolis. Finally I wish to thank my friends and family. To my friends who have pursued this process before me, and with me; thank you very much.
    [Show full text]
  • Status of Mineral Resource Information for the Fort Berthold Indian Reservation, North Dakota
    STATUS OF MINERAL RESOURCE INFORMATION FOR THE FORT BERTHOLD INDIAN RESERVATION, NORTH DAKOTA By Bradford B. Williams Mary E. Bluemle U.S. Bureau of Mines N. Dak. Geological Survey Administrative report BIA-40 1978 CONTENTS SUMMARY AND CONCLUSIONS ................................................. 1 INTRODUCTION ................................................................ 1 Area Location and Access .................................................... 1 Past Investigations .......................................................... 2 Present Study and Acknowledgments ........................................... 2 Land Status................................................................ 2 Physiography .............................................................. 3 GEOLOGY ..................................................................... 4 Stratigraphy ............................................................... 4 Subsurface .......................................................... 4 Surface ............................................................. 4 General ....................................................... 4 Bullion Creek and Sentinel Butte Formations ......................... 8 Golden Valley Formation......................................... 9 Cole Harbor Formation .......................................... 9 Structure................................................................. 10 MINERAL RESOURCES ......................................................... 11 General .................................................................
    [Show full text]
  • Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent
    Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and AdJa(-erit Parts of the Lewis Sliale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest lo U.S. OEOLOGI AL SURVEY PROFESSIONAL PAPER 1532 Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent Parts of the Lewis Shale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest Wyoming By HENRYW. ROEHLER U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1532 Description of three of/lapping barrier shorelines along the western margins of the interior seaway of North America UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Library of Congress Cataloging-in-Publication Data Roehler, Henry W. Stratigraphy of the Upper Cretaceous Fox Hills sandstone and adjacent parts of the Lewis shale and Lance formation, east flank of the Rock Springs Uplift, southwest Wyoming / by Henry W. Roehler. p. cm. (U.S. Geological Survey professional paper ; 1532) Includes bibliographical references. Supt.ofDocs.no.: I19.16:P1532 1. Geology, Stratigraphic Cretaceous. 2. Geology Wyoming. 3. Fox Hills Formation. I. Geological Survey (U.S.). II. Title. III. Series. QE688.R64 1993 551.7T09787 dc20 92-36645 CIP For sale by USGS Map Distribution Box 25286, Building 810 Denver Federal Center Denver, CO 80225 CONTENTS Page Page Abstract......................................................................................... 1 Stratigraphy Continued Introduction................................................................................... 1 Formations exposed on the east flank of the Rock Springs Description and accessibility of the study area ................
    [Show full text]
  • This Is a Digital Document from the Collections of the Wyoming Water Resources Data System (WRDS) Library
    This is a digital document from the collections of the Wyoming Water Resources Data System (WRDS) Library. For additional information about this document and the document conversion process, please contact WRDS at [email protected] and include the phrase “Digital Documents” in your subject heading. To view other documents please visit the WRDS Library online at: http://library.wrds.uwyo.edu Mailing Address: Water Resources Data System University of Wyoming, Dept 3943 1000 E University Avenue Laramie, WY 82071 Physical Address: Wyoming Hall, Room 249 University of Wyoming Laramie, WY 82071 Phone: (307) 766-6651 Fax: (307) 766-3785 Funding for WRDS and the creation of this electronic document was provided by the Wyoming Water Development Commission (http://wwdc.state.wy.us) VOLUME 11-A OCCURRENCE AND CHARACTERISTICS OF GROUND WATER IN THE BIGHORN BASIN, WYOMING Robert Libra, Dale Doremus , Craig Goodwin Project Manager Craig Eisen Water Resources Research Institute University of Wyoming Report to U.S. Environmental Protection Agency Contract Number G 008269-791 Project Officer Paul Osborne June, 1981 INTRODUCTION This report is the second of a series of hydrogeologic basin reports that define the occurrence and chemical quality of ground water within Wyoming. Information presented in this report has been obtained from several sources including available U.S. Geological Survey publications, the Wyoming State Engineer's Office, the Wyoming Geological Survey, and the Wyoming Oil and Gas Conservation Commission. The purpose of this report is to provide background information for implementation of the Underground Injection Control Program (UIC). The UIC program, authorized by the Safe Drinking Water Act (P.L.
    [Show full text]
  • Ludvigson Et Al-Current Research.Indd
    New Insights on the Sequence Stratigraphic Architecture of the Dakota Formation, Ludvigson et al. i New Insights on the Sequence Stratigraphic Architecture of the Dakota Formation in Kansas–Nebraska–Iowa from a Decade of Sponsored Research Activity Greg A. Ludvigson, Kansas Geological Survey, The University of Kansas, Lawrence, KS Brian J. Witzke, Iowa Geological Survey, Iowa Department of Natural Resources, Iowa City, IA R. M. Joeckel, Nebraska Conservation and Survey Division, School of Natural Resources, The University of Nebraska-Lincoln, Lincoln, NE Robert L. Ravn, The IRF Group, Anchorage, AK Preston Lee Phillips, Department of Geology and Geography, University of North Carolina at Pembroke, Pembroke, NC Luis A. González, Department of Geology, The University of Kansas, Lawrence, KS Robert L. Brenner, Department of Geoscience, The University of Iowa, Iowa City, IA Abstract The Cretaceous Dakota Formation in the areas of Kansas, Nebraska, and Iowa contains a rich and well-preserved microfl ora of fossil palynomorphs. A comprehensive listing of these taxa is presented in this publication as part of a continuing effort to develop a refi ned biostratigraphic scheme for mid-Cretaceous terrestrial deposits in North America. The Dakota Formation in this region contains four distinctive Albian–Cenomanian palynostratigraphic zones that are used to partition the unit into successive depositional cycles, and each zone records deposition in fl uvial-estuarine environments. The late Albian Kiowa–Skull Creek depositional cycle at the base of the Dakota Formation is recognized throughout the study area, and is also recognized in other parts of the Cretaceous North American Western Interior basin. The overlying newly recognized latest Albian “Muddy–Mowry Cycle” is formally defi ned for the fi rst time in this paper and correlates with depositional cycles recognized by other workers in other parts of the Western Interior basin.
    [Show full text]
  • Central San Juan Basin
    Acta - ---- - - ---Palaeontologic- -- ---' ~ Polonica Vol. 28, No. 1-2 pp. 195-204 Warszawa, 1983 Second Symposium on Mesozoic Terrestiol. Ecosystems, Jadwisin 1981 SPENCER G. LUCAS and NIALL J. MATEER VERTEBRATE PALEOECOLOGY OF THE LATE CAMPANIAN (CRETACEOUS):FRUITLAND FORMATION, SAN JUAN BASIN, ~EW MEXICO (USA) LUCAS, s. G. and MATEER, N. J .: Vertebrate paleoecology of the late Campanian (Cretaceous) Fruitland Formation, San Juan Basin, New Mexico (USA). Acta Palaeontologica Polonica, 28, 1-2, 195-204, 1983. Sediments of the Fruitland Formation in northwestern New Mexico represent a delta plain that prograded northeastward over the retrating strandline of the. North American epeiric seaway during the late Campanian. Fruitland fossil · vertebrates are fishes, amphibians, lizards, a snake, turtles, crocodilians, dinosaurs (mostly h adrosaurs and ceratopsians) and mammals. Autochthonous fossils in the Fruitland ' Form ation represent organisms of the trophically-complex Para­ saurolophus community. Differences in diversity, physical stress and life-history strategies within the ParasaurolopllUS community . fit well the stablllty-time hypothesis. Thus, dinosaurs experienced relatively low physical stress whereas fishes, amphibians, small reptiles and mammals experienced greater physical stress. Because of this, dinosaurs were less likely to recover from an environment­ al catastrophe than were smaller contemporaneous vertebrates. The terminal Cretaceous extinctions selectively eliminated animals that lived in less physlcally­ -stressed situations, indicating that the extinctions resulted from an environmental catastrophe. Key w 0 r d s: Fruitland Formation, New Mexico, delta plain, stablllty-time hypothesis, Cretaceous extinctions. Spencer G. Lucas, Department ot Geology and Geophysics and Peabody Museum ot Natural History, Yale University, P.O. Box 6666, New Haven, Connecticut 06511 USA ; NlaU J .
    [Show full text]
  • Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations
    Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1506-A Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations By HENRY W. ROEHLER GEOLOGY OF THE EOCENE WASATCH, GREEN RIVER, AND BRIDGER (WASHAKIE) FORMATIONS, GREATER GREEN RIVER BASIN, WYOMING, UTAH, AND COLORADO U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1506-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1992 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Roehler, Henry W. Introduction to greater Green River basin geology, physiography, and history of investigations / by Henry W. Roehler. p. cm. (Geology of the Eocene Wasatch, Green River, and Bridger (Washakie) formations, greater Green River basin, Wyoming, Utah, and Colorado) (U.S. Geological Survey professional paper ; 1506-A) Includes bibliographical references (p. ). Supt. of Docs, no.: I 19.16:1506A 1. Geology, Stratigraphic Eocene. 2. Geology Green River Watershed (Wyo.-Utah). I. Title. II. Series. III. Series: U.S. Geological Survey professional paper ; 1506-A. QE692.2.R625 1992 551.7'84'097925 dc20 91-23181 CIP For sale by Book and Open-File Report Sales, U.S. Geological Survey, Federal Center, Box 25286, Denver, CO 80225 CONTENTS Page Abstract ........................................................................................................................................ Al Purpose and scope of investigation ............................................................................................ 1 Location and accessibility of the greater Green River basin ................................................... 2 Geologic setting ...........................................................................................................................
    [Show full text]
  • Appendix 1 – Environmental Predictor Data
    APPENDIX 1 – ENVIRONMENTAL PREDICTOR DATA CONTENTS Overview ..................................................................................................................................................................................... 2 Climate ......................................................................................................................................................................................... 2 Hydrology ................................................................................................................................................................................... 3 Land Use and Land Cover ..................................................................................................................................................... 3 Soils and Substrate .................................................................................................................................................................. 5 Topography .............................................................................................................................................................................. 10 References ................................................................................................................................................................................ 12 1 OVERVIEW A set of 94 potential predictor layers compiled to use in distribution modeling for the target taxa. Many of these layers derive from previous modeling work by WYNDD1, 2, but a
    [Show full text]
  • Mesozoic Stratigraphy at Durango, Colorado
    160 New Mexico Geological Society, 56th Field Conference Guidebook, Geology of the Chama Basin, 2005, p. 160-169. LUCAS AND HECKERT MESOZOIC STRATIGRAPHY AT DURANGO, COLORADO SPENCER G. LUCAS AND ANDREW B. HECKERT New Mexico Museum of Natural History and Science, 1801 Mountain Rd. NW, Albuquerque, NM 87104 ABSTRACT.—A nearly 3-km-thick section of Mesozoic sedimentary rocks is exposed at Durango, Colorado. This section con- sists of Upper Triassic, Middle-Upper Jurassic and Cretaceous strata that well record the geological history of southwestern Colorado during much of the Mesozoic. At Durango, Upper Triassic strata of the Chinle Group are ~ 300 m of red beds deposited in mostly fluvial paleoenvironments. Overlying Middle-Upper Jurassic strata of the San Rafael Group are ~ 300 m thick and consist of eolian sandstone, salina limestone and siltstone/sandstone deposited on an arid coastal plain. The Upper Jurassic Morrison Formation is ~ 187 m thick and consists of sandstone and mudstone deposited in fluvial environments. The only Lower Cretaceous strata at Durango are fluvial sandstone and conglomerate of the Burro Canyon Formation. Most of the overlying Upper Cretaceous section (Dakota, Mancos, Mesaverde, Lewis, Fruitland and Kirtland units) represents deposition in and along the western margin of the Western Interior seaway during Cenomanian-Campanian time. Volcaniclastic strata of the overlying McDermott Formation are the youngest Mesozoic strata at Durango. INTRODUCTION Durango, Colorado, sits in the Animas River Valley on the northern flank of the San Juan Basin and in the southern foothills of the San Juan and La Plata Mountains. Beginning at the northern end of the city, and extending to the southern end of town (from north of Animas City Mountain to just south of Smelter Moun- tain), the Animas River cuts in an essentially downdip direction through a homoclinal Mesozoic section of sedimentary rocks about 3 km thick (Figs.
    [Show full text]
  • Moneta Divide Map 6 Geologic
    Geologic Units Mesozoic - Paleozoic Cenozoic/Quaternary MzPz: Mesozoic and II Qa: Alluvium and D Paleozoic rocks Colluvium L___J Paleozoic/Permian Qt: Gravel, Pediment, II Pp: Phosphoria and Sand Deposits Formation and related - L___J rocks II Qs: Dune Sand and L___J Loess Paleozoic/Carboniferous Cenozoic/Tertiary PM : Tensleep Sandstone D and Amsden Formation Tim: Indian Meadows Formation P*M: Casper Formation and Madison Limestone -D Tm: Miocene rocks (N ,S) MD: Madison Tml: Lower Miocene Limestone rocks Mm : Madison Twr: White River - Limestone or Group Formation D -D (N) , or Madison ·- .... ---..:::-.::--------.... Limestone (S) ......... -- Twb : Wagon Bed --. - Formation --- --- Paleozoic/Cambrian Twdr: Wind River _r: Gallatin Limestone, Formation Gros Ventre Formation D and equivalents, and Tfu : Fort Union Formation Flathead Sandstone (N), or Cambrian rocks (S) Cenozoic - Mesozoic Pzr: Madison Limestone, Darby Formation , Bighorn TKu : Sedimentary Dolomite, Gallatin Rocks - Limestone, Gros Ventre Formation and Flathead Mesozoic/Cretaceous .. O_: Bighorn Dolomite, Kim: Lance Formation, D Gallatin Limestone, and D Fox Hills Sandstone, Gros Ventre Formation (TB) Meeteetse Formation Archaen Kml: Meeteetse .. Ugn: Oldest Twdr Formation and Lewis D Gneiss complex Shale Kmv: Mesaverde WVsv: Formation Metasedimentary and metavolcanic rocks Kc: Cody Shale - Wg : Granitic Rocks N ------ Fault Line ~ Mesozoic/Jurassic w KJ :Cloverly and Morrison Cl Project Features D Formations (N , S) . Jsg: Sundance and Production Area . Gypsum Spring D Formations Disposal Areas Mesozoic/Triassic D "cd: Chugwater and Treated Water Discharge D Dinwoody Formations ~ Pipeline Corridors Source: Geologic Units, USGS 1994 Product Pipeline (Upda ted 2013); USGS 2005 Corridor Disposal Area Water Pipeline Corridor Map6 Geologic Map Moneta Divide Natural Gas and Oil Development Project Draft Environmental Impact Statement April 2019 No warranty is made by the Bureau of Land Management for use ofthe data for purposes not intended by the BLM .
    [Show full text]
  • A Preliminary Assessment of Paleontological Resources at Bighorn Canyon National Recreation Area, Montana and Wyoming
    A PRELIMINARY ASSESSMENT OF PALEONTOLOGICAL RESOURCES AT BIGHORN CANYON NATIONAL RECREATION AREA, MONTANA AND WYOMING Vincent L. Santucci1, David Hays2, James Staebler2 And Michael Milstein3 1National Park Service, P.O. Box 592, Kemmerer, WY 83101 2Bighorn Canyon National Recreation Area, P.O. Box 7458, Fort Smith, MT 59035 3P.O. Box 821, Cody, WY 82414 ____________________ ABSTRACT - Paleontological resources occur throughout the Paleozoic and Mesozoic formations exposed in Bighorn Canyon National Recreation Area. Isolated research on specific geologic units within Bighorn Canyon has yielded data on a wide diversity of fossil forms. A comprehensive paleonotological survey has not been previously undertaken at Bighorn Canyon. Preliminary paleontologic resource data is presented in this report as an effort to establish baseline data. ____________________ INTRODUCTION ighorn Canyon National Recreation Area (BICA) consists of approximately 120,000 acres within the Bighorn Mountains of north-central Wyoming and south-central Montana B (Figure 1). The northwestern trending Bighorn Mountains consist of over 9,000 feet of sedimentary rock. The predominantly marine and near shore sedimentary units range from the Cambrian through the Lower Cretaceous. Many of these formations are extremely fossiliferous. The Bighorn Mountains were uplifted during the Laramide Orogeny beginning approximately 70 million years ago. Large volumes of sediments, rich in early Tertiary paleontological resources, were deposited in the adjoining basins. This report provides a preliminary assessment of paleontological resources identified at Bighorn Canyon National Recreation Area. STRATIGRAPHY The stratigraphic record at Bighorn Canyon National Recreation Area extends from the Cambrian through the Cretaceous (Figure 2). The only time period during this interval that is not represented is the Silurian.
    [Show full text]