Ludvigson Et Al-Current Research.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morrison Formation 37 Cretaceous System 48 Cloverly Formation 48 Sykes Mountain Formation 51 Thermopolis Shale 55 Mowry Shale 56
THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING By CHRISTOPHER JAY CARSON Bachelor of Science Oklahoma State University 1998 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2000 THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING Thesis Approved: Thesis Advisor ~~L. ... ~. ----'-"'-....D~e~e:.-g-e----- II ACKNOWLEDGEMENTS I wish to express appreciation to my advisor Dr. Arthur Cleaves for providing me with the opportunity to compile this thesis, and his help carrying out the fieldwork portion of the thesis. My sincere appreciation is extended to my advisory committee members: Dr. Stan Paxton, Dr. Gary Stewart, and Mr. David Schmude. I wish to thank Mr. Schmude especially for the great deal of personal effort he put forth toward the completion of this thesis. His efforts included financial, and time contributions, along with invaluable injections of enthusiasm, advice, and friendship. I extend my most sincere thank you to Dr. Burkhard Pohl, The Big Hom Basin Foundation, and the Wyoming Dinosaur Center. Without whose input and financial support this thesis would not have been possible. In conjunction I would like to thank the staff of the Wyoming Dinosaur Center for the great deal of help that I received during my stay in Thermopolis. Finally I wish to thank my friends and family. To my friends who have pursued this process before me, and with me; thank you very much. -
A High Resolution Palynozonation for the Pennsylvanian to Lower Permian
A high resolution palynozonation for the Pennsylvanian to Lower Permian Al Khlata Formation, south Oman Randall A. Penney, Consultant Palynologist, XGL/31, Petroleum Development Oman LLC, P.O. Box 100, Muscat Post Code 113, Sultanate of Oman. Email: [email protected] Michael H. Stephenson, British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK. Email: [email protected]. Issam Al Barram, XGL/3X, Petroleum Development Oman LLC, P.O. Box 100, Muscat Post Code 113, Sultanate of Oman. Email: [email protected] Key words: Al Khlata Formation, Pennsylvanian, Lower Permian, Palynology, High Resolution Biozonation, Gondwana Correlation. ABSTRACT Palynology is the main method of correlating the subsurface glaciogenic Al Khlata Formation of Oman, due to extreme lateral variability of facies, and poor seismic resolution. The chief 1 operating company in Oman, Petroleum Development Oman, has developed a robust in-house palynozonation through almost 40 years of exploration and production based on thousands of samples and hundreds of well sections. In this paper the formal definitions of the biozones are published, and the biozones are correlated in detail with faunally-calibrated palynological biozones in Western Australia, thereby allowing correlation with the standard Russian stages. Seven biozones are distinguished. The oldest, biozones 2159A and B, of probable late Pennsylvanian age, are characterised by low diversity assemblages of Punctatisporites and monosaccate pollen, with Biozone 2159A having a lower proportion of monosaccate pollen than Biozone 2159B. Biozone 2165A, of probable Asselian age, is characterised by common cingulicamerate spores and Microbaculispora Group; while Biozone 2165B contains in addition to the above, common Horriditriletes Group, and is likely to be Asselian-Sakmarian in age. -
Carboniferous Outcrops at La Herradura Creek, San Juan Province (Western Argentina), Revisited: Age of the Transgressions
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital Andean Geology 41 (1): 83-105. January, 2014 Andean Geology doi: 10.5027/andgeoV41n1-a0410.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl Carboniferous outcrops at La Herradura Creek, San Juan Province (Western Argentina), revisited: age of the transgressions Valeria S. Pérez Loinaze1, Carlos O. Limarino2, Silvia N. Césari1 1 Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Avda. Ángel Gallardo 470, C1405DJR Buenos Aires, Argentina. [email protected]; [email protected] 2 Departamento de Geología-Instituto de Geociencias Básicas, Ambientales y Aplicadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina. [email protected] ABSTRACT. At the outcrops of the Tupe Formation in the La Herradura Creek, San Juan Province, two transgressive events are recorded, which range from few meters to tens of meters in thickness. These strata correspond to the stratotype of the faunal Tivertonia jachalensis-Streptorhynchus inaequiornatus Biozone. An evaluation of the timing of the two marine transgressions is made on the basis of palynological assemblages and available radiometric ages. A short-lived transgression is recorded in the latest Bashkirian-early Moscovian, and then a substantial sea level fall took place forming an irregular incision surface. Later, a major high eustatic sea-level occurred during the middle Moscovian resulting in a more important marine ingression. The palynological assemblages associated to the older transgressive event indicate the presence of the Raistrickia densa-Convolutispora muriornata (DM) Biozone (Subzone B). -
Permian–Triassic Non-Marine Algae of Gondwana—Distributions
Earth-Science Reviews 212 (2021) 103382 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Review Article Permian–Triassic non-marine algae of Gondwana—Distributions, natural T affinities and ecological implications ⁎ Chris Maysa,b, , Vivi Vajdaa, Stephen McLoughlina a Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden b Monash University, School of Earth, Atmosphere and Environment, 9 Rainforest Walk, Clayton, VIC 3800, Australia ARTICLE INFO ABSTRACT Keywords: The abundance, diversity and extinction of non-marine algae are controlled by changes in the physical and Permian–Triassic chemical environment and community structure of continental ecosystems. We review a range of non-marine algae algae commonly found within the Permian and Triassic strata of Gondwana and highlight and discuss the non- mass extinctions marine algal abundance anomalies recorded in the immediate aftermath of the end-Permian extinction interval Gondwana (EPE; 252 Ma). We further review and contrast the marine and continental algal records of the global biotic freshwater ecology crises within the Permian–Triassic interval. Specifically, we provide a case study of 17 species (in 13 genera) palaeobiogeography from the succession spanning the EPE in the Sydney Basin, eastern Australia. The affinities and ecological im- plications of these fossil-genera are summarised, and their global Permian–Triassic palaeogeographic and stra- tigraphic distributions are collated. Most of these fossil taxa have close extant algal relatives that are most common in freshwater, brackish or terrestrial conditions, and all have recognizable affinities to groups known to produce chemically stable biopolymers that favour their preservation over long geological intervals. -
Peat-Forming Environment of Permian Coal Seams from the Faxinal Coalfield (Paraná Basin) in Southern Brazil, Based on Palynology and Palaeobotany
Rev. bras. paleontol. 10(2):117-127, Maio/Agosto 2007 © 2007 by the Sociedade Brasileira de Paleontologia PEAT-FORMING ENVIRONMENT OF PERMIAN COAL SEAMS FROM THE FAXINAL COALFIELD (PARANÁ BASIN) IN SOUTHERN BRAZIL, BASED ON PALYNOLOGY AND PALAEOBOTANY MIRIAM CAZZULO-KLEPZIG, MARGOT GUERRA-SOMMER, RUALDO MENEGAT Instituto de Geociências, UFRGS, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil. [email protected], [email protected], [email protected] MARGARETE WAGNER SIMAS Programa de Pós Graduação em Geociências, UFRGS, Av.Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil. [email protected] JOÃO GRACIANO MENDONÇA FILHO Instituto de Geociências, UFRJ, Prédio de Ciências e Matemática, Bloco F, Ilha do Fundão, 21941-590, RJ, Brazil. [email protected] ABSTRACT – Coal seams from the Faxinal coalfield (Rio Bonito Formation, Lower Permian of Paraná Basin) are compositionally distinct from other South Brazilian coal palynofloras. The dominance of bisaccate and striate pollen grains such as Alisporites, Scheuringipollenites, Limitisporites, Vesicaspora and Protohaploxypinus in the palynofloras reflect a peat-forming plant community composed namely of glossopterids, cordaites and conifers. Subordinate trilete spores derived from lycopsids, sphenopsids and filicopsids (e.g. Lundbladispora, Punctatisporites, Granulatisporites, Leiotriletes, Deltoidospora, Calamospora) are less abundant, occurring in variable proportions. Algae-like elements, commonly found in south Brazilian coal palynofloras (Portalites, Tetraporina, -
A Preliminary Assessment of Paleontological Resources at Bighorn Canyon National Recreation Area, Montana and Wyoming
A PRELIMINARY ASSESSMENT OF PALEONTOLOGICAL RESOURCES AT BIGHORN CANYON NATIONAL RECREATION AREA, MONTANA AND WYOMING Vincent L. Santucci1, David Hays2, James Staebler2 And Michael Milstein3 1National Park Service, P.O. Box 592, Kemmerer, WY 83101 2Bighorn Canyon National Recreation Area, P.O. Box 7458, Fort Smith, MT 59035 3P.O. Box 821, Cody, WY 82414 ____________________ ABSTRACT - Paleontological resources occur throughout the Paleozoic and Mesozoic formations exposed in Bighorn Canyon National Recreation Area. Isolated research on specific geologic units within Bighorn Canyon has yielded data on a wide diversity of fossil forms. A comprehensive paleonotological survey has not been previously undertaken at Bighorn Canyon. Preliminary paleontologic resource data is presented in this report as an effort to establish baseline data. ____________________ INTRODUCTION ighorn Canyon National Recreation Area (BICA) consists of approximately 120,000 acres within the Bighorn Mountains of north-central Wyoming and south-central Montana B (Figure 1). The northwestern trending Bighorn Mountains consist of over 9,000 feet of sedimentary rock. The predominantly marine and near shore sedimentary units range from the Cambrian through the Lower Cretaceous. Many of these formations are extremely fossiliferous. The Bighorn Mountains were uplifted during the Laramide Orogeny beginning approximately 70 million years ago. Large volumes of sediments, rich in early Tertiary paleontological resources, were deposited in the adjoining basins. This report provides a preliminary assessment of paleontological resources identified at Bighorn Canyon National Recreation Area. STRATIGRAPHY The stratigraphic record at Bighorn Canyon National Recreation Area extends from the Cambrian through the Cretaceous (Figure 2). The only time period during this interval that is not represented is the Silurian. -
Cretaceous Strata of Western Alabama
Studies of Pre-Selma Cretaceous Core Samples From the Outcrop Area in Western Alabama GEOLOGICAL SURVEY BULLETIN 1160 A group of papers by W: H. Monroe, R. E. Bergenback, N. F. Soh/, E. R. Applin, E. B. Leopold, H. M. Pakiser, and L. C. Conant UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 PREFACE In 1954 four core holes were drilled in the pre-Selma Cretaceous strata of the Alabama Coastal Plain in order to get unweathered samples within a few miles of the outcrops. During the next few years several specialists studied the cores, and their reports are published as consecutive parts of this bulletin. Watson H. Monroe, who spent many years studying the Coastal Plain strata in Alabama and Mississippi, conceived and supervised the drilling and planned the later studies. His earlier published re port (W. H. Monroe, 1955, Cores of pre-Selma Cretaceous rocks in the outcrop area in western Alabama: Gulf Coast Geol. Societies Trans., v. 5, p. 11-37) contains a brief description of the stratigraphy, together with logs and other information regarding the core holes, and he has provided the introductory chapter to this bulletin. Rich ard E. Bergenback studied the petrology of the cores, which included finding the distribution of grain sizes, determining the mineralogy of the grains and the matrix of the sediments, and having X-Ray iden tifications made of the clay minerals. -
Early Cenomanian Palynofloras and Inferred Resiniferous
Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France) Daniel Peyrot, Eduardo Barron, France Polette, David Batten, Didier Néraudeau To cite this version: Daniel Peyrot, Eduardo Barron, France Polette, David Batten, Didier Néraudeau. Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France). Cretaceous Research, Elsevier, 2019, 94, pp.168-189. 10.1016/j.cretres.2018.10.011. insu-01897273 HAL Id: insu-01897273 https://hal-insu.archives-ouvertes.fr/insu-01897273 Submitted on 17 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France) Daniel Peyrot, Eduardo Barrón, France Polette, David J. Batten, Didier Néraudeau PII: S0195-6671(18)30252-0 DOI: 10.1016/j.cretres.2018.10.011 Reference: YCRES 3988 To appear in: Cretaceous Research Received Date: 21 June 2018 Revised Date: 19 September 2018 Accepted Date: 12 October 2018 Please cite this article as: Peyrot, D., Barrón, E., Polette, F., Batten, D.J., Néraudeau, D., Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France), Cretaceous Research (2018), doi: https://doi.org/10.1016/j.cretres.2018.10.011. -
CORRELATION of the UPPER CRETACEOUS STRATA of WYOMING Stratigraphic Chart Director and State Geologist Upper Cretaceous Laramie, Wyoming by Ranie M
WYOMING STATE GEOLOGICAL SURVEY Open File Report 2017-3 Thomas A. Drean CORRELATION OF THE UPPER CRETACEOUS STRATA OF WYOMING Stratigraphic Chart Director and State Geologist Upper Cretaceous Laramie, Wyoming by Ranie M. Lynds and Joshua S. Slattery Wyoming Interpreting the past, providing for the future 2017 Western Hanna Laramie Bighorn Denver Greater Green River Basin Wind River Basin Powder River Basin Wyoming Basin Basin Basin Basin A B C D E F G H I J K L M N O P Q R S T U V W X Y Age Period Epoch Stage and Stage Polarity U.S. Western Interior U.S. Western Interior U.S. Western Interior North American U.S. Western Interior Southern Jackson Northwestern Southern Eastern Eastern Atlantic Rocky Point Separation Lost Soldier Tully Rawlins Hanna Laramie Western Southern and Eastern Bighorn Northwestern Salt Creek Southwestern Southeastern Central Northwestern Denver (Ma) Boundary Chron Radiometric Ammonite Inoceramid Land Vertebrate Palynostratigraphic Thrust Belt Hole and Rock Springs Rock Springs Rock Springs Washakie Rim Rim Ranch Draw Basin Basin, Wind River Central Wind Wind River Basin Powder Powder Powder River Black Hills Black Hills Basin (Ma) Age (Ma) Biozone Biozone Age Biozone Hoback Basin Uplift Uplift Uplift Basin Rock River Basin River Basin Basin River Basin River Basin Basin (7, 56, 77) (7, 56, 74) (8, 49, 54, 55, 56, 69, 72) (7, 23, 25, 56, 74) (7, 56, 74) (2, 33, 35, 77) (50) (6, 10, 29, 30, 47, 53, (6, 11, 12, 22, 32, 37, (12, 26, 30, 64, 72, (12, 26, 30, 36, 63, 64, (12, 19, 20, 26, 29, 30, (1, 12, 21, 30, 36, 58, -
Piecing Together the Triassic/Jurassic Stratigraphy Along the South Flank of the Uinta Mountains, Northeast Utah
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2005-08-04 Piecing Together the Triassic/Jurassic Stratigraphy Along the South Flank of the Uinta Mountains, Northeast Utah: A Stratigraphic Analysis of the Bell Springs Member of the Nugget Sandstone Paul H. Jensen Jr. Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Geology Commons BYU ScholarsArchive Citation Jensen, Paul H. Jr., "Piecing Together the Triassic/Jurassic Stratigraphy Along the South Flank of the Uinta Mountains, Northeast Utah: A Stratigraphic Analysis of the Bell Springs Member of the Nugget Sandstone" (2005). Theses and Dissertations. 649. https://scholarsarchive.byu.edu/etd/649 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. MAPPING AND PIECING TOGETHER THE TRIASSIC/JURASSIC STRATIGRAPHY ALONG THE SOUTH FLANK OF THE UINTA MOUNTAINS, NORTHEAST UTAH: A STRATIGRAPHIC ANALYSIS OF THE BELL SPRINGS MEMBER OF THE NUGGET SANDSTONE by Paul H. Jensen A thesis submitted to the faculty of Brigham Young University In partial fulfillment of the requirements for the degree of Master of Science Department of Geology Brigham Young University August 2005 BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by Paul H. Jensen This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. ____________________________ ________________________________ Date Bart Kowallis, Chair ____________________________ _______________________________ Date Thomas Morris ____________________________ _______________________________ Date Jeffrey Keith BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the thesis of Paul H. -
GEOLOGIC MAP of the LIVINGSTON 30' X 60' QUADRANGLE
GEOLOGIC MAP OF THE LIVINGSTON 30' x 60' QUADRANGLE SOUTH-CENTRAL MONTANA By Richard B. Berg, David A. Lopez, and Jeffrey D. Lonn Montana Bureau of Mines and Geology Open File Report MBMG 406 2000 REVISIONS Map: 9/01 Map and text: 12/02 Map and text: 8/05 This map has been reviewed for conformity with technical and editorial standards of the Montana Bureau of Mines and Geology. Partial support has been provided by the STATEMAP component of the National Cooperative Geologic Mapping Program of the U. S. Geological Survey under Contract Number 99-HG-AG- 0130. Discussion An attempt was made in the Livingston quadrangle to preserve as much detail as possible at a scale of 1:100,000 from earlier maps at larger scales. Also stratigraphic units used by previous authors were maintained, even though they were not necessarily consistent from one map to another. For example, the Upper Cretaceous Livingston Group as described by Roberts (1963) consists in descending order of the Hoppers, Billman Creek, Miner Creek, and Cokedale Formations. North of Roberts’ maps, Skipp and others (1999) mapped and described the Sedan Formation, also of Upper Cretaceous age, in the same stratigraphic position as the Miner Creek and Cokedale Formations of the Livingston Group. Detailed mapping of the Sedan Formation and Livingston Group to the south should resolve this inconsistency. The Sliderock Mountain map unit (informal map unit Klsr) includes all the volcanic rocks erupted from the Sliderock Mountain stratovolcano (du Bray and others, 1994; Lopez, 2000). These rocks are herein included in the Livingston Group because that terminology is well established in the literature. -
Paleontological Resources Technical Report Riley Ridge to Natrona Project DECEMBER 2018
U.S. Department of the Interior Bureau of Land Management Paleontological Resources Technical Report Riley Ridge to Natrona Project DECEMBER 2018 Table of Contents 1.0 Introduction ......................................................................................................................................... 1 2.0 Regional Setting .................................................................................................................................. 1 3.0 Inventory Methodology ....................................................................................................................... 1 4.0 Potential Fossil-Bearing Geologic Formations ................................................................................... 4 4.1 Browns Park Formation (PFYC 3) ............................................................................................ 4 4.2 White River Formation or Group (PFYC 5) .............................................................................. 5 4.3 Wind River Formation (PFYC 5) .............................................................................................. 5 4.4 Green River Formation (PFYC 5) ............................................................................................. 5 4.5 Wasatch Formation (PFYC 5) ................................................................................................... 5 4.6 Battle Spring Formation (PFYC 3)............................................................................................ 6 4.7 Bridger Formation