Chapter 2 Study Area

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2 Study Area Chapter 2 Study area Keith Clarey Melissa Thompson 2-1 he Greater Green River Basin (GGRB) forest and alpine tundra on the higher mountains. includes the Green River Basin, the Great At lower elevations in the basin, the vegetation in- Divide Basin, and the Little Snake River cludes abundant sagebrush, saltbush, greasewood, TBasin (Figure 1-1). The project boundary is deter- and desert shrub. Forested areas contain lodgepole mined by the distal river drainage basin divides. pine, spruce, fir, and aspen. The drainage basin boundaries overlap several geo- logic features within the GGRB. The continental GEOLOGIC SETTING: STRUCTURE divide marks the northern and eastern boundaries The GGRB is bounded by the Overthrust Belt to of the GGRB; it bifurcates and reconverges around the west, the Hoback Basin to the northwest, the the Great Divide Basin (Figure 1-1). Figure 2-1 Wind River Range and Granite Mountains to the shows the townships and ranges in the GGRB. north, the Rawlins Uplift to the east, the Sierra Madre to the east-southeast, the southern Sand The Wyoming portion of the GGRB, as delineated Wash Basin in Colorado to the south-southeast, using GIS databases, has an area of 20,792 square and the Uinta Mountains in Utah to the south. miles (13,306,700 acres). The Wyoming GGRB Within the GGRB, the Rock Springs Uplift and covers 21.3 percent of the area of the state. The Bridger Basin are located in the Green River Basin adjacent 3,821 square miles (2,445,900 acres) of proper; the Wamsutter Arch separates the Great the Colorado and Utah GGRB added to the Wyo- Divide Basin from the Washakie Basin; and Chero- ming GGRB area gives a total basin area of 24,613 kee Ridge separates the Washakie Basin from the square miles (15,752,500 acres) (Figures 1-1 and Sand Wash Basin (Figure 2-2). 2-2). The basin topography follows undulations on the Surface elevations in the Wyoming GGRB range Precambrian basement surface, formed by folding from 13,804 feet above mean sea level on Gan- and faulting of the earth’s crust under compres- nett Peak – the highest point in Wyoming, in the sional stress that began and was most intense dur- central Wind River Range – to 6,040 feet above ing the Sevier and Laramide orogenies. As shown mean sea level, measured as the high-water level in in Figure 2-4, some Precambrian basement areas Flaming Gorge Reservoir on the Green River at the in the GGRB downwarped (subsided) and formed Wyoming-Utah border. The lowest elevation within structural basins, while adjacent areas upwarped to the internal drainage of the Great Divide Basin is form mountains, uplifts, and structural arches and 6,647 feet above mean sea level. ridges. Sediments eroded from the upwarped areas were deposited over the pre-Laramide sediments In 2007, the population of the Wyoming GGRB within the new structural basins. was estimated at 54,760 (WWC Engineering, 2007), giving an average population density of 2.6 The maximum measured structural offset of per square mile. Precambrian basement rocks in the GGRB is on a Laramide fold-thrust fault in the northern Green Average annual precipitation in the GGRB ranges River Basin near Pinedale, where the rocks are from less than 7 inches in central basin areas to structurally offset by approximately 44,000 feet. nearly 60 inches in the high mountain areas above The Precambrian surface, more than 30,000 feet 10,000 feet in elevation (Figure 2-3). Most of below sea level in the deepest part of the structural the lowest parts of the central basin areas receive basin, is faulted against Precambrian rocks uplifted between 6 and 15 inches of precipitation annually. to nearly 14,000 feet at the top of the Wind River The highland and mountain areas receive 21 to 59 Range (Figure 2-4). inches. Figure 2-5 is a geologic cross section across Vegetation in the basin areas is mixed-grassland southwestern Wyoming, from the Overthrust and sagebrush steppe, sagebrush, scrub/brush Belt eastward across the Moxa Arch, Green River lands, and high-altitude desert, ranging to alpine Basin, Rock Springs Uplift, and Washakie Basin. 2-2 The cross section shows the Precambrian basement (Collentine et al., 1981). Figure 2-4 shows the rocks overlain by varying thicknesses of Paleozoic Great Divide Basin with a structural depth more to Cenozoic formations; some large-scale geologic than 25,000 feet below ground surface on the structures; and major faults. The structural basins Precambrian basement contours (more than 20,000 are depressions in the crust in which thicker sedi- feet below mean sea level). The deepest parts of the mentary rock units accumulated. The uplifts and Great Divide Basin are located in the northwestern structural arches mark where the crust upwarped, and southeastern basin; their structural trend is ap- and associated folding and faulting. proximately west-northwest (Figure 2-4). Overthrust Belt. The Overthrust Belt is a large, Washakie Basin. The Washakie Basin has an area elongate fold-thrust complex located in south- of approximately 2,600 square miles. Elevations western Wyoming and adjacent areas of Idaho and range from approximately 6,100 feet above mean Utah. It is a region of complex structural defor- sea level to approximately 8,700 feet at Pine Butte mation of Paleozoic and Mesozoic units: folding, in the southwestern basin (Collentine et al., 1981). reverse faulting, thrust faulting, and overthrust Figure 2-4 shows a structural depth of more than faulting; and a later phase (beginning in the late 20,000 feet below land surface on the Precambrian Tertiary) of overprinted normal faulting that has basement contours (more than 15,000 feet below continued to the present day. The thrust sheets mean sea level in the central basin). This deepest were generally transported eastward during the part of the Washakie Basin is oriented north–south Sevier Orogeny (Late Jurassic to Eocene). The in structural trend (Figure 2-4), parallel to the north–south trending, parallel thrust faults of the major structural trend of the Rock Springs Uplift Overthrust Belt are generally younger to the east. (Figure 2-4). The Moxa Arch is a parallel fold structure east of the Overthrust Belt in the western Green River Rock Springs Uplift. The Rock Springs Uplift has Basin (Figures 2-2 and 2-5). an area of approximately 1,750 square miles (50 miles by 35 miles). Elevations range from approxi- Green River Basin. The Wyoming Green River mately 6,200 feet above mean sea level on Bitter Basin has an area of approximately 14,700 square Creek to 8,680 feet above mean sea level at Aspen miles. West of the Rock Springs Uplift, the local Mountain on the southern half of the uplift and to depression of the Green River Basin between the more than 7,500 feet in the Leucite Hills (Collen- uplift and the Moxa Arch shows a depth of more tine et al., 1981). The maximum structural uplift than 25,000 feet below land surface on the Precam- of the Rock Springs Uplift is estimated at 17,000 brian basement contours (more than 20,000 feet feet (Love, 1961a). The Precambrian basement below mean sea level) (Figures 2-2, 2-4, and 2-5). rocks lie about 8,000 feet below land surface (less than 2,000 feet below mean sea level) in the central Figure 2-4 shows a structural depression in the Baxter Basin area of the Rock Springs Uplift. The Pinedale area deeper than 35,000 feet below land Rock Springs Uplift is a doubly-plunging, anticli- surface on the Precambrian basement contours nal fold (dome) structure with a north–south major (more than 30,000 feet below mean sea level). The structural trend. structural trend on this deepest part of the Green River Basin is northwest–southeast, semi-parallel The deepest and oldest geologic formation exposed to the northwest–southeast structural trend of the at land surface in the core of the Rock Springs Wind River Range (Figure 2-4). Uplift is the Upper Cretaceous Baxter Shale. The surface exposure includes the Baxter Basin area Great Divide Basin. The Great Divide Basin (Plate 2). A north–south trending reverse fault, has an area of approximately 3,500 square miles. east side upthrown, lies along the west flank of the Elevations range from 6,647 feet above mean sea Rock Springs Uplift (Figure 2-5); it is associated level near basin center (Sec. 32, T.24N., R.94W.) with the compressional stress and anticlinal folding to more than 8,000 feet in the adjacent highlands that formed the uplift during the Laramide Orog- 2-3 eny. Most of the structural doming of the Rock feet and a maximum combined thickness estimated Springs Uplift occurred after Eocene time (Surdam at more than 12,000 feet. and Jiao, 2007). CENOZOIC UNITS Sierra Madre. The Sierra Madre ranges in eleva- Quaternary geologic units tion from 6,330 feet above mean sea level on the As shown as outcrop on Plate 2 and Plate 3, Qua- Little Snake River to 11,007 feet on Bridger Peak ternary deposits include unconsolidated alluvial (Collentine et al., 1981). Precambrian basement and colluvial sediments, landslide deposits, dune rock units are exposed in the uplifted core of the sand (eolian), lacustrine sediments, glacial depos- Sierra Madre, and Miocene formations unconform- its, gravel pediment and fan deposits, undivided ably overlie and blanket the flanks of this mountain surficial deposits, and terrace gravels, as well as con- uplift (Plate 2). solidated uppermost Pliocene to Quaternary alkalic extrusive and intrusive igneous rocks (Welder and GEOLOGIC SETTING: ROCK UNITS McGreevy, 1966, sheet 3; Welder, 1968, sheet 2; This section describes the geologic characteristics Lowry et al., 1973, sheet 3; Love and Christiansen, of the geologic units in the GGRB, or rock-strati- 1985).
Recommended publications
  • Morrison Formation 37 Cretaceous System 48 Cloverly Formation 48 Sykes Mountain Formation 51 Thermopolis Shale 55 Mowry Shale 56
    THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING By CHRISTOPHER JAY CARSON Bachelor of Science Oklahoma State University 1998 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2000 THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING Thesis Approved: Thesis Advisor ~~L. ... ~. ----'-"'-....D~e~e:.-g-e----- II ACKNOWLEDGEMENTS I wish to express appreciation to my advisor Dr. Arthur Cleaves for providing me with the opportunity to compile this thesis, and his help carrying out the fieldwork portion of the thesis. My sincere appreciation is extended to my advisory committee members: Dr. Stan Paxton, Dr. Gary Stewart, and Mr. David Schmude. I wish to thank Mr. Schmude especially for the great deal of personal effort he put forth toward the completion of this thesis. His efforts included financial, and time contributions, along with invaluable injections of enthusiasm, advice, and friendship. I extend my most sincere thank you to Dr. Burkhard Pohl, The Big Hom Basin Foundation, and the Wyoming Dinosaur Center. Without whose input and financial support this thesis would not have been possible. In conjunction I would like to thank the staff of the Wyoming Dinosaur Center for the great deal of help that I received during my stay in Thermopolis. Finally I wish to thank my friends and family. To my friends who have pursued this process before me, and with me; thank you very much.
    [Show full text]
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent
    Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and AdJa(-erit Parts of the Lewis Sliale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest lo U.S. OEOLOGI AL SURVEY PROFESSIONAL PAPER 1532 Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent Parts of the Lewis Shale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest Wyoming By HENRYW. ROEHLER U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1532 Description of three of/lapping barrier shorelines along the western margins of the interior seaway of North America UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Library of Congress Cataloging-in-Publication Data Roehler, Henry W. Stratigraphy of the Upper Cretaceous Fox Hills sandstone and adjacent parts of the Lewis shale and Lance formation, east flank of the Rock Springs Uplift, southwest Wyoming / by Henry W. Roehler. p. cm. (U.S. Geological Survey professional paper ; 1532) Includes bibliographical references. Supt.ofDocs.no.: I19.16:P1532 1. Geology, Stratigraphic Cretaceous. 2. Geology Wyoming. 3. Fox Hills Formation. I. Geological Survey (U.S.). II. Title. III. Series. QE688.R64 1993 551.7T09787 dc20 92-36645 CIP For sale by USGS Map Distribution Box 25286, Building 810 Denver Federal Center Denver, CO 80225 CONTENTS Page Page Abstract......................................................................................... 1 Stratigraphy Continued Introduction................................................................................... 1 Formations exposed on the east flank of the Rock Springs Description and accessibility of the study area ................
    [Show full text]
  • Fort Davy Crockett: Browns Park National Wildlife Refuge (Colorado)
    U.S. FISH AND WILDLIFE SERVICE: REGION 6 - CULTURAL RECOURSE PROGRAM Fort Davy Crockett?: An Archaeological Mystery Browns Park National Wildlife Refuge – Northwest Colorado Summarized from: A Report on the Results of Limited Subsurface Testing at 5MF5478, a Proposed Site of Historic Fort Davy Crockett, Moffat County, Colorado Kristen D. Kent and Mona C. Charles, Department of Anthropology, Fort Lewis College, Durango, Colorado December 2004 Introduction The follow excerpts are from a 2004 report documenting archaeological testing at the possible location of Fort Davy Crocket on the Brown’s Park National Wildlife Refuge. Many studies and much research has been conducted over the years to try and determine if the remains found on a bluff overlooking the Green River on the Browns Park National Wildlife Refuge are indeed those of the Fort. This research adds additional insight into the mystery. Fort Davy Crockett In 1837 three fur trappers, Prewett Sinclair, Philip Thompson, and William Criag, formed a partnership and reportedly built Fort Davy Crockett that same year. The Fort was named after the famous Tennessee frontiersman who died at the Battle of the Alamo in Texas the previous year. Kit Carson, another famous frontiersman, trapper and scout is reported to have been employed by the owners of Fort Davy Crockett. In 1839 members of the Peoria Party on their way to Oregon reported staying at the Fort. A description of the Fort was provided in the recordings of Thomas Jefferson Farnham, leader of the Peoria Party. He described the Fort thus: The fort, as it is called, peered up in the centre, upon the winding banks of the Sheetskadee.
    [Show full text]
  • 1 KECK PROPOSAL: Eocene Tectonic Evolution of the Teton-Absaroka
    KECK PROPOSAL: Eocene Tectonic Evolution of the Teton-Absaroka Ranges, Wyoming (Year 2) Project Leaders: John Craddock (Macalester College; [email protected]) and Dave Malone (Illinois State University; [email protected]) Host Institution: Macalester College, St. Paul, MN Project Dates: ~July 15-August 14, 2011 Student Prerequisites: Structural Geology, Sedimentology. Preamble: This project is an expansion of a 2010 Keck project that was funded at a reduced level (Craddock, 3 students); Malone and 4 students participated with separate funding. We completed or are currently working on three 2010 projects: 1. Structure, geochemistry and geochronology (U-Pb zircon) of carbonate pseudotachylite injection, White Mtn. (J. Geary, Macalester; note that this was not part of last year’s proposal but a new discovery in 2010 caused us to redirect our efforts), 2. Calcite twinning strains within the S. Fork detachment allochthon, northwest, WY (K. Kravitz, Smith; note because of a heavy snow pack in the Tetons this past summer, we chose a different structure to study), and 3. Provenance of heavy minerals and detrital zircon geochronology, Eocene Absaroka volcanics, northwest, WY (R. McGaughey, Carleton). We did not sample the footwall folds proposed in the previous proposal (under snow) and will focus on this project and mapping efforts of White Mountain and the 40 x 10 km S. Fork detachment area near Cody, WY, in part depending on the results (calcite strains, detrital zircons) of the 2010-11 effort. All seven students are working on the detrital zircon geochronology project, and two abstracts are accepted at the 2011 Denver GSA meeting. Overview: This proposal requests funding for 2 faculty to engage 6 students researching a variety of outstanding problems in the tectonic evolution of the Sevier-Laramide orogens as exposed in the Teton and Absaroka ranges in northwest Wyoming.
    [Show full text]
  • Chapter 17. Quartzite Gravel Northwest Wyoming
    Chapter 17 Quartzite Gravel of Northwest Wyoming The quartzites of southwest Montana and adjacent Idaho extend eastward into Wyoming1 in a semi-continuous belt, as shown on Figure 16.1 of the previous chapter. This chapter will describe those deposits. Quartzite Gravel Lag John Hergenrather and I have found scattered surficial quartzites from near Interstate 15 in northeastern Idaho, just south of Lima, Montana, eastward to the northern Teton Mountains and over a four-wheel drive pass between Yellowstone and Grand Teton National Parks. These quartzites seem to have mostly formed a thin layer or lag deposit on the surface or were reworked by local mountain glaciation. This lag rep- resents the red hashed area in Figure 16.1. Quartzites on Top of the Northern Teton Mountains Probably the most fascinating quartz- ite location is on top of the northern Teton Mountains! Brent Carter and I took a Figure 17.1. Slightly dipping limestone at the top three day round trip hike to the top of Red of Red Mountain. Mountain in the northern Teton Moun- tains, 10,177 feet (3,102 m) msl!2,3 Red Mountain and Mount Moran (12,605 feet, 3,842 m msl) represent remnants of a flat-topped planation surface.2 Red Mountain is composed of slightly tilted limestones (Figure 17.1), while Mount Moran is composed of granite or gneiss with a 50-foot (15 m) thick cap of Flathead Sandstone on top (see Figure 33.7). The quartzites on top of Red Mountain are mainly a thin lag mixed with angular lime- stone cobbles and boulders (Figure 17.2).
    [Show full text]
  • Ludvigson Et Al-Current Research.Indd
    New Insights on the Sequence Stratigraphic Architecture of the Dakota Formation, Ludvigson et al. i New Insights on the Sequence Stratigraphic Architecture of the Dakota Formation in Kansas–Nebraska–Iowa from a Decade of Sponsored Research Activity Greg A. Ludvigson, Kansas Geological Survey, The University of Kansas, Lawrence, KS Brian J. Witzke, Iowa Geological Survey, Iowa Department of Natural Resources, Iowa City, IA R. M. Joeckel, Nebraska Conservation and Survey Division, School of Natural Resources, The University of Nebraska-Lincoln, Lincoln, NE Robert L. Ravn, The IRF Group, Anchorage, AK Preston Lee Phillips, Department of Geology and Geography, University of North Carolina at Pembroke, Pembroke, NC Luis A. González, Department of Geology, The University of Kansas, Lawrence, KS Robert L. Brenner, Department of Geoscience, The University of Iowa, Iowa City, IA Abstract The Cretaceous Dakota Formation in the areas of Kansas, Nebraska, and Iowa contains a rich and well-preserved microfl ora of fossil palynomorphs. A comprehensive listing of these taxa is presented in this publication as part of a continuing effort to develop a refi ned biostratigraphic scheme for mid-Cretaceous terrestrial deposits in North America. The Dakota Formation in this region contains four distinctive Albian–Cenomanian palynostratigraphic zones that are used to partition the unit into successive depositional cycles, and each zone records deposition in fl uvial-estuarine environments. The late Albian Kiowa–Skull Creek depositional cycle at the base of the Dakota Formation is recognized throughout the study area, and is also recognized in other parts of the Cretaceous North American Western Interior basin. The overlying newly recognized latest Albian “Muddy–Mowry Cycle” is formally defi ned for the fi rst time in this paper and correlates with depositional cycles recognized by other workers in other parts of the Western Interior basin.
    [Show full text]
  • The Geologic History of Fossil Butte National Monument and Fossil Basin
    The Geologic History of Fossil Butte National Monument and Fossil Basin FOSSIL BUTTE The Geologic History of Fossil Butte National Monument and Fossil Basin NPS Occasional Paper No. 3 THE GEOLOGIC HISTORY OF FOSSIL BUTTE NATIONAL MONUMENT AND FOSSIL BASIN Paul O. McGrew Michael Casilliano Department of Geology, University of Wyoming National Park Service Occasional Paper Number Three 1975 TABLE OF CONTENTS index.htm Last Updated: 01-Mar-2005 http://www.nps.gov/history/history/online_books/fobu/index.htm[6/17/2013 12:42:49 PM] The Geologic History of Fossil Butte National Monument and Fossil Basin (Tables of Contents) FOSSIL BUTTE The Geologic History of Fossil Butte National Monument and Fossil Basin NPS Occasional Paper No. 3 CONTENTS COVER INTRODUCTION LOCATION HISTORICAL BACKGROUND OF RESEARCH STRATIGRAPHY Thaynes Limestone Evanston Formation Wasatch Formation Basal Conglomerate Member Lower Member Main Body Sandstone Tongue Mudstone Tongue Bullpen Member Tunp Member Age of the Wasatch Formation Depositional Environment Green River Formation Fossil Butte Member Angelo Member Age of the Green River Formation Depositional Environment Fowkes Formation Sillem Member Bulldog Hollow Member Gooseberry Member Age of the Fowkes Formation Depositional Environment QUATERNARY THE GEOLOGIC STRUCTURE OF FOSSIL BASIN PALEONTOLOGY Flora Invertebrates http://www.nps.gov/history/history/online_books/fobu/contents.htm[6/17/2013 12:42:58 PM] The Geologic History of Fossil Butte National Monument and Fossil Basin (Tables of Contents) Vertebrates Fish Amphibians Reptiles Birds Mammals PALEOECOLOGY AND TAPHONOMY ACKNOWLEDGMENTS GLOSSARY REFERENCES BIBLIOGRAPHY Library of Congress Cataloging in Publication Data McGrew, Paul Orman, 1909- The geological history of Fossil Butte National Monument and Fossil Basin.
    [Show full text]
  • Uppermost Cretaceous and Tertiary Stratigraphy of Fossil Basin, Southwestern Wyoming
    Uppermost Cretaceous and Tertiary Stratigraphy of Fossil Basin, Southwestern Wyoming By STEVEN S. ORIEL and JOSHUA I. TRACEY, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 635 New subdivisions of the J,ooo-Joot-thick continental Evanston, Wasatch, Green River, and Fowkes Formations facilitate understanding of sediment genesis and Jl7yoming thrust-belt tectonic events UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 70-604646 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 65 cents (paper cover) CONTENTS Page Wasatch Formation-Continued Abstract __________________________________________ _ 1 Fossils and age-Continued· Page Introduction ______________________________________ _ 2 Tunp Member______________________________ 28 Purpose ______________________________________ _ 2 Origin--------~-------------------------------- 28 Earlier work_ .. __ - __ - ___________________ - _-- _- __ 2 Tectonic implications ____________ -_-------------- 29 Acknowledgments __ . ___________________________ _ 2 Green River Formation ___ .. _______ ------------------ 30 General relations ___ -- _________________________ _ 5 Name and usage __________________ -------------- 30 Evanston Formation _______________________________ _ 5 Definition __________________ -_-------------- 30 N arne and usage _______________________________ _ 5 Lithologic heterogeneity.
    [Show full text]
  • Brighan Young University Geology Studies
    BRIGHAM GEOLOGY YOUNG STUDIES UNIVERSITY Volume 19: Part 1 - December 1972 CONTENTS An Ealy Cembrian Trilobite Faunule from Utah .................... .... ......................... R. A. Robism and L. F. Hintze 3 Cbeirscystelld antiqm gn. d sp. nev. from the Lower Ordovician of Western Utah, and Its Bearing en the Evsluti~nof the Cheirocrinidae (Rhombifera: Glyptocystitida) ................... ...... ......................... C. R. C. Paul 15 Gc~lta~of the Mill Fork Area, Utah ................................ W. C. Metrill 65 Geology ef the Thistle Quadrangle, Utah ........................ M. L. Pinnell 89 Study of Internal Structures of Fine-Grained Clastic Rocks by X-radiography ........................................... A. M. Jones 131 Publications and Maps of the Geology Department ............................. 159 Brigham Young University Geology Studies Volume 19, Part 1 - December, 1972 Contents An Early Cambrian Trilobite Faunule from Utah ........................................................ R. A. Robison and L. F. Hintze 3 Cheit.orystella a~ztiua gen. et sp. nov. from the Lower Ordovician o Y Western Utah, and Its Bearing on the Evolution of the Cheirocrinidae (Rhombifera: Glyptocystitida) ........................................................ C. R. C. Paul 15 Geology of the Mill Fork Area, Utah ................................ R. C. Merrill 65 Geology of the Thistle Quadrangle, Utah .......................... M. L. Pinnell 89 Study of Internal Structures of Fine-Grained Clastic Rocks by X-radiography ...........................................
    [Show full text]
  • Central San Juan Basin
    Acta - ---- - - ---Palaeontologic- -- ---' ~ Polonica Vol. 28, No. 1-2 pp. 195-204 Warszawa, 1983 Second Symposium on Mesozoic Terrestiol. Ecosystems, Jadwisin 1981 SPENCER G. LUCAS and NIALL J. MATEER VERTEBRATE PALEOECOLOGY OF THE LATE CAMPANIAN (CRETACEOUS):FRUITLAND FORMATION, SAN JUAN BASIN, ~EW MEXICO (USA) LUCAS, s. G. and MATEER, N. J .: Vertebrate paleoecology of the late Campanian (Cretaceous) Fruitland Formation, San Juan Basin, New Mexico (USA). Acta Palaeontologica Polonica, 28, 1-2, 195-204, 1983. Sediments of the Fruitland Formation in northwestern New Mexico represent a delta plain that prograded northeastward over the retrating strandline of the. North American epeiric seaway during the late Campanian. Fruitland fossil · vertebrates are fishes, amphibians, lizards, a snake, turtles, crocodilians, dinosaurs (mostly h adrosaurs and ceratopsians) and mammals. Autochthonous fossils in the Fruitland ' Form ation represent organisms of the trophically-complex Para­ saurolophus community. Differences in diversity, physical stress and life-history strategies within the ParasaurolopllUS community . fit well the stablllty-time hypothesis. Thus, dinosaurs experienced relatively low physical stress whereas fishes, amphibians, small reptiles and mammals experienced greater physical stress. Because of this, dinosaurs were less likely to recover from an environment­ al catastrophe than were smaller contemporaneous vertebrates. The terminal Cretaceous extinctions selectively eliminated animals that lived in less physlcally­ -stressed situations, indicating that the extinctions resulted from an environmental catastrophe. Key w 0 r d s: Fruitland Formation, New Mexico, delta plain, stablllty-time hypothesis, Cretaceous extinctions. Spencer G. Lucas, Department ot Geology and Geophysics and Peabody Museum ot Natural History, Yale University, P.O. Box 6666, New Haven, Connecticut 06511 USA ; NlaU J .
    [Show full text]
  • Geologic Studies of the Platte River, South-Central Nebraska and Adjacent Areas—Geologic Maps, Subsurface Study, and Geologic History
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications of the US Geological Survey US Geological Survey 2005 Geologic Studies of the Platte River, South-Central Nebraska and Adjacent Areas—Geologic Maps, Subsurface Study, and Geologic History Steven M. Condon Follow this and additional works at: https://digitalcommons.unl.edu/usgspubs Part of the Earth Sciences Commons Condon, Steven M., "Geologic Studies of the Platte River, South-Central Nebraska and Adjacent Areas—Geologic Maps, Subsurface Study, and Geologic History" (2005). Publications of the US Geological Survey. 22. https://digitalcommons.unl.edu/usgspubs/22 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications of the US Geological Survey by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Geologic Studies of the Platte River, South- Central Nebraska and Adjacent Areas—Geologic Maps, Subsurface Study, and Geologic History Professional Paper 1706 U.S. Department of the Interior U.S. Geological Survey Geologic Studies of the Platte River, South-Central Nebraska and Adjacent Areas—Geologic Maps, Subsurface Study, and Geologic History By Steven M. Condon Professional Paper 1706 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director Version 1.0, 2005 This publication and any updates to it are available online at: http://pubs.usgs.gov/pp/pp1706/ Manuscript approved for publication, March 3, 2005 Text edited by James W. Hendley II Layout and design by Stephen L.
    [Show full text]