<<

Molecular simulation of melting in tetracosane (C 24 H50 ) monolayers and bilayers on graphite

Cary L. Pint

DepartmentofPhysics,UniversityofNorthernIowa,CedarFalls,IA50614 ElectronicMail:[email protected]

ABSTRACT

This work reports an investigation into the solid phase behavior and melting behavior of tetracosane(C 24 H50 )monolayersandbilayersphysisorbedontothegraphitebasalplaneusingmolecular dynamicssimulationsperformedintheconstant( N,V,T)ensemble.Thisstudyisconductedinorderto perform an indepth analysis of the melting process in the quasi2D monolayer, and compare the molecularbehaviorinthe monolayerandthebilayerattemperaturesnearandatthe meltingtransition.

Thebilayerisstudiedbylookingatquantitiesforthebottomandtoplayerseparatelyinordertobreak apart the evolution of differing structural and molecular properties that are normally associated with meltinginthe monolayer.Simulationssuggestthatthemelting temperatureinthebilayerisincreased significantly from that of the monolayer which already occurs at temperatures higher than the bulk tetracosane melting temperature. In addition, a layerbylayer melting effect is observed where significantfactorsassociatedwiththemeltingtransitiontheformationofmoleculargauchedefectsand the perpendicular rolling of the molecule chains occur in the top layer of the bilayer at significantly lowertemperaturesthantheyoccurinthebottomlayer.Variationsareconductedtobetterunderstandthe roleofdifferentinteractionsin meltingofthecrystalline monolayer,andtheresultsofsimulationsare discussedincomparisontorecentSTManddiffractionexperimentandfoundtobeingoodagreement.

1 1 Introduction

Oneofthefastestgrowingandmostfascinatingfieldsofsciencetodayinvolvesthestudyofhow verysmallfilmsofatomsandmoleculesbehavewhentheyinteractwithorareconfinedbyothersurfaces withsignificantlydifferentpropertiesthanthoseofthefilm.Ingeneral,onecanimaginemanyscenarios thatwouldbeequallyinteresting,andagreatefforttodayisbeingundertakeninordertounderstandnew phasesandphasebehaviorsthatarebeingobservedinsuchsystems.

Oneparticularsystemthathasreceivedquiteabitofattentioninrecentyearshasbeenthatof physisorbedlayersof nondifferentsolidsurfaces.Theinterfacialpropertiesof nalkanesappeal tomanywidespreadapplicationsandproblems(e.g.lubrication,adhesion,catalysis,etc.)inadditionto thefurtherunderstandingthatthisphysicalsystemcontributestothatof“similar”systems.Suchsimilar systemsincludelipids(whichcontainanintheirhydrophobictail)andmorecomplexmolecules suchassomepolymers, which havesimilarCHbondarrangementstoalkanes(e.g.polyethylene). In addition,understandingthebehaviorof nalkanesataninterfacedirectlyrelatestoindustrialproblemsas broadaspetroleumflowtoanunderstandingoftheprocessesthattakeplaceinicecream. 1

Therehasbeenavastamountofexperimentaleffort216 overthepastseveralyearstostudythe bulkandinterfacialbehaviorof nalkanelayers.Clarkeandcoworkers 26havestudiedsolidlayersof n alkanesatthe graphiteinterfacewith5 ≤ n ≤15.Theyproposethatasolidlayerof nalkanesatthe interface exhibits ordering above the bulk melting temperature for layers containing molecules with chains longer than ( n=5) 4, suggesting a role of chain length on ordering in the layer near the meltingtransition. Inaddition,Taubandcoworkers 710 havestudiedthe meltingbehaviorinlayersof tetracosane( n=24)anddotriacontane( n=32)on graphitethrough neutronscatteringexperiment.These authorsreportmeltingtransitionsofthesemonolayerswellabovethebulkmeltingtransition,andneutron diffraction data suggests a melting transition for the tetracosane (C24) monolayer beginning at temperaturesnearca.340K.Theseauthorshavealso studied the structure of 1.94 layers ofC24 on

2 graphite,andhavedeterminedthatatcoveragesgreaterthanacompletemonolayer,thebottomandtop layertendtoarrangeinpositionsthatarefullycommensuratewiththeunderlyinggraphitesubstrate.

Otherexperimentalworkhasbeendevotedtostudyingthebehaviorofalkanesofsizecomparable tothosestudiedin thiswork,through methodsofcalorimetry 1112 andscanningtunnelling microscropy

(STM). 1316 In particular, calorimetry experiments 1112 suggest that bulk nalkane crystals with alkane chainlengthsbetween n=21and n=32undergoseveralrotatorphasespriortomelting.Additionally,STM studiesprovideaglimpseofhowthesealkanelayersarrangeatthegraphiteinterfaceinthecrystalline solid,prior to melting.Particularlyrelevanttothis work isan STMstudyofoctacosane(C 28 H58 )and

14 dotriacontane(C 32 H66 ) monolayerson graphiteby Bucheretal. TheseauthorsuseSTMtostudythe disordering of the solid phase, and suggest that fluctuations of the individual chains and groups (or

“blocks”)ofchainsevolvewithincreasingtemperatureuntilthelamellaeinthesolidmonolayerareno longerdistinguishable.Theseauthorsalsoobserveincreasedconformationaldisorder (gauchedefects) forminginthechainsaswell.ThepicturethatispaintedofthedisorderingprocessbyBucheretal.is wellparalleledthroughthesimulationsconductedinthiswork.

Inadditiontoexperiment,therehasbeenasignificantamountofsimulationstudies 1725 conducted over nalkanelayersongraphite.SimulationsconductedbyHansenetal. 1719 havefocusedonclassifying the meltingtransitionin monolayersofC24,and howthis meltingtransition isindicativeof the well known geltofluid transition observed in lipid bilayers. 17 The presence of intrachain melting and centralizedgauchedefectsisproposedtocreatethespacereductionnecessaryforthemeltingtransitionto takeplace.Althoughthisworkprovidesanexcellentoutlineofaninterestingphasetransitionthattakes place in this monolayer, it does not go into depth in studying the solid phase of the monolayer at temperaturesleadingintothetransition,asisthepurposeofthestudyathand.

Recentstudiesover monolayersofshorterchainedalkaneshavealsobroughtsomeinteresting observations.Onesuchobservationisthatlayersof nalkanesofchainlengthassmallas(C 10 H22 ) atmonolayercoverageongraphiteexhibitaphasetransitionthatisaccompaniedbyasignificantnumber of gauche defects in the alkyl chains 20 . In addition, simulations of pentane, , and 21

3 indicatethatmonolayersinvolvingalkaneswithchainsassmallasheptaneexhibitadisorderingprocess that(i)occursoveralargetemperaturerange(ascomparedtoshorteralkanes),(ii)involvesdisordering thatbeginsthroughthe “shifting”of lamellae,and (iii) isobservedforthetwolongeralkanesstudied, independentofgauchedefectformation.

In addition, it should be noted that there have only been a few simulation studies of nalkane bilayersadsorbedon graphite.Thefirstof these,conductedbyPeters 22 ,suggeststhat meltingforthe (C 6H14 )bilayeroccursca.20Kabovethe meltingtemperatureofthe monolayer,inagreement withexperiment.Inaddition,Petersalsosuggeststhatthetransitionsinthebilayermimicthoseofthe monolayer,withtheexceptionthatthetransitionsinthebilayeraredefinedmorebroadlywithrespectto temperature. Additional simulations by Krishnan et al. have utilized an allatom simulation model to study hexane monolayers and trilayers 23,24 as well as heptane monolayers and bilayers 25 on graphite.

Observationsofthemeltingbehavioroftheheptanebilayerprovideinterestinginsightintoaconceptof layerbylayer melting, which isasignificantaspectof this work.Theseauthorssuggestthat heptane bilayersaremorestableinafullycommensuratesolidphase,andthatdistinctfeaturesoftheenergeticsin the monolayer and bilayer suggests different meltingbehaviorineachlayer.Thisobservationofthe melting transition based upon layerbylayer melting is the foundation for the study at hand, which investigates the melting in much longer alkanes than have been studied in previous experiment, at coveragesgreaterthanamonolayer.

Thus,itisthepurposeofthisworktobetterelucidatethemeltingtransitioninthetetracosane monolayerthroughsimulations,utilizingbiggersimulationcellsandathoroughanalysisofthestructural and molecularbehaviorascomparedtopreviousworkoverC24 monolayers.Inaddition,thisworkis conducted to investigate the melting of a bilayer of a longerchained alkane in comparison to a monolayer.Therehavebeennoinvestigationsregardingthe mechanism ofmeltinginmolecularlayers withcoveragesdeviatingfromthestrictsinglelayercoveragestudiedin mostpreviouswork,norhave therebeen investigationsofthe meltinginbilayersofalkanes withchainlengths greaterthan heptane

(C 7H16 ).Thus, thereisaplethoraofimportantquestionssurroundingthissystem whichdeservetobe

4 investigated. In particular, the understanding of how melting proceeds in the molecular layers as the coverageapproachesthebulkisofgreatinterest.Manyphenomena,includingsurfacefreezing 26 ,have been recently discovered and still reside as being unexplained. The work presented here attempts to provide a link between ideas about melting proposed for nalkane monolayers on graphite (i.e. the footprint mechanism) to a bilayer, to better understand how the mechanism of melting evolves with coverage.

2 Simulation Details All simulations reported in this study are performed through use of an isothermal canonical ensemble moleculardynamics(MD) method.Thepotential modelandisothermaltemperaturecontrol that is utilized in simulations conducted in this work is the general model used in most similar simulations,andisdescribedindetailinpreviouswork. 20,27 Thus,onlyabriefdescriptionwillbegiven here,andthereaderisreferredtopreviouspublishedliteratureforamoredetaileddescription.

Thetotalsimulatedpotentialenergyisafunctionofbothnonbondedandbondedpotentialterms.

The nonbonded terms involve atomatom interactions (modeled by a 126 Lennard Jones interaction potential)andadsorbategraphite interactions(modeledbySteele’s graphiteinteractionpotential 28 ). In addition, the bonded interactions encompass threebody and fourbody intrachain bending terms with potentialsdescribingthesebondangle 29 andtorsional 30 motionsthatareconsistentwithpreviouswork.

In order to simulate the alkane molecules, the most recent anisotropic unitedatom (AUA4) model 31 isutilizedwhichapproximateseachmethylandmethylenegroupasasingle(psuedo)atom,with themassofthemethylormethylenegroup.Inaddition,thismodelprovidesinteractionparametersfor theLennardJonespotentialutilizedwhichslightlydifferbetweenthetwogroups,givingamorerealistic physicalinterpretationoftheinteractionsbetweenatomsinanalkanemolecule.

TableIcontainsinformationregardingsimulationcellsizes,latticeparameters,andquantitiesof moleculesstudiedinsimulations.Toperformsimulationofthesolidliquidphasetransition,simulations are began from a lowtemperature solid phase with lattice parameters determined through diffraction

5 experiment.Thecellisthenallowedtoequilibratetoaconfigurationthroughaperiodoftimethatallows the layer(s) to come to thermodynamic equilibrium. For the case of the monolayer, the equilibration periodspansfor750ps(7x10 5steps),followedbyaperiodof450psinwhichaveragesaretakenand thermodynamicquantitiesarecalculated(totalsimulationtimeof1.2ns).Inthecaseofthebilayer,the equilbrationperiodistakentobeforthefirst700ps,andaveragesaretakenoveranadditional700ps

(totalsimulationtimeof1.4 ns). Withacellsizeinvolving2304atomsandcutoff radiusof10Å for adsorbateadsorbateinteractions,eachsimulationtookca.780hoursontheUNIOpteronCluster,which is an X8664 Linux cluster. A total of 38 temperature points are sampled for the bilayer, and 33 temperature points are sampled for the monolayer in adddition to some variations conducted for the monolayer.Variationsaretypicallyrunforaperiodof1ns,withequilibrationcarriedoutforthefirst

500psofsimulationtime.

3 Results 3.1 Structural Characterization of Melting Overthepastseveraldecades,manyinterestingobservationshavebeenmadeforadsorbedatoms and molecules on asolid substrate. These observations tend to all originate from the very interesting balance between interlayer interactions and layersubstrate interactions, which tends to lead to a large numberofinterestingphasesandeffectsintheadsorbedlayer.Inthisstudy,thefirststeptounderstand thepropertiesoftheC24thinfilmsongraphiteistolookatcharacteristicsofthemolecularstructurein ordertoanalyzehowmeltingtakesplace.

The first quantity that one may be interested in when looking at melting from a structural perspectiveisastructuralorderparameterthatexploitsthesymmetryoftheadsorbedsolidphase.Inthis study,thestructuralorderparameter, OP 2,isshowninFig.1anddefinedasfollows:

N 1 m OP2 = ∑cos(2φi ) N m i=1

6 where φistheinplaneazimuthalangleofmolecule i.Atlowtemperatures,theC24molecularlongaxes inthesolidphaseassumeanorientationthatcanbeeasilymonitoredthroughuseofthisorderparameter, andhencethisquantitygivesexcellentinsightintothe(i)solidphasebehaviorand(ii)meltingbehavior oftheC24monolayerandbilayer.Inaddition, OP 2forthebilayerisaveragedseperatelyforthebottom andtoplayers.Thecriteriaforseparatingthesetwolayersisthatthemolecularcentersofthemolecules inthetoplayerbegreater1.5Ålessthantheaverageheightofall moleculesinthetoplayer.Thisis foundtobea goodcriterion,and isutilizedthroughout theremainderofthisworkwhereaveragesare takenoverthebottomandtoplayersoftheC24bilayerseperately.

AnalysisofFig.1bringsforthafewinitialobservationsthatsupportsomeofthemainfeaturesof meltingobservedinthisstudy.Firstofall,themostapparentfeatureinFig.1isthedifferingvaluesof

OP 2,aswellasthedifferent meltingtemperaturespredictedby OP 2,forC24 monolayersandbilayers.

Onecanobservethat,afterca. T=340K,theC24monolayerstartstoevolveoutoftheorderedphase,and by T=360K,themonolayer hasessentiallydisordered,eventhoughsomeshortrangeorderstillexists.

Forthebilayer,onecanobservethatthemeltingprocessforthebottomlayerisaesthetically(withrespect to OP 2)similartothatofthe monolayer,exceptthe molecularorientationsarebetteralignedwiththe maximain OP 2forthecaseofthebilayer.However,thetoplayer(intheC24bilayer)indicatesdifferent meltingbehaviorthanthebottom(interfacial)layer.Thelossofstrictrectangularcentered(RC)orderin thetoplayerbeginsattemperaturesabove355K,whereasthelossofstrictRCorderinthebottomlayer beginsatthoseabove375Ka20Kdifference!However,inthetemperaturerangeof355Kto375K, the top layer still seems to exhibit a significant amount of order which is probably induced by the underlyingC24layer.However,assoonasthebottomlayerstartstolosethestrictRCorder,themelting transitionseemstoproceedquiterapidly,andby390K,thebottomandtoplayershavebothevolvedinto afluid,withthetoplayersurprisinglyexhibitingabitmoreshortrangeorderthantheinterfaciallayer.

One additional feature of Fig.1 that is very peculiar is the differing values of OP 2 for the monolayerandbilayeratlowtemperaturesindicatingslightlydifferentarrangementsinthesolidphase.

Thiscanbebetterunderstoodthrough Fig.2, wherethedistributionsoftheinplaneazimuthalangles,

7 averagedoverallpostequilibratedsimulationtime,arepresentedforseveraltemperaturepointsbefore andnearthemeltingtransition.Forthemonolayeratlowtemperatures,onecanobservethattwodistinct peaksseemtoariseindicatingaslightrotationofthe molecules.Atlowtemperatures,the molecular orientationsseemtotakeonvaluesofca.90 °±20 °,whichthenevolvestoorientations withrotations closer to 90 ° until temperatures near 330 K, where the orientations seem to have a single broad peak around90 °.Thiscontinuesuntilmelting,andorientationaldisorderfollows.Forthecaseofthebilayer, themolecularorientationsseemtobeprimarilypeakedat90 °(resultinginavalueof OP 2verycloseto1), withtwosmallerpeaksatca. ±10 °oneithersideofthelargepeak.Thisgenerallycontinuesthroughout meltingasthepeaksevolvetowardbroadeningaboutthelargepeakat90 °.Tovisuallyrepresentthe orientations described here, snapshots are provided in Fig. 3 that represent (i) the lowtemperature monolayer,(ii)themonolayerpriortomelting(wherethepeakintheorientationsat90 °develops),and

(iii)thelowtemperaturebilayer.Itshouldbenotedthatcomparisonsbetweenthetopandbottomlayers intheC24bilayerindicated nodifferenceinthestructure withtheexceptionthatthebilayertendsto evolvetowarddisorderingatlowertemperatures.

Inadditiontotheinplanestructuralcharacterization,itisalsousefultounderstandthelayering structurewhichisilluminatedbytheatomicheightprofilespresentedinFig.4.Fortemperaturesbefore andnearmeltingforthemonolayer,thetoppanelofFig.4indicatesabroadeningoftheheightprofile, accompaniedbytheformationofasmallshoulderasthetemperatureisincreased.FortheC24bilayer, however, the observation of a broader distribution inthetoplayerthanthebottomlayerisaunique featuretothissystem.Althoughthiswasobservedinapreviousstudyofheptanebilayersongraphite 25 , itseemstobemorepronouncedfortheC24bilayer.

3.2 Molecular Behavior Before and Near Melting

8 Ithasbeendemonstratedinprevioussimulations 20 thatmeltinginlayersofchainmoleculeswith significantchainlengthsisaprocessdominatedbythemolecularbehaviorandgauchedefectsformingin thechains.Inparticular,itisreasonabletowonderhowthesechaindefectsandmolecularbehaviorplay aroleinmeltinginthebilayer,ascomparedtothemonolayer.

InordertostudygauchedefectformationintheC24chains,theaveragemethylmethyldistance iscalculatedandaveragedoverthepostequilibratedsimulationtime,andpresentedinFig.5.Atlow temperatures,themethylmethyldistanceintheC24monolayerandbilayertakesonavalueofca.29Å, whichrepresentsthesolidlayerwithallmoleculestakingonanalltransconformation.Asthemolecular chains start to kink due to gauche defect formation, the methylmethyl distance in the chains starts to decreaseinaccordancewiththetypeof “kink”or gauchedefectinthechain. Inparticular,onecan categorizethegauchedefectformation,throughthisquantity,intothreedifferentregions.FortheC24 monolayer,thefollowingthreeregionsareevident:(i)transtoendgaucheconformationattemperatures between 200 K and ca. 320 K (minimal deviations from the alltrans molecular conformations), (ii) centralgaucheconformationattemperaturesbetweenca.320 Kand350 K(significantdeviation from alltrans molecular conformations), and (iii) intrachain melting at temperatures above ca. 350 K

(convergence of the methylmethyl distance to values comparable to minimumenergy atomic pair distances).AnalyzingthebottompanelofFig.5,itisevidentthatthesethreeregionsareobservedforthe topandbottomlayersoftheC24bilayer,exceptthatthetemperaturesoverwhichtheregionsaredefined for the bilayer are significantly shifted from the case of the monolayer. In particular, the top layer undergoesacentralgaucheregionattemperaturesrangingfromca.290Kto360K,andthebottomlayer seemstoexhibitthisregionoverthetemperaturerangeofca.355Kto375K.Thisshowsevidenceof layerbylayermeltingbasedupontheindividualmolecularbehaviors,whichwillbediscussedinfurther detailinthenextsection.

Inadditiontogauchedefectformation,previousworkoverheptanemonolayersandbilayers 25 has shownthatthereexistsaveryinterestingcouplingofgauchedefectformationandmolecularrollingthat playsanimportantroletopreemptthemeltingtransition.Thus,inthisstudy,abondrollorderparameter,

9 βroll , is developed in order to elucidate the molecular rolling behavior before and near the melting transition.Thisparameterisdefinedas: r r NmN a −1 1 (r1 ×r2 )⋅ zˆ β roll = ∑ ∑ r r Nm (Na − )2 i=1 j=2 r1 × r2 where the index jisoverthetotalnumberofpsuedoatomsinamolecule, and the index i is over all molecules.Thevectors, r1and r2,correspondtobondvectorsthataredirectedtowardthe( j+1)thandthe

(j1)thpsuedoatomsinthemoleculechain.Thisquantitytakesonavalueofunityifallmoleculeslieon thesubstratewiththeirbondvectorsparallelthethesubstrateplane,anddisappearswhenthemolecules are“rolled,”orarearrangedwiththeirmolecularbackbonesrigidwiththesubstrate.AnalyisofFig.6 fortheC24monolayerindicatesthattherollingofthe moleculesinthelayerisatemperatureinduced effect.Atca.200Kforthemonolayer,thereisasmallamountof molecularrollingthatisobserved, whichincreasesalmostlinearlyuntiltemperaturesaftertheregionwherethecentralgauchedefectsare suggestedtoform(fromFig.5).Interestingly,thetemperaturedependenceofthemolecularrollinginthe bilayerseemstobeanalagoustothatobservedinthe monolayer, except there seems to be a greater numberofmoleculesinthebilayerrolledatlowertemperatures.Conversely,thebottomlayeroftheC24 bilayer is the only layer observed to exhibit (almost) completely flat molecular orientations at low temperatures.Apparently,thereseemstobeacouplingeffectoftheincreasingtemperatureandboththe formationofgauchedefectsandonsetofmolecularrolling.Thisleadstoseveralavenuesofthoughtasto the mechanismof howthe meltingtransition actually takesplace,however,one wayinwhichabetter understandingofthismayemergeisthroughanunderstandingofthefluctuationsinthelayer,studiedin thenextsection.

3.3 Molecular Fluctuations Prior to Melting

At the heart of phase transitions in atomic and molecular layers is the idea of fluctuationinduced melting.Asearlyasthe1960’s,MerminandWagner32 provedthatlongrangedpositionalorderina2D

10 layercannottrulyexistduetotheroleoflongrangefluctuations.Followingthis,inthe1970’s,aseries of contributions from Kosterlitz, Thouless, Halperin, Nelson, and Young (KTHNY) 33 provided insight intoatwostage,dislocationmediatedmeltingtransitionforalayerintwodimensions.Recenttheoriesof meltingforlayersofchainmoleculeshasillustratedaqualitativemechanismformeltingbasedonoutof plane behavior 34 , and has speculated that outofplane molecular behavior (such as gauche defect formation)tendsto“facilitatetherotationalandtranslationalmotionneeded”forthemeltingtransitionto takeplace. 7Thus,thereisstillnorigorousunderstandingofthemeltingtransitionintheselayers,orhow fluctuationsinthelayercontributetomelting,aswellasothereffectssuchasgauchedefects.

The first quantity studied, and presented in Fig. 7 is the total mean square outofplane fluctuations,definedasthesquaredifferenceinthecenterofmoleculeoutofplanepositionoveralltime, and the outofplane position at the first step after the equilibration period averaged over all C24 moleculesandalltimesteps,fortheC24monolayerandbilayer.Itshouldbenotedthatthisquantitywas calculated by studying the fluctuations of the molecular centers, and not the centers of mass. In particular,astudyofthemolecularoutofplanefluctuationsthroughmolecularcentersisnotdistortedby theshiftinthecenterofmassthattakesplacewhenagauchedefectformsinthemolecule.Thisgives betterinsightintothe molecular fluctuations,anddoesnotallowthemolecularconformationchangesto becharacterizedasfluctuations.

Inbothlayers,attemperaturepointsinthesolidphase,itisclearthatthefluctuationsincrease withtemperatureinaratherlinearfashion.However, nearthe meltingtemperature,bothplotsindicate outofplane fluctuationsthatbreakthelineartrendestablishedat lowertemperaturesandexhibitvery significantamountsofoutofplanebehavior.However,forthebilayer,itisevidentthattheoutofplane fluctuations start to emerge prior to the bilayer melting temperature, which may have significant relevancetotheevolutionof2Dmeltingtobulkmelting,aswellastheobserved3Drotatorphasesinthe bulk.However,thisobservationsuggeststhatoutofplanebehaviordoes facilitatethemeltingtransition inboththemonolayerandthebilayer(butmaybenotinexactlythesameway).

11 In addition to the outofplane fluctuations, the fluctuations of the molecules in the layers are analyzedthroughthemolecularcenterdensityprofiles,calculatedinthedirectionofthemolecularlong axesandpresentedinFigs.8aand8b. Sincethese profiles are averaged over the postequilibration simulation time period, it gives a good indication of how the fluctuations in the layer evolve as the temperatureisincreasedtowardmelting.Sincethe moleculesarrangeinlamellaeinthesolidphase,a verydistinctpeakcorrespondstoalamellaethat hasallmolecularcentersaligned.However, withthe onset of fluctuations in the layer, the molecules will start to undulate within the lamellae, and the distributions will broaden. In a fully disordered liquid, the distributions will not have any distinct features,andthelamellaewillnolongerbedistiguishable.OneinterestingfeatureofFig.8aisthatthe picture that is illustrated by STM studies of similar alkane layers 14 is evident through these density profiles.Atlowtemperatures,themoleculesprimarilyresideinfixedlamellae,withsomefluctuationsin thelayer,butgenerallywithwelldefinedpositions.However,uponincreasingthetemperaturetoca.300

K,onenoticesthatthereisaverysignificantbroadeningofthedensitypeaks,correspondingtosignificant fluctuationsaboutthe molecularlongaxes.Attemperaturesof340K,near wherethelayerundergoes melting,onecannoticethatthedensitydistributionsarenolongeruniquelydefined,andthedensitypeaks starttomergetogether.ThisisevidentoftheprocessdefinedbyBucheretal.wherethelamellaeare observedtolosetheirindividualitynearthemeltingtransition 14 .Inthecaseofthebilayer(Fig.8b),itis evidentthatatlowtemperatures,thedensitydistributionsofthebottomlayerareveryfixed,suggesting verylittlefluctuationsofthemoleculesattheinterface.However,thetoplayerseemstoexhibit more broadeningaboutthecentralpositionsofthelamellae,indicatingmorefluctuationsinthetoplayerthan thebottomlayer.ThisistrueatalltemperaturepointspresentedinFig.8b,whichisindicativeofthe layerbylayerbehaviorexhibitedinotherquantities.Inparticular,thiswouldsuggestthattheincreasein themeltingtemperatureofthebottomlayerintheC24bilayer(withrespecttothemonolayer)maybedue toa“confinement”effect,wherefluctuationsarehinderedbythepresenceofatoplayer.Suchanidea mayprovideusefultobetterunderstandhowfluctuationsandintramoleculardefectsworktogethertoplay

12 aroleinthemeltingprocess.Thiswillbefurtherdetailedthroughaseriesofvariationsprovidedinthe nextsection.

3.4 Variations

Utilizing simulations to understand experimental observations allows one to change specific featuresofthesimulationandthesystemunderstudytoa hypotheticalscenario,andobserve howthe system in this scenario proceeds through the processbeingstudied.Thisroutehasbeenconsistently utilizedinpreviousworktounderstandhowgauchedefectsplayaroleinthemonolayermeltingprocess.

ThissectionwilloutlinefourdifferentvariationsthatwereconductedfortheC24monolayer,eachfora better understanding of the link between gauche defect formation, intermolecular packing of the moleculesinthesolidphase,andfluctuationsofthemoleculesinthesolidpriortomelting.

ThefirstvariationthatiscarriedoutisthesimulationoftheC24monolayerwiththeconstants defining the series in the dihedral potential increasedbyanorderof magnitude.Suchamethod was employedinpreviousworktounderstand how gauchedefectsplayaroleinmelting.However,inthe presentstudy,thisiscarriedoutinordertounderstand howfluctuationsinthe monolayerarecoupled withgauchedefectformation.FromthesnapshotpresentedinFig.9,itisevidentthatat300K,thereisa significantamountoflamellarfluctuationsinthemonolayer.However,meltingisnotobservedtooccur attemperatureslowerthan475K,andonecanimmediatelyobservethatgauchedefectformationplaysa huge role in this transition. This suggests that, in such alkane layers, the melting transition proceeds throughatwostepprocess,withthefirststepbeingthefluctuationofthemoleculesinthelayerabout their long axes, and the second step being the formation of space from gauche defect formation.

However,independentofgauchedefectformation,therestillexiststhelamellarfluctuationsobservedfor the layer with gauche defects, indicating that it is not particularly the gauche defects which are responsibleforthelamellardisorder,butpossiblyviceversa.Inordertobetterunderstandthisidea,the monolayerwassimulatedwiththesamenumberofmolecules,butthegraphitesubstratewasmadelarge

13 enoughthatnomoleculewascloseenoughtoanothermoleculetointeract,andthustheonlydominating interactioninthisconfigurationisthegraphiteadsorbateinteraction.Interestingly,itisobservedthatat temperatures well below the monolayer melting temperature, the molecules are dominated by gauche defect formation, and primarily central gauche defect formation. This suggests that the molecules interacting with the graphite alone, will tend to undergo chain kinks at temperatures well below the monolayermelting,duetothegraphiteadsorbateinteraction.Itiswellknownthatinthesolidphase,it takesmuchmoreenergytoinitiateoutofplanemotion,becausethemoleculesare“held”tothesubstrate by the strong holding potential, as well as being closely packed within lamellae, which supports the restrictionofinplanemotion.However,whenthereisnoinplanerestrictionofthemolecularmotions,it is very easy for the gauche defects to form in the molecule chains. This suggests that the packing arrangementoftheadsorbedmonolayerplaysasignificantroleinthatitimposestheconditionthatthe moleculescanonlydisorderviaintrachainkinksthrougheither(i)outofplanemotion(whichishighly energeticallyunfavorableatlowtemperatures),or (ii)shiftingofthe moleculesawayfromthealigned lamellaesothattheirchainscanhaveinplanefreedomtoformgauchedefects.Thisideawasspeculated inpreviousworkbyHansen 18 aswell,eventhoughthesevariationsconfirmthispicture.

In addition, to better understand the role that intermolecular packing plays on the monolayer melting behavior, the C24 monolayer is modeled as being fully commensurate with the monolayer havingthesamelatticeparametersasthefullycommensuratebilayerobservedinpreviousexperiment.

ExperimenthassuggestedthattheC24moleculesprefertoarrangeinauniaxiallyincommensuratelayer, and the simulations carried out with this configuration indicate that the total energy of the fully commensuratemonolayer,atalltemperaturepoints,ishigherthanthatoftheincommensuratemonolayer reported in the previous section. However, one interesting feature of this system is that the fully commensurate monolayer melts at a temperature that is higher than the uniaxially incommensurate monolayeratca.380K(comparabletothebottomlayermeltingtemperatureofthebilayer).Notonly doesthisunderlinetheverydelicatenatureofthelongchainedalkane/graphitesurfacephasediagram(set bythecoverageandcommensurability),but italso givesvery interestinginsightintotherolethatthe

14 surface interaction plays in the monolayer melting transition. In particular, the role of the surface interaction can be illuminated by comparing the fully commensurate layer to the uniaxially incommensuratelayer.Inthefullycommensuratelayer,wherethemoleculesminimizetheirinteraction energywiththeunderlyingsubstrate,themeltingtransitiontemperatureoccurssignificantlyhigherthan the meltingtransitionfortheuniaxiallycommensurate monolayer, wheretheintermolecularinteraction plays a bigger role in melting (and melting still occurs at a temperature higher than the bulk melting temperature).

Finally,thelastvariationthatwasconsideredwastoanalyzethemeltingbehaviorofthemonolayer whenthepairinteractionswerenottakenbeyondfirstneighbors(~5Å).Althoughitiswellknownthat adecreasedinteractionenergywillleadtoalowermeltingtransition(whichisresponsibleforthelower bulkmeltingpointofbranchedalkaneswithrespecttolinearalkanes),itisnotquiteunderstoodinthis contexttheroleoftheintermolecularinteractionsonthe2Dlayer.IntherightsidepanelofFig.9,a snapshotoftheC24layerat300Kispresented,wherethepairinteractionsweretruncatedasdescribed above.Atthistemperature,onecanalreadynoticetheinplaneinterdiffusionofthelamellaeaswellas thesignificantgauchedefectformation,andsimulationssuggestthatmeltinginthelayeroccursatca.310

K,about3040Klowerthanthatofthe monolayer withpairinteractionsdefinedoutto10Å.This observationcomplimentsthatofpreviousvariationsconductedovergauchedefectformationinthechains withnoninteractingmoleculesfurthersuggestingtheroleoftheintermolecularinteractionsinmeltingin thequasi2Dlayer.

4 Discussion

4.1 Layer-by-layer melting

Layerbylayermeltingofanadsorbedbilayerongraphitewasaneffectthatwasreportedinarecent

MD study of heptane bilayers on graphite by Krishnan et al. 25 Such an observation has significant relevancetowardanunderstandingofthesurfacefreezingeffectthathasbeenobservedandstudiedfor multilayersofalkanesongraphite.

15 OneparticularobservationinthisstudyofC24ongraphiteisevidentthroughacomparisonofFig.1 andFig.5.InFig.1,onecanobservethat,untilca.20Kbelowthebilayer meltingtemperature,the structuralcharacteristicsofthetopandbottomlayersare notdistinguishable, however,their molecular behaviorisquitedifferent.Inaddition,itisevidentthat,eventhoughthevalueof OP 2inFig.1forthe toplayerstartstodecreasefromthevalueof OP 2inthebottomlayer,itstilldoesnotachieveavalueof

OP 2lessthan0.8,whichstillimpliessignificantorderinginthetoplayer,despitethegreaterabundance ofgauchedefectsintheC24chainsinthetoplayer.Ifoneconsidersthisdisorderingprocessintermsof thefootprintreductionmechanismproposedbyHansenetal. 34 ,thenonemaybepreemptivetoconclude that the top layer “melts” before the bottom layer (due to the space reduction created by the C24 moleculeswithgauchedefectsinthetoplayer).However,untilthebottomlayermelts,thevalueof OP 2 for the top layer does not achieve a value less than0.8,suggestinganimposedorderinthetoplayer resultingfromthesolidC24layeratthegraphiteinterface.Basedonthisobservation,itseemsthatthe behaviorofthesetwolayersiscoupled.Itdoesseem as if the top layer of the C24 bilayer wants to disorderfirst,butitcan notexistina“disordered”state withoutthebottomlayerfirstundergoingthe orderdisordertransition.

In addition, if one considers the outofplane fluctuations present in the bilayer compared to the monolayershowninFig.7,one noticesthat,forthe monolayer,theoutofplane fluctuationsbeginto breakthelineartrend at the melting transition.However, forthebilayer, theoutofplanefluctuations seemtobreakthislineardependenceatthepointwherethetoplayerseemstoloseit’sstrictRCorder

(and notthe meltingtransition).Suchanobservationevidencesthatthedifferencein meltingbetween twomolecularlayersandonemolecularlayeristhatonlyoutofplanemotionscontributetothemelting in one layer, while the melting process in two layers is significantly more complicated involving fluctuationsandspacereductioninthetoplayerthatdoesnotresultinthemeltingtransition.

In light of recent experimental 26 and theoretical 35 work which has illuminated the surface freezing phenomenon in such alkane layers and the relation of molecular weight and fluctuations to this phenomenon, itisinterestingtoconsiderthe resultsofthisstudytounderstandthe mechanismofthis

16 effect. One observation of this study is that, even amidst outofplane fluctuations and gauche defect formationofthemoleculesinthetoplayer,thebottomlayerwillstillexhibitgoodRCorder,withvery little gauche defect formation in the molecules until temperatures near melting. Although three C24 layersarenotconsideredhere,theauthorspeculatesthatfurtherprogressiontowardthebulkC24would induce outofplane rotator phases that will play a large role in the melting away from the interface.

However,itisthe“confinement”ofthebottomlayerthatseemstoplayaroleinthemeltingbehavior.In amultilayersystem,thefirstfewlayerswillhaveasignificantstrainintroducedinthelayerfromthebulk

3Dbehaviornearthemeltingtransition.Thisshouldcreateastrainenergyattheinterfacewhereitwould take more thermal energy to overcome the decreasedability of the molecules to undergo outofplane motions,andhenceundergomelting.Suchanideaiscomplimentedbysimulationsthathavepreviously reportedmeltingtemperaturesforalkanemonolayersongraphitethathavebeenabovethebulkmelting temperature. Although simulations of many layers of alkanes is still computationally impossible, the progressionfromonetotwolayersofC24attheinterfacemaysuggesttrendsthatareevidentathigher coverages.

4.2 Comparison to Experiment

Theresultsofthisworkseem tobein goodagreement with experimental observation. Previous neutrondiffractionexperimentconductedoverC24monolayers 78suggeststhatthediffractionpeaksstart tobroadenatca.340K,andcontinuetobroadenandshiftthroughca.350K.Thestructuralobservation inthisworkofthelossofsolidphaseorderbeginningat340K,proceedingthroughadisorderingprocess thatinvolvescompletedisorderatca.360K(aidedbymolecularchainmelting)isinexcellentagreement with experimental diffraction data. Previous simulations have also been conducted over the C24 monolayer 18 , where the melting temperature was determined to beat338 K,eventhoughit was not discussedbytheauthorshow“melting”wasdefined.ThisisimportantsincetheC24monolayerdoesnot exhibitanextremelywelldefined(orsharp)transitionwithincreasingtemperature,butratherinvolvesa

17 processthatisgradualwithrespecttotemperatureduetotheimposedorderthatexistsaftermeltingfrom the long molecular chains. Upon inspection of the temperaturedependent neutron diffraction patterns presentedinref.[7],onecanobservethatthereisonlyaveryslightshiftinthemainpeak(inadditionto somebroadeningofthepeak)betweenca.345351K.Ingeneral,thiswouldsuggestagradualmelting transitionandresidualorderinthetemperatureregionof340350Kthatseemstomatchtheobservations in this work. Although there is no direct experimental comparison of melting temperatures for the bilayer,theincreasedmeltingtemperatureofthebilayerwithrespecttothemonolayerwasaneffectthat wasalsoobservedinexperiment 36 andsimulations 22 forhexaneongraphite,anditisnotunreasonablefor thistobethecasefortheC24bilayeraswell.

Inaddition,previousSTMworkbyBucheretal. 14 givesafascinatinginsightintoavisualdepiction ofthemeltingprocessintheC28andC32layers,whichareverysimilartotheC24layerstudiedinthis work.Theseauthorsreportaprocessthatinvolveslongitudinalmotionofthelamellaethatmakeupthe layer until a temperature where the lamellae lose their individual identity. Such an observation correspondswelltowhatonewouldexpect,givenobservationsinsimulationsofshorteralkanes 21 ,where similar behavior is observed and attributed to the alkane chain length. In addition, the simulations conducted hereseemtoshowverysimilarbehaviortothatobservedthroughSTMstudiesoftheC24 monolayer,whichisevidentfromthedensitydistributionsinFig.8a.However,Fig.9showsthatthe longitudinalmotionoftheC24moleculesinthelayerisstillevidentwhentherearenogauchedefectsin thelayersuggestingthatthethermalenergyplaysalargeroleinthesefluctuations.However,asone might expect, melting does not occur in such simulations until very high temperatures, indicating that gauchedefectsplaythemainroleinthemeltingtransition.Inaddition,Fig.9alsoindicatesthatasmaller interaction radius (and hence, interaction energy) promotes a significantly lower temperature (prior to chainmelting),indicatingthattheinteractionenergyplaysalargeroleinsustainingorderabovethebulk

C24 melting temperature until melting. However, analysis of Fig. 6 also indicates that there is significantlylesslongitudinalmotionofthemoleculesinthebilayer,asopposedtothemonolayer,which couldresultfromthe3Dinteractionsbetween moleculesofthetwolayersresultingina “confinement

18 effect”ofthese motions. However,theobservationsinthis workseemtobein goodagreement with thoseofBucheretal.

Finally, it should be noted that the observation of Krishnan et al. 25 of the significant role in perpindicularrollingofmoleculesnearthemeltingtransitionisapparentinthisstudyofC24monolayers andbilayersaswell.One factorthatseemstopreemptthephasetransitionis molecularrolling,even though it seems that there is significantly more rolling for the top layer of the bilayer than either the monolayerorthebottomlayerofthebilayer,asshownin Fig.6.Thisseemstobeconsistent with experiment,asMatthiesshowsagoodfittothe1.8monolayerC24diffractionpatternwithanalternating parallel/perpindicular orientation of the molecules in the bottom/top layers, respectively. In general, simulationssuggestthatthebottomlayerseemstoinvolvemoremoleculesthatareparalleltothesurface thanthemonolayeraswell.

5 Conclusions

Thiswork givesinsightintothe meltingbehavioroftetracosane monolayersandbilayersadsorbed ontoagraphitesubstrate.Throughanalysisofthemeltingtransitionandthesolidphasebehaviorbefore themeltingtransition,simulationssuggestsomeinterestingfeaturesofmeltinginthebilayerasopposed tothemonolayer.Firstofall,alayerbylayermeltingeffectisobserved,eventhoughthedisorderingof thetoplayerdoesnotensueuntilthebottomlayerlosesorderaswell.Thissuggeststhattheideaofa spacereductiondoesnotexplicitlyapplytoabilayer,butonecanpossiblythinkofthepartialdisordering ofthetoplayerbeforethebottomlayerasatwostagespacereduction,wherevacanciesmustoccurinthe toplayerandwithinthebottomlayerformeltinginthebottomlayertotakeplace.Inaddition,significant featureslinkedtomelting,suchasmolecularrollingandgauchedefects,areobservedtooccurinthetop layeroftheC24bilayerbeforethebottomlayer.Theresultsofthisworkseemtobeingoodagreement with diffraction data of C24 on graphite, as well as STM results and images of similar longchained alkanesongraphite.Thiswork,inadditiontoprevioussimulationstudiesofheptanebilayersongraphite, givesabetterunderstandingofmeltingatanatomiclevelforbothshorterandlongeralkanesongraphite,

19 which places a framework for a complete picture of melting as the interfacial layers exceed a single molecularlayerofcoverage.

Acknowledgements

TheauthorisgratefultoPaulGrayandtheUNICNSforuseoftheUNIOpteronClustertocarry outcalculationsforthiswork.Also,theauthorisgratefultoJohnDeiszandtheUNIPhysicsDepartment forsupportandadditionalcomputingresources.

References

1M.J.W.Povey,S.A.Hindle,A.Aarflot,andH.Hoiland, Cryst.GrowthDes.6,297(2006).

2S.M.Clarke,A.Inaba,T.Arnold,andR.K.Thomas,J.Therm.Anal.Cal. 57 ,643(1999).

3M.A. Castro, S.M. Clarke, A. Inaba, T. Arnold, and R.K. Thomas, J. Phys. Chem. Solids 60 , 1495

(1999).

4M.A.Castro,S.M.Clarke,A.Inaba,T.Arnold,andR.K.Thomas, Phys.Chem.Chem.Phys. 1,5203

(1999).

5T.Arnold,R.K.Thomas,M.A.Castro,S.M.Clarke,L.Messe,andA.Inaba, Phys.Chem.Chem.Phys.

4,345(2002).

6T.Arnold,C.C.Dong,R.K.Thomas,M.A.Castro,A.Perdigon,S.M.Clarke,andA.Inaba, Phys.Chem.

Chem.Phys. 4,3430(2002).

7H.Taub,F.Y.Hansen,K.W.Herwig,andB.Matthies, InorganicMaterials 35 ,847(1999).

8B.Matthies,Ph.D.Dissertation,UniversityofMissouriColumbia1999.

9H.Mo,S.Trogisch,H.Taub,S.N.Ehrlich,U.G.Volkmann,F.Y.Hansen,andM.Pino, J.Phys.:Cond.

Mat. 16 ,S2905(2004).

20 10 F.Y.Hansen,L.Criswell,D.Fuhrmann,K.W.Herwig,A.Diama,R.M.Dimeo,D.A.Neumann,U.G.

Volkmann,andH.Taub, Phys.Rev.Lett. 92 ,46103(2004).

11 E.B.SirotaandD.M..Singer, J.Chem.Phys. 101 ,10873(1994).

12 K.Tozaki,H.Inaba,H.Hayashi,C.Quan,N.Nemoto,T.Kimura, ThermochemiciaActa397 ,155161

(2003).

13 J.P.RabeandS.Buchholz, Phys.Rev.Lett.66 ,2096(1991).

14 JP.Bucher,H.Roeder,andK.Kern, Surf..Sci. 289 ,370(1993).

15 M.S.Couto,X.Y.Liu,H.Meekes,andP.Bennema, J.App.Phys. 75 ,627(1994).

16 D.M.Cyr,B.Venkataraman,andG.W.Flynn, Chem.Mater. 8,1600(1996).

17 F.Y.Hansen,K.W.Herwig,B.Matthies,andH.Taub, Phys.Rev.Lett. 83 ,2362(1999).

18 F.Y.HansenandH.Taub, InorganicMaterials 35 ,586(1999).

19 F.Y.Hansen,L.Criswell,D.Fuhrmann,K.W.Herwig,A.Diama,R.M.Dimeo,D.A.Neumann,U.G.

Volkmann,andH.Taub, Phys.Rev.Lett. 92 ,046103(2004).

20 C.L.Pint, Surf.Sci. 600 ,921(2006).

21 C.L.Pint, Phys.Rev.B 73 ,45415(2006).

22 G.H.Peters, Surf.Sci. 347 ,169(1996).

23 M.Krishnan,S.Balasubramanian,andS.M.Clarke, J.Chem.Phys. 118 ,5082 (2003).

24 M.Krishnan,S.Balasubramanian,andS.M.Clarke, Proc.IndianAcad.Sci. 115 ,663 (2003).

25 M.KrishnanandS.Balasubramanian, Phys.Chem.Chem.Phys , 7,2044(2005).

26 X.Z. Wu,B.M.Ocko,E.B. Sirota,S.K.Sinha,M.Deutsch, B.H.Cao,and M.W. Kim, Science 261 ,

(1993).

27 M.W.Roth,C.L.Pint,andC.Wexler, Phys.Rev.B 71 ,155427(2005).

28 W.A.Steele, Surf.Sci. 36 ,317(1973).

29 M.P.AllenandD.J.Tildesley, ComputerSimulationofLiquids (ClarendonPress,NewYork,1988).

30 P.PadillaandS.Toxvaerd, J.Chem.Phys. 94 ,5650(1991).

21 31 P.Ungerer,C.Beauvais,J.Delhommelle,A.Boutin,B.Rousseau,A.H.Fuchs, J.Chem.Phys. 112 ,

5499(2000).

32 N.D.MerminandH.Wagner, Phys.Rev.Lett. 17 ,1133(1966).

33 K.Strandburg, Rev.Mod.Phys. 60 ,161(1988).

34 F.Y.HansenandH.Taub, Phys.Rev.Lett. 69 ,652(1992).

35 A.V.TkachenkoandY.Rabin, Phys.Rev.Lett. 76 ,2527(1996).

36 B.Matthies,Ph.D.Dissertation,UniversityofMissouriColumbia1989

22 Tables and Figures

Table I . Simulated cell sizes, lattice parameters, and total number of simulated molecules for the tetracosane(C24)monolayerandbilayer. C24Monolayer C24Bilayer celldimensions(Å) 72.48x129.2 51.12x130.6 a, b(Å) 4.53,64.6 4.26,65.3

Nm 64 96

Monolayer

Bilayer (bottom)

1.0 Bilayer (top) 0.8

0.6

(Arbitrary Units) 2

0.4

OP

0.2 160 200 240 280 320 360 400 440

Temperature/K

Fig. 1 .Structuralorderparameter, OP 2formonolayersandbilayersofC24.Averagesaretakenoverthe

topandbottomC24layersindependently.

23

T=260 K

T=260 K

T=300 K

T=310 K T=320 K

T=350 K T=335 K

T=380 K T=350 K

T=360 K T=400 K

)/(Arbitrary Units))/(Arbitrary φ )/(Arbitrary Units))/(Arbitrary P( φ P(

40 60 80 100 120 140

φ/degrees 70 80 90 100 110

φ/degrees

Fig. 2 OrientationprofilesfortheC24monolayer(toppanel)andbilayer(bottompanel)fortemperature

pointsnearandafterthemeltingtransitioninbothcases.

Fig. 3. Snapshotsof(a)thelowtemperaturecrystallinemonolayerC24solidphaseinsimulations(260

K),(b)theC24monolayerattemperaturesapproachingmelting(310K),and(c)thetopandbottom

layersoftheC24bilayerat320K.

24

T=260 K (a)

T=290 K

(b)

T=310 K T=260 K

T=330 K T=310 K

T=350 K T=350 K

T=370 K T=370 K

T=380 K

T=420 K

(ArbitraryUnits)

(Arbitrary Units) P(h) P(h)

2 3 4 5 6 7 8 9 10

height/Å

2 3 4 5 6 7 8 9 10

height/Å

Fig. 4. Heightprofilesforthe(a)C24monolayerand(b)C24bilayerattemperaturepointsnearandafter

themeltingtransition.

35

35

(a)

bottom layer

(b)

t op la yer

30

30

25

25

20

20 > /Å > 3 > /Å > 3

-CH 3 -CH

15 3

15 CH CH r r < <

10

10

5 5

0 0

200 220 240 260 280 300 320 340 360 380 400 200 220 240 260 280 300 320 340 360 380 400 420

Temperature/K Temperature/K

Fig. 5 Averagemethylmethyldistanceattemperaturepointsnearandafterthemeltingtransitionfor(a)

theC24monolayer,and(b)theC24bilayer,withaveragestakenoverthetopandbottomlayers

separately.

25

1.0

Monolayer

Bilayer (bottom)

0.9 Bilayer (top)

0.8

0.7

0.6 (ArbitraryUnits)

0.5

0.4

0.3

160 200 240 280 320 360 400 440

Temperature/K

Fig. 6. Bondrollorderparameter, βroll ,fortheC24monolayerandbilayeratsimulatedtemperature

points.

4

C24 monolayer

C24 bilayer

3 2

2

z>/Å ∆ <

1

0

200 240 280 320 360 400 440

T/K

Fig. 7. Totalmeansquareoutofplanefluctuationsattemperaturesnearandafterthemeltingtransition

fortheC24monolayerandbilayer.

Fig. 8a.CenterofmoleculedensitydistributionsfortheC24monolayerinthedirectionofthemolecule

longaxes,definedatlabelledtemperaturepoints

26

Fig. 8b. CenterofmoleculedensitydistributionsfortheC24bilayer,andspecifiedtemperaturepoints.

Distributionsfor(a)thebottomlayer,and(b)thetoplayer.

Fig. 9. SnapshotsoftheC24monolayerat300Kwith(leftpanel)nogauchedefectspresentinthelayer,

and(rightpanel)withonlynearestneighborpairinteractionsallowed.

27