The Phase Equilibrium of Alkanes and Supercritical Fluids
Total Page:16
File Type:pdf, Size:1020Kb
THE PHASE EQUILIBRIUM OF ALKANES AND SUPERCRITICAL FLUIDS by Cara Elsbeth Schwarz Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE IN ENGINEERING (CHEMICAL ENGINEERING) In the Department of Chemical Engineering at the University of Stellenbosch Supervised by Prof. Izak Nieuwoudt Stellenbosch December 2001 i DECLARATION I, the undersigned, hereby declare that the work contained in this thesis is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree Cara Elsbeth Schwarz 10 October 2001 ii ABSTRACT Current methods for wax fractionation result in products with large polydispersity, and due to the high temperatures required, thermal degradation of the wax is often incurred. The need for an alternative process thus exists. The purpose of this project is to investigate the technical viability of supercritical fluid processing as an alternative wax fractionation technology. The main aims of this project are to select a suitable supercritical solvent, to conduct binary phase equilibrium experiments, to determine if the process is technically viable and to investigate the ability of various equations of state to correlate the phase equilibrium data. Based on limited data from the literature, propane and a propane rich LPG (Liquefied Petroleum Gas) were selected as suitable solvents. Literature data for propane and high molecular weight alkanes is scares and incomplete, thus necessitating experimental measurements. A phase equilibrium cell was designed, constructed and commissioned. The cell was designed for pressures up to 500 bar and temperatures to 200 oC, and with the aid of an endoscope, the phase transitions were detected visually. The measurements correspond well to literature values from reliable research groups. Phase equilibrium data sets for propane with nC32, nC36, nC38, nC40, nC44, nC46, nC54 and nC60 as well as LP Gas with nC36 were measured. At temperatures just above the melting point of the alkanes, the phase transition pressures can be considered to be moderate, which will positively impact the economics of the process. The phase transition pressure increases with increasing carbon number, the relationship being found to be linear when the pressure is plotted as a function of carbon number at constant mass fractions and temperature. The increase in phase transition pressure with increasing carbon number indicates that the solvent will be able to selectively fractionate the wax. At higher temperatures the gradient of the line is larger and may thus lead to improved selectivity. The higher temperatures will also lead to better mass transfer. The linear relationship indicates that limited extrapolation to higher carbon numbers may be possible. However, this needs to be verified experimentally. The inability to measure the critical point and vapour pressure curves of the higher molecular weight normal alkanes, as well as the inability of cubic equations of state to predict liquid volumes and to capture the chain specific effects such as internal rotations, results in cubic equations of state requiring large interaction parameters to fit the data. The alternative, statistical mechanical equations of state, have difficulty in predicting the critical point of the solvent correctly and thus overpredicts the mixture critical point, yet require smaller interaction parameters to fit the data. Further work is required to improve the predictability of these non-cubic equations of state. This project has proven that wax fractionation by supercritical extraction with propane is technically feasible iii OPSOMMING Huidige metodes vir wasfraksioneering produseer produkte met 'n hoë polidispersiteit en as gevolg van die hoë temperatuur wat benodig word, kan termiese degradering voorkom. Daar bestaan dus ‘n behoefte vir ‘n alternatiewe proses. Die doel van hierdie projek is om die tegniese lewensvatbaarheid van superkritiese ekstraksie as ‘n alternatiewe fraksioneringstegnologie te ondersoek. Die hoofdoelwitte van hierdie projek is om: ‘n geskikte oplosmiddel te vind; binêre fase- ewewigseksperimente uit te voer, te bepaal of die proses tegnies lewensvatbaar is en die geskiktheid van verskeie toestansvergelykings te ondersoek. Gebaseer op beperkte inligting beskikbaar in die literatuur is propaan en ‘n propaan-ryke VPG as geskikte oplosmiddels gekies. Literatuurdata vir propaan en hoë molekulêre massa alkane is skaars en dus is eksperimentele werk nodig. ‘n Fase-ewewigsel is ontwerp, gebou en in gebruik geneem. Die sel is ontwerp vir drukke tot 500 bar en temperature tot 200 oC. Die fase oorgang is met behulp van ‘n endoskoop opties waargeneem. Die metings vergelyk goed met literatuur data van betroubare navorsingsgroepe. Fase-ewewigsdatastelle vir propaan met nC32, nC36, nC38, nC40, nC44, nC46, nC54 en nC60 sowel as VPG met nC36 is gemeet. By temperature net bokant die smeltingstemperatuur van die was is matige fase oorgangsdrukke gemeet. Die matige drukke sal ‘n positiewe effek op die ekonomie van die proses hê. Die fase ewewigsdruk styg met toenemende koolstofgetal en ‘n lineêre verband is gevind wanneer druk as ‘n funksie van koolstofgetal by konstante massafraksie en temperatuur geplot word. ‘n Verhoging in faseoorgangsdruk met ‘n verhoging in koolstofgetal dui daarop dat die oplosmiddel moontlik die was selektief sal kan fraktioneer. By hoër temperature is die helling van die lyn groter en sal dit dus moontlik tot ‘n verbetering in selektiwiteit lei. Hoër temperature sal ook die massa-oordrag verbeter. Die lineêre verband dui aan dat ‘n beperkte mate van ekstrapolasie tot hoër koolstofgetalle moontlik is, maar dit sal eksperimenteel getoets moet word. Vir hoë molekulêre massa normale alkane kan die kritieke punt en dampdrukkurwes nie bepaal word nie. Dit, saam met die onvermoë van kubiese toestandsvergelykings om die vloeistofvolumes te voorspel en die feit dat die kubiese toestandsvergelykings nie kettingeffekte soos interne rotasies in berekening kan bring nie, lei daartoe dat groot interaksieparameters benodig word om die data te pas. Die alternatief, statistiese meganiese toestandsvergelykings, sukkel om die kritieke punt van die oplosmiddel korrek te voorspel en as gevolg hiervan word die mengsel kritieke druk te hoog voorspel, maar die interaksieparameters is kleiner vir hierdie toestandsvergelykings. Verdere werk word benodig om die voorspellende aard van nie-kubiese toestandsvergelykings te verbeter. Die projek het bewys dat wasfraksionering met superkritiese ekstraksie met propaan tegnies haalbaar is . iv ACKNOWLEDGEMENTS I would hereby like to acknowledge the following without whom this work would not have been possible: • The National Research Foundation for personal financial support. • Schümann-Sasol GMBH for providing the funding for this project. • Mossgas for providing the propane. • The thermal separations group at the Technical University of Hamburg-Harburg for a pleasant stay in Germany and the assistance provided in the phase equilibrium modelling. • My co-workers at the University of Stellenbosch, for their help and the sometimes never-ending questions that they have endured. • My supervisor, Prof. Izak Nieuwoudt, for giving me the opportunity to conduct this work and for all the assistance, expertise and help that he provided. • Lastly, I would like to thank my parents always believing in me, for providing me with the opportunity to study, and for the never-ending support and encouragement they have given me. v TABLE OF CONTENTS DECLARATION I ABSTRACT II OPSOMMING III ACKNOWLEDGEMENTS IV TABLE OF CONTENTS V LIST OF FIGURES XII LIST OF TABLES XXI 1. FRACTIONATION OF SYNTHETIC WAXES 1 1.1. SYNTHETIC / HARD WAXES ................................................................................1 1.1.1. Definition ..............................................................................................1 1.1.2. Sources ................................................................................................1 1.1.3. Properties.............................................................................................2 1.1.4. Uses .....................................................................................................2 1.2. STATE OF THE ART IN WAX FRACTIONATION METHODS.......................................4 1.2.1. Current Fractionation Methods.............................................................4 1.2.2. Problems with Current Methods...........................................................4 1.3. AN ALTERNATIVE: SUPERCRITICAL FLUID PROCESSING.......................................5 1.4. AIM OF PROJECT ...............................................................................................5 2. THEORY OF SUPERCRITICAL FLUIDS AND SUPERCRITICAL FLUID PROCESSING 7 2.1. DEFINITION OF A SUPERCRITICAL FLUID .............................................................7 2.2. TRANSPORT PROPERTIES ..................................................................................8 2.2.1. Diffusivity..............................................................................................8 2.2.2. Viscosity ...............................................................................................8 vi 2.2.3. Thermal Conductivity............................................................................8 2.2.4. Density .................................................................................................9 2.2.5. Interfacial Tension................................................................................9