Newsletter No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges. -
Newcomb 1981-12.Pdf
POPULAR ANNUALS OF EASTERN NORTH AMERICA, 1865 - 1914 -.- I P -i 3Y Peggy Cornett Newcomb A thesis submitted to the Faculty of the University f Delaware in partial fulfillment of the requirements for he Longwood Program for the degree of Master of Sci,once in rnamental Horticulture. December, 1981 I. d Copyright Peggy Cornett Newcomb 1981 I wish to express sincere thanks to the Longwood Program for the opportunity to do this study. I am deeply indebted to those who served on my thesis committee and made substantial improvements upon my initial drafts. Dr. Richard W. Lighty helped me focus my ideas and raise my aspirations, Mr. Harold Bruce used his editorial talents to salvage many ragged sentences, and Ms. Julia F. Davis provided invaluable scholarly advice and much needed en- couragement. I acknowledge all the institutions which I visited during the past two years and spent many enjoyable hours exploring their rare book and catalogue collections. To Ms. Dolores Altemus and Mr. Stuart Dick, University of Delaware Library; Ms. Enola Teeter, Longwood Gardens Library; Ms. Mary Lou Wolf, Pennsylvania Horticultural Society Library; and Ms. Elisabeth Woodburn, Booknoll Farm I extend a special thanks for their generous assistance. Lastly, without the genuine assurances of my friends and my husband, Rob Newcomb, I would never have carried this thesis to its completion. For their constant companionship I am truly grateful. iii I, TABLE OF CONTENTS QCKNOWLEDGMENTS.. ................. iii OF CONTENTS .................. iV BSTRaCT ...................... vi PINTRODUCTION .................... 1 Chapter I. AN OVERVIEW OF THE AGE: SORE MAJOR INFLUENCES UPON THE DEVELOPNIENT OF HORTICULTURE AND TKE SEED INDUSTRY ..... -
Fair Use of This PDF File of Herbaceous
Fair Use of this PDF file of Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES-93 By Leonard P. Perry Published by NRAES, July 1998 This PDF file is for viewing only. If a paper copy is needed, we encourage you to purchase a copy as described below. Be aware that practices, recommendations, and economic data may have changed since this book was published. Text can be copied. The book, authors, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES- 93, by Leonard P. Perry, and published by NRAES (1998).---- No use of the PDF should diminish the marketability of the printed version. This PDF should not be used to make copies of the book for sale or distribution. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES’ secure web site, www.nraes.org, or by calling (607) 255-7654. Quantity discounts are available. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org More information on NRAES is included at the end of this PDF. Acknowledgments This publication is an update and expansion of the 1987 Cornell Guidelines on Perennial Production. Informa- tion in chapter 3 was adapted from a presentation given in March 1996 by John Bartok, professor emeritus of agricultural engineering at the University of Connecticut, at the Connecticut Perennials Shortcourse, and from articles in the Connecticut Greenhouse Newsletter, a publication put out by the Department of Plant Science at the University of Connecticut. -
BEDRI KARAKAS the Role of Sorbitol Synthesis in Photosynthesis of Peach (Prunus Persica) (Under the Direction of MARK W
BEDRI KARAKAS The role of sorbitol synthesis in photosynthesis of peach (Prunus persica) (Under the Direction of MARK W. RIEGER) This dissertation examines the hypothesis that polyol synthesis enhances photosynthetic capacity in peach and related species. Members of Prunus synthesize, translocate, and utilize sorbitol as their main photosynthetic end product whereas most other plants utilize sucrose for those purposes. First, I approached this hypothesis by examining eight genetically diverse Prunus species with various sorbitol: sucrose ratios and activities of sorbitol-6-phosphate dehydrogenase (S6PDH), principal sorbitol synthesis enzyme. Leaf photosynthetic capabilities (A), in vitro activity of the S6PDH and sorbitol contents of greenhouse grown plants were measured. I found an inverse relation between A and S6PDH activity of the species. This observation does not support the working hypothesis and that sorbitol synthesis enhances A. Second, I used two peach varieties (i.e., Encore and Nemaguard) to examine the same hypothesis within a single species by source/sink manipulations (i.e., fruiting versus non-fruiting, fruit present versus fruit removed, and shoot tip removal) and existing natural variation (i.e., leaf node position). In all cases, except fruiting versus non-fruiting and fruit present, photosynthesis and S6PDH enzyme activity showed positive correlations. Finally, I analyzed the response of S6PDH gene to shoot tip removal treatment in connection with S6PDH activity and A in potted Nemaguard peach plants. To document hourly changes, leaves were sampled three times during the day (i.e., sunrise, midday, and sunset) and analyzed for S6PDH gene expression and S6PDH activity. Sorbitol-6-phosphate dehydrogenase mRNA transcript levels significantly increased while S6PDH activity decreased 24-hour following shoot tip removal. -
(A) Journals with the Largest Number of Papers Reporting Estimates Of
Supplementary Materials Figure S1. (a) Journals with the largest number of papers reporting estimates of genetic diversity derived from cpDNA markers; (b) Variation in the diversity (Shannon-Wiener index) of the journals publishing studies on cpDNA markers over time. Figure S2. (a) The number of publications containing estimates of genetic diversity obtained using cpDNA markers, in relation to the nationality of the corresponding author; (b) The number of publications on genetic diversity based on cpDNA markers, according to the geographic region focused on by the study. Figure S3. Classification of the angiosperm species investigated in the papers that analyzed genetic diversity using cpDNA markers: (a) Life mode; (b) Habitat specialization; (c) Geographic distribution; (d) Reproductive cycle; (e) Type of flower, and (f) Type of pollinator. Table S1. Plant species identified in the publications containing estimates of genetic diversity obtained from the use of cpDNA sequences as molecular markers. Group Family Species Algae Gigartinaceae Mazzaella laminarioides Angiospermae Typhaceae Typha laxmannii Angiospermae Typhaceae Typha orientalis Angiospermae Typhaceae Typha angustifolia Angiospermae Typhaceae Typha latifolia Angiospermae Araliaceae Eleutherococcus sessiliflowerus Angiospermae Polygonaceae Atraphaxis bracteata Angiospermae Plumbaginaceae Armeria pungens Angiospermae Aristolochiaceae Aristolochia kaempferi Angiospermae Polygonaceae Atraphaxis compacta Angiospermae Apocynaceae Lagochilus macrodontus Angiospermae Polygonaceae Atraphaxis -
Native Plants Sixth Edition Sixth Edition AUSTRALIAN Native Plants Cultivation, Use in Landscaping and Propagation
AUSTRALIAN NATIVE PLANTS SIXTH EDITION SIXTH EDITION AUSTRALIAN NATIVE PLANTS Cultivation, Use in Landscaping and Propagation John W. Wrigley Murray Fagg Sixth Edition published in Australia in 2013 by ACKNOWLEDGEMENTS Reed New Holland an imprint of New Holland Publishers (Australia) Pty Ltd Sydney • Auckland • London • Cape Town Many people have helped us since 1977 when we began writing the first edition of Garfield House 86–88 Edgware Road London W2 2EA United Kingdom Australian Native Plants. Some of these folk have regrettably passed on, others have moved 1/66 Gibbes Street Chatswood NSW 2067 Australia to different areas. We endeavour here to acknowledge their assistance, without which the 218 Lake Road Northcote Auckland New Zealand Wembley Square First Floor Solan Road Gardens Cape Town 8001 South Africa various editions of this book would not have been as useful to so many gardeners and lovers of Australian plants. www.newhollandpublishers.com To the following people, our sincere thanks: Steve Adams, Ralph Bailey, Natalie Barnett, www.newholland.com.au Tony Bean, Lloyd Bird, John Birks, Mr and Mrs Blacklock, Don Blaxell, Jim Bourner, John Copyright © 2013 in text: John Wrigley Briggs, Colin Broadfoot, Dot Brown, the late George Brown, Ray Brown, Leslie Conway, Copyright © 2013 in map: Ian Faulkner Copyright © 2013 in photographs and illustrations: Murray Fagg Russell and Sharon Costin, Kirsten Cowley, Lyn Craven (Petraeomyrtus punicea photograph) Copyright © 2013 New Holland Publishers (Australia) Pty Ltd Richard Cummings, Bert -
H. Kiyosumiensis F
Hosta Species Update●The Hosta Library © W. George Schmid 2006 H. kiyosumiensis F. Maekawa 1935 Jornal of Japanese Botany 11:689; ic. f. 15 1935 キヨスミギボウシ = Kyosumi Giboshi H. kiyosumiensis var. petrophila F. Maekawa 1938 Divisiones et Plantae Novae Generis Hostae (2). J. Japanese Botany, 14:1:45–49. イワマ ギボウシ = Iwama Giboshi History and Nomenclature: In Japan this species is called Kyiosumi Giboshi, the “Kiyosumi (Mountain) Hosta.” The species epithet stems from the Latinized name of Kiyosumiyama (清澄山), a small mountain (380 m/about 1250 feet AMSL with a great view of Tokyo Bay) located on Boso Peninsula (Bōsō-hantō; 房総半島), which is located in south Chiba Prefecture (Chiba-ken; 千葉県) forming the eastern edge of Tokyo Bay. Maekawa established H. kiyosumiensis in 1935 and published further on the species in 1938, when he also described a new variety of the species as H. (kiyosumiensis var.) petrophila. This varietal epithet is derived from the Latin “liking (or) growing on rocks.” The Japanese name Iwama Giboshi (イワマ ギボウシ) has the same meaning. The latter is differentiated by minor morphological details caused by its different, rocky habitat in Yamashiro province (山城国; Yamashiro-no kuni), H. kiyosumiensis Maekawa 1935 (in situ) Otogawa (男川) River; Okazaki-shi (岡崎市; formerly Nukata-cho) Aichi Prefecture (愛知県; Aichi-ken) 1 an old province of Japan (today the southern part of Kyoto Prefecture). Maekawa (1938) gave a much abbreviated Latin description and the variety is here considered synonymous with the species. In fact, Maekawa (1969) no longer supported the varietal rank. N. Fujita (1976) confirmed H. kiyosumiensis as a species and added two morphs previously described by Maekawa (1940), i.e., H. -
2018 CELEBRATING 17 Years
2018 CELEBRATING 17 years Canadian The authentic Irish roots One name, Company, Irish experience, run deep four spectacular Irish Heritage created with care. at RIT. destinations. Welcome to our We can recommend Though Canada is As we open tours 17th year of making our tours to you home for the Duffy to new regions memories in Ireland because we’ve family, Ireland is of the British Isles with you. experienced in our blood. This and beyond, our It’s been our genuine them ourselves. patriotic love is the priority is that we pleasure to invite you We’ve explored the driving force behind don’t forget where to experience Ireland magnificent basalt everything we do. we came from. up close and personal, columns at the We pride ourselves For this reason, and we’re proud Giant’s Causeway and on the unparalleled, we’ve rolled all of the part we’ve breathed the coastal personal experiences of our tours in played in helping to air at the mighty that we make possible under the name create thousands of Cliffs of Moher. through our strong of RIT. Under this exceptional vacations. We’ve experienced familiarity with the banner, we are As our business has the warm, inviting land and its locals. proud to present grown during this atmosphere of a The care we have for you with your 2018 time, the fundamental Dublin pub and Ireland will be evident vacation options. purpose of RIT has immersed ourselves throughout every Happy travels! remained the same: to in the rich mythology detail of your tour. -
Libertia Micrantha
Libertia micrantha COMMON NAME Native Iris, Mikoikoi SYNONYMS Libertia pulchella sensu Moore (1967) FAMILY Iridaceae AUTHORITY Libertia micrantha A.Cunn. FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Herbs - Monocots NVS CODE LIBMIC Lake Matheson. Dec 1981. Photographer: CHROMOSOME NUMBER Jeremy Rolfe 2n = 38 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened DISTRIBUTION Endemic. New Zealand: North Island (from about Mangonui south to Wellington but scarce in Northland), South Island (from Nelson and Marlborough to Fiordland, uncommon in the east) HABITAT A widespread and locally common species of high rainfall forests and river banks. Mostly montane and in cloud forest in Northland otherwise widespread, though favouring montane habitats, or cooler places in lowland forest. Often found on fallen logs and root mounds, usually associated with mosses and liverworts Tararua Forest Park. Dec 2007. Photographer: Jeremy Rolfe FEATURES Plants consisting of leafy fans erect or semi-erect; sparsely branched leafy rhizomes, 30–180 mm long, attached to substratum, sometimes insecurely, by thin, wiry roots. Leaves 30–220 × 1–5 mm, the downward-facing surface much duller than the upper, due to more white lines of stomata and raised cells being present; veins inconspicuous, leaf bases green or pale yellow, leaf margins often finely scabrid, stomata often only present on lower surface of leaf; leaf in transverse section simple, only one row of vascular bundles present, marginal vascular bundle absent, no sclerenchyma on inside of leaf sheath. Inflorescences long, usually greater than leaves; peduncle slender. Panicle simple; bracts 5–35 mm long, narrow lanceolate, green or brown when dried, in clusters of three or more; 1–8 flowers on very slender, usually pubescent pedicels, 13–35 mm long. -
Behind the Scenes
©Lonely Planet Publications Pty Ltd 689 Behind the Scenes SEND US YOUR FEEDBACK We love to hear from travellers – your comments keep us on our toes and help make our books better. Our well-travelled team reads every word on what you loved or loathed about this book. Although we cannot reply individually to your submissions, we always guarantee that your feedback goes straight to the appropriate authors, in time for the next edition. Each person who sends us information is thanked in the next edition – the most useful submissions are rewarded with a selection of digital PDF chapters. Visit lonelyplanet.com/contact to submit your updates and suggestions or to ask for help. Our award-winning website also features inspirational travel stories, news and discussions. Note: We may edit, reproduce and incorporate your comments in Lonely Planet products such as guidebooks, websites and digital products, so let us know if you don’t want your comments reproduced or your name acknowledged. For a copy of our privacy policy visit lonelyplanet.com/ privacy. Anthony Sheehy, Mike at the Hunt Museum, OUR READERS Steve Whitfield, Stevie Winder, Ann in Galway, Many thanks to the travellers who used the anonymous farmer who pointed the way to the last edition and wrote to us with help- Knockgraffon Motte and all the truly delightful ful hints, useful advice and interesting people I met on the road who brought sunshine anecdotes: to the wettest of Irish days. Thanks also, as A Andrzej Januszewski, Annelise Bak C Chris always, to Daisy, Tim and Emma. Keegan, Colin Saunderson, Courtney Shucker D Denis O’Sullivan J Jack Clancy, Jacob Catherine Le Nevez Harris, Jane Barrett, Joe O’Brien, John Devitt, Sláinte first and foremost to Julian, and to Joyce Taylor, Juliette Tirard-Collet K Karen all of the locals, fellow travellers and tourism Boss, Katrin Riegelnegg L Laura Teece, Lavin professionals en route for insights, information Graviss, Luc Tétreault M Marguerite Harber, and great craic. -
Maestra En Ciencias Biológicas
UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE BIOLOGÍA PROGRAMA INSTITUCIONAL DE MAESTRÍA EN CIENCIAS BIOLÓGICAS ECOLOGÍA Y CONSERVACIÓN TESIS FILOGENÓMICA DE SALVIA SUBGÉNERO CALOSPHACE (LAMIACEAE) Que presenta BIOL. MARÍA DE LA LUZ PÉREZ GARCÍA Para obtener el título de MAESTRA EN CIENCIAS BIOLÓGICAS Tutor DRA. SABINA IRENE LARA CABRERA Morelia Michoacán, marzo de 2019 AGRADECIMIENTO A mi asesora de Tesis la Dra. Sabina Irene Lara Cabrera, por su apoyo y revisión constante del proyecto. A mis sinodales Dra. Gabriela Domínguez Vázquez Dr. Juan Carlos Montero Castro, por su valiosa aportación y comentarios al escrito Dr. Victor Werner Steinmann por su apoyo en todo momento y siempre darme ánimos de seguir adelante con el proyecto asi como sus cometarios del escrito y del proyecto Dr. J. Mark Porter por su apoyo y las facilidades prestadas para poder realizar la estancia en Rancho Santa Ana Botanic Garden Dr. Carlos Alonso Maya Lastra por su aportación y ayuda con los programas bioinformáticos y los comentarios y sugerencias para mejorar el escrito M.C. Lina Adonay Urrea Galeano por su amistad y apoyo en todo momento desde el inicio de la maestría A Luis A. Rojas Martínez por apoyo y amor incondicional en cada momento de este proceso y por siempre impulsarme a ser mejor en lo que hago M.C. Sandra Tobón Cornejo por su amistad incondicional en todo momento A mis compañeros de laboratorio Karina, Everardo, Diego, Pedro, Jesús y Dago por su amistad DEDICATORIA A la familia Pérez-García A mis padres: María Emma García López y Laurentino Pérez Villa por su apoyo y amor incondicional A mis hermanos: Rigoberto, Cecilia, Jorge, Celina, Lorena, Jesús Alberto e Ismael por ser más que mis hermanos mis amigos, brindarme su apoyo y amor siempre INDICE 1. -
Reducing Deer Damage in Landscapes Part 2
Reducing Deer Damage in the Landscape D Coetzee Public Domain bestfriendthemom Dusty Hancock CC BY-NC-ND 2.0 Chatham Master Gardener Volunteer Matt Jones Horticulture Agent NC Cooperative Extension - Chatham County Center Plant Selection Deer Candy • Aucuba • Hosta • Arborvitae • Indian Hawthorn • Azalea • Ivy • Blueberry • Chionanthus, • Clematis Malus, Prunus, • Daylily Pyrus • Euonymus • Redbuds • Fatsia • Roses Muhenbergia capillaris Pink Muhly Grass (Poaceae) Andrea Laine Jim Robbins CC BY NC 4.0 CC BY-NC-ND 4.0 Muhlenbergia capillaris Pink Muhly Grass (Poaceae) Full Sun Moist to very dry 1-3’ x 1-3’ Fall Susan Strine Fall-Winter CC BY 2.0 Schizachyrium scoparium Little Blue Stem (Poaceae) Jim Robbins Joshua Mayer Jim Robbins Montreais CC BY-SA 2.0 DE CC BY-NC-ND 4.0 CC BY-NC-ND 4.0 CC BY-SA 3.0 Schizachyrium scoparium Little Blue Stem (Poaceae) Full Sun Moist to dry Good drainage 1-4’ x 18”-2’ Summer-Fall Susan Strine Summer-Fall Jim RobbinsCC BY 2.0 CC BY-NC-ND 4.0 Chasmanthium latifolium River Oats (Poaceae) Klasse im Garten Anne McCormack CC BY 2.0 CC BY-NC 2.0 Chasmanthium latifolium River Oats (Poaceae) Part shade to dappled sun Moist Occasionally wet 2-5’ x 1-2’ Summer-Fall Anne McCormack Summer-Fall CC BY-NC 2.0 Myrica cerifera (Myricaceae) Common Wax Myrtle Forest and Kim Starr CC BY 2.0 Forest and Kim Starr CC BY 2.0 Myrica cerifera (Myricaceae) Common Wax Myrtle Jim Robbins CC BY-NC-ND 4.0 Jim Robbins Jim Robbins CC BY-NC-ND 4.0 CC BY-NC-ND 4.0 Great for urban soils, full sun to part shade.