Pathogens May2010 CDC Header Footer.Xls

Total Page:16

File Type:pdf, Size:1020Kb

Pathogens May2010 CDC Header Footer.Xls NHSN Pathogen Descriptions and Codes Description Code Acinetobacter baumannii ‐ ACBA ACBA Adenovirus ‐ ADV ADV Bacteroides fragilis ‐ BF BF Burkholderia cepacia ‐ BURCE BURCE Candida albicans ‐ CA CA Candida glabrata ‐ CG CG Candida parapsilosis ‐ CP CP Candida tropicalis ‐ CT CT Citrobacter diversus ‐ CITKO CITKO*1 Citrobacter freundii ‐ CF CF Citrobacter koseri ‐ CITKO CITKO Clostridium difficile ‐ CD CD Cytomegalovirus ‐ CMV CMV Enterobacter aerogenes ‐ EA EA Enterobacter cloacae ‐ ENC ENC Enterococcus faecalis ‐ ENTFS ENTFS Enterococcus faecium ‐ ENTFM ENTFM Enterovirus ‐ ENTRO ENTRO Escherichia coli ‐ EC EC H1N1 Novel Influenza A virus ‐ H1N1 H1N1 Haemophilus influenzae type unspecified ‐ HIU HIU Haemophilus influenzae, not type b ‐ HI HI Hepatitis type B ‐ HB HB Herpes simplex type 1 ‐ HSV1 HSV1 Influenzae A ‐ FLUA FLUA Influenzae B ‐ FLUB FLUB Klebsiella oxytoca ‐ KO KO Klebsiella pneumoniae ‐ KP KP Moraxella catarrhalis ‐ MORCA MORCA Morganella morganii ‐ MORMO MORMO Parainfluenzae ‐ PFLU PFLU Proteus mirabilis ‐ PM PM Pseudomonas aeruginosa ‐ PA PA Respiratory Syncytial virus ‐ RSV RSV Rotavirus ‐ ROTA ROTA Serratia marcescens ‐ SM SM Staphylococcus aureus ‐ SA SA Staphylococcus auricularis ‐ STARR STAAR Staphylococcus capitis ssp. capitis ‐ STACC STACC Staphylococcus capitis ssp. unspecified ‐ STACS STACS Staphylococcus capitis ssp. urealyticus ‐ STACU STACU Staphylococcus coagulase negative ‐ CNS CNS Staphylococcus cohnii ‐ STACO STACO Revised: NHSN version 6.2 (May 2010) 1 NHSN Pathogen Descriptions and Codes Description Code Staphylococcus epidermidis ‐ SE SE Staphylococcus gallinarum ‐ STAGA STAGA Staphylococcus haemolyticus ‐ STAHA STAHA Staphylococcus hominis ‐ STAHO STAHO Staphylococcus lentus ‐ STALE STALE Staphylococcus lugdunensis ‐ STALU STALU Staphylococcus saccharolyticus ‐ anaer. STASL STASL Staphylococcus saprophyticus ‐ STASA STASA Staphylococcus schleiferi ‐ STASH STASH Staphylococcus sciuri ‐ STASC STASC Staphylococcus simulans ‐ STASI STASI Staphylococcus warneri ‐ STAWA STAWA Staphylococcus xylosus ‐ STAXY STAXY Stenotrophomonas maltophilia ‐ STEMA STEMA Streptococcus group A ‐ GAS GAS Streptococcus group B ‐ GBS GBS Streptococcus group D ‐ GDS GDS Streptococcus pneumoniae ‐ SP SP Torulopsis glabrata ‐ CG CG*1 Varicella‐zoster ‐ VZ VZ Abiotrophia spp. ‐ ABISP ABISP Acanthamoeba ‐ ACANT ACANT Achromobacter spp. ‐ ACHSP ACHSP Achromobacter xylosoxidans ‐ ALCXYL ALCXYL Achromobacter xylosoxidans xylosoxidans ‐ ACHXYL ACHXYL Achromobacter, group Vd biotype 1 ‐ ACHVD1 ACHVD1 Achromobacter, group Vd biotype 2 ‐ ACHVD2 ACHVD2 Acidaminococcus fermentans ‐ ACIFE ACIFE Acidaminococcus spp. ‐ ACISP ACISP Acidovorax delafieldii ‐ ACDEL ACDEL Acidovorax spp. ‐ ACIDSP ACIDSP Acinetobacter calcoaceticus ‐ ACICBA ACICBA Acinetobacter calcoaceticus‐baumannii complex ‐ ACCA ACCA Acinetobacter genospecies 3 ‐ ACIGEN ACIGEN Acinetobacter haemolyticus ‐ ACHA ACHA Acinetobacter johnsonii ‐ ACJH ACJH Acinetobacter junii ‐ ACJU ACJU Acinetobacter lwoffii ‐ ACLW ACLW Acinetobacter spp. ‐ ACS ACS Acremonium spp. ‐ ACRE ACRE Actinobacillus actinomycetemcomitans ‐ HAEACT HAEACT*1 Actinobacillus equuli ‐ ACBEQ ACBEQ Actinobacillus lignieresii ‐ ACBLI ACBLI Revised: NHSN version 6.2 (May 2010) 2 NHSN Pathogen Descriptions and Codes Description Code Actinobacillus spp. ‐ ACBSP ACBSP Actinobacillus suis ‐ ACBSU ACBSU Actinobacillus ureae ‐ ACURE ACURE Actinomyces bovis ‐ ACTBO ACTBO Actinomyces georgiae ‐ ACTGE ACTGE Actinomyces gerencseriae ‐ ACTGR ACTGR Actinomyces israelii ‐ ACTIS ACTIS Actinomyces meyeri ‐ ACTME ACTME Actinomyces naeslundii ‐ ACTNA ACTNA Actinomyces odontolyticus ‐ ACTOD ACTOD Actinomyces pyogenes ‐ ARCPY ARCPY*1 Actinomyces spp. ‐ ACTSP ACTSP Actinomyces viscosus ‐ ACTVI ACTVI Aerococcus spp. ‐ AESP AESP Aerococcus urinae ‐ AEUR AEUR Aerococcus viridans ‐ AEVI AEVI Aeromonas caviae ‐ AERPUN AERPUN*1 Aeromonas hydrophila ‐ AH AH Aeromonas jandaei ‐ AERJA AERJA Aeromonas media ‐ AERME AERME Aeromonas punctata ‐ AERPUN AERPUN Aeromonas salmonicida ‐ AERSA AERSA Aeromonas schubertii ‐ AERSC AERSC Aeromonas sobria ‐ AERSOB AERSOB Aeromonas spp. ‐ AES AES Aeromonas trota ‐ AERTR AERTR Aeromonas veronii ‐ AEVER AEVER Aeromonas veronii biovar sobria ‐ AERSO AERSO Aeromonas veronii biovar veronii ‐ AERVE AERVE Agrobacterium spp. ‐ AGSP AGSP Agrobacterium tumefaciens ‐ AGTU AGTU Alcaligenes faecalis ‐ ALFE ALFE Alcaligenes piechaudii ‐ ALPIE ALPIE Alcaligenes spp. ‐ ALSP ALSP Alcaligenes xylosoxidans subsp. denit ‐ ALDE ALDE Alcaligenes xylosoxidans subsp. xylosox. ‐ ALXY ALXY Alternaria spp. ‐ ALTER ALTER Anaerobe NOS ‐ ANS ANS Anaerobiospirillum spp. ‐ ANSP ANSP Anaerobiospirillum succiniciproducens ‐ ANSU ANSU Anaerococcus lactolyticus ‐ ANALAC ANALAC Anaerococcus prevotii ‐ ANAPRE ANAPRE Anaerococcus spp. ‐ ANASP ANASP Revised: NHSN version 6.2 (May 2010) 3 NHSN Pathogen Descriptions and Codes Description Code Anaerococcus tretradius ‐ ANATET ANATET Anaerococcus vaginalis ‐ ANAVAG ANAVAG Anaerorhabdus furcosus ‐ ANRFU ANRFU Anaerorhabdus spp. ‐ ANRSP ANRSP Ancylostoma spp. ‐ ANCYC ANCYC Angiostrongylus spp. ‐ ANGIO ANGIO Arcanobacterium haemolyticum ‐ ARCHA ARCHA Arcanobacterium pyogenes ‐ ARCPY ARCPY Arcanobacterium spp. ‐ ARCSP ARCSP Arcobacter cryaerophilus ‐ CMPCR CMPCR*1 Arcobacter nitrofigilis ‐ ACONI ACONI Arcobacter spp. ‐ ACOSP ACOSP Arenavirus type unspecified ‐ ARETU ARETU Ascaris spp. ‐ ASCAR ASCAR Aspergillus flavus ‐ AF AF Aspergillus fumigatus ‐ ASPFU ASPFU Aspergillus niger ‐ ASPNI ASPNI Aspergillus oryzae ‐ ASPOR ASPOR Aspergillus spp. ‐ ASU ASU Astrovirus type unspecified ‐ ASTTU ASTTU Atopobium minutum ‐ ATOMIN ATOMIN Atopobium parvulum ‐ ATOPAR ATOPAR Atopobium rimae ‐ ATORIM ATORIM Atopobium spp. ‐ ATOSP ATOSP Babesia spp. ‐ BABES BABES Babesia microti ‐ BABMI BABMI Bacillus anthracis ‐ BA BA Bacillus cereus ‐ BC BC Bacillus circulans ‐ BACCIR BACCIR Bacillus coagulans ‐ BACCOA BACCOA Bacillus firmus ‐ BACFIR BACFIR Bacillus lentus ‐ BACLEN BACLEN Bacillus licheniformis ‐ BACLIC BACLIC Bacillus megaterium ‐ BACMEG BACMEG Bacillus pumilus ‐ BACPUM BACPUM Bacillus species not Bacillus anthracis ‐ BACNANT BACNANT Bacillus sphaericus ‐ BACSPH BACSPH Bacillus spp. ‐ BSP BSP Bacillus stearothermophilus ‐ BACSTE BACSTE Bacillus subtilis ‐ BSU BSU Bacillus subtilis group ‐ BACSUG BACSUG Bacillus thuringiensis ‐ BACTHU BACTHU Bacteroides caccae ‐ BACCC BACCC Revised: NHSN version 6.2 (May 2010) 4 NHSN Pathogen Descriptions and Codes Description Code Bacteroides capillosus ‐ BACCA BACCA Bacteroides coagulans ‐ BACCG BACCG Bacteroides distasonis ‐ BACDT BACDT Bacteroides eggerthii ‐ BACEG BACEG Bacteroides forsythus ‐ BACFO BACFO Bacteroides gracilis ‐ CAMGR CAMGR*1 Bacteroides levii ‐ PORLE PORLE*1 Bacteroides merdae ‐ BACMR BACMR Bacteroides ovatus ‐ BACOV BACOV Bacteroides pneumosintes ‐ BACPN BACPN Bacteroides putredinis ‐ BACPU BACPU Bacteroides splanchnicus ‐ BACSP BACSP Bacteroides spp. ‐ BAS BAS Bacteroides stercoris ‐ BACST BACST Bacteroides tectum ‐ BACTE BACTE Bacteroides thetaiotaomicron ‐ BACTH BACTH Bacteroides uniformis ‐ BACUN BACUN Bacteroides ureolyticus ‐ BACUR BACUR Bacteroides vulgatus ‐ BACVU BACVU Balantidium ‐ BALAN BALAN Bartonella bacilliformis ‐ BARBA BARBA Bartonella henselae ‐ BARHEN BARHEN Bartonella quintana ‐ BARQUI BARQUI Bartonella spp. ‐ BARSP BARSP Bartonella vinsonii ‐ BARVIN BARVIN Basidiobolus spp. ‐ BASID BASID Beauveria spp. ‐ BEAUV BEAUV Bergeyella zoohelcum ‐ BERZOO BERZOO Bifidobacterium bifidum ‐ BIFBI BIFBI Bifidobacterium breve ‐ BIFBR BIFBR Bifidobacterium dentium ‐ BIFDE BIFDE Bifidobacterium infantis ‐ BIFINF BIFINF Bifidobacterium longum ‐ BIFLO BIFLO Bifidobacterium spp. ‐ BIFSP BIFSP Bilophila spp. ‐ BILSP BILSP Bilophila wadsworthia ‐ BILWA BILWA Blastomyces dermatitidis ‐ BLADE BLADE Blastomyces spp. ‐ BLASP BLASP Blastoschizomyces pseudotrichosporon ‐ BLACAP BLACAP Bordetella avium ‐ BORAVI BORAVI Bordetella bronchiseptica ‐ BORBR BORBR Bordetella parapertussis ‐ BORPA BORPA Bordetella pertussis ‐ BORPE BORPE Revised: NHSN version 6.2 (May 2010) 5 NHSN Pathogen Descriptions and Codes Description Code Bordetella spp. ‐ BORSP BORSP Borrelia burgdorferi ‐ BOBU BOBU Borrelia garinii ‐ BOGA BOGA Borrelia hermsii ‐ BOHE BOHE Borrelia parkeri ‐ BOPA BOPA Borrelia recurrentis ‐ BORE BORE Borrelia spp. ‐ BOSP BOSP Borrelia turicatae ‐ BOTU BOTU Brevibacillus brevis ‐ BREBRE BREBRE Brevibacillus laterosporus ‐ BRELAT BRELAT Brevibacillus spp. ‐ BREVISP BREVISP Brevibacterium casei ‐ BRVCAS BRVCAS Brevibacterium epidermidis ‐ BRVEPI BRVEPI Brevibacterium spp. ‐ BRVSP BRVSP Brevundimonas diminuta ‐ BREDIM BREDIM Brevundimonas spp. ‐ BREVUSP BREVUSP Brevundimonas vesicularis ‐ BREVES BREVES Brucella abortus ‐ BRAB BRAB Brucella canis ‐ BRCA BRCA Brucella melitensis ‐ BRME BRME Brucella spp. ‐ BRSP BRSP Brucella suis ‐ BRSU BRSU Budvicia aquatiqua ‐ BUDAQ BUDAQ Budvicia spp. ‐ BUDSP BUDSP Bunyavirus California encephalitis group ‐ BUNCE BUNCE Bunyavirus Crimean‐Congo hemorrhagic ‐ BUNCC BUNCC Bunyavirus Rift Valley fever ‐ BUNRV BUNRV Bunyavirus type unspecified ‐ BUNTU BUNTU Burkholderia gladioli ‐ BURGL BURGL Burkholderia mallei ‐ BURMA BURMA Burkholderia pickettii ‐ RALPIC RALPIC*1 Burkholderia pseudomallei ‐ BURPM BURPM Burkholderia spp. ‐ BURSP BURSP Buttiauxella agrestis ‐ BUTAG BUTAG Buttiauxella noackiae ‐ BUTNO BUTNO Buttiauxella spp. ‐ BUTSP BUTSP Calicivirus ‐ CALIV CALIV Calymmatobacterium granulomatis ‐ KLEGRA KLEGRA*1 Calymmatobacterium spp. ‐ CALSP CALSP Campylobacter coli ‐ CAMCL CAMCL Campylobacter concisus ‐ CAMCL CAMCL*1 Campylobacter
Recommended publications
  • Susceptibility and Resistance Data
    toku-e logo For a complete list of references, please visit antibiotics.toku-e.com Imipenem Microorganism Genus, Species, and Strain (if shown) Concentration Range (μg/ml)Susceptibility and Achromobacter xylosoxidans subsp. denitrificans 0.25 - 4 Minimum Inhibitory Acinetobacter anitratus ≤0.008 ­ 128 Acinetobacter baumannii Concentration0.008 - 512 (MIC) Data Acinetobacter calcoaceticus 0.016 - >8 Issue date 01/06/2020 Acinetobacter haemolyticus ≤0.008 ­ >16 Acinetobacter junii ≤0.12 ­ >8 Acinetobacter lwoffii ≤0.008 ­ >16 Acinetobacter spp. 0.008 - >64 Actinomyces gerencseriae ≤0.015 ­ 8 Actinomyces graevenitzii ≤0.015 ­ 0.25 Actinomyces israelii ≤0.015 ­ 8 Actinomyces meyeri ≤0.015 ­ 8 Actinomyces naeslundii 0.015 - 8 Actinomyces neuii ≤0.015 ­ 0.25 Actinomyces odontolyticus ≤0.015 ­ 8 Actinomyces radingae ≤0.015 ­ 0.25 Actinomyces schalii ≤0.015 ­ 0.25 Actinomyces spp. ≤0.008 ­ 8 Actinomyces turicensis ≤0.015 ­ 0.25 Actinomyces viscosus ≤0.015 ­ 0.5 Aerococcus spp. ≤0.008 ­ 4 Aerococcus urinae ≤0.008 ­ 4 Aeromonas caviae 0.25 - 4 Aeromonas hydrophila 0.25 - 16 Aeromonas spp. 0.12 - 4 Agrobacterium radiobacter 0.06 - 1 Alcaligenes faecalis 0.06 - >16 Alcaligenes odorans 0.25 - 1 Anaerococcus prevotii ≤0.016 ­ 0.25 Anaerococcus tetradius ≤0.016 ­ 0.03 Arcanobacterium pyogenes ≤0.03 ­ 0.25 Atopobium parvulum 0.25 Bacillus proteus 4 Bacillus spp. ≤0.008 ­ 4 Bacillus subtilis <0.025 Bacteroides caccae ≤0.06 ­ 8 Bacteroides capillosus 0.06 - 0.25 Bacteroides distasonis 0.03 - 8 Bacteroides eggerthii ≤0.125 ­ 0.5 Bacteroides fragilis ≤0.008 ­ >128 Bacteroides fragilis gr. 0.03 - 4 Bacteroides levii 0.06 - 0.25 Bacteroides merdae ≤0.06 ­ 4 Bacteroides ovatus 0.03 - 16 Bacteroides splanchnicus 0.06 - 0.25 Bacteroides spp.
    [Show full text]
  • BD-CS-057, REV 0 | AUGUST 2017 | Page 1
    EXPLIFY RESPIRATORY PATHOGENS BY NEXT GENERATION SEQUENCING Limitations Negative results do not rule out viral, bacterial, or fungal infections. Targeted, PCR-based tests are generally more sensitive and are preferred when specific pathogens are suspected, especially for DNA viruses (Adenovirus, CMV, HHV6, HSV, and VZV), mycobacteria, and fungi. The analytical sensitivity of this test depends on the cellularity of the sample and the concentration of all microbes present. Analytical sensitivity is assessed using Internal Controls that are added to each sample. Sequencing data for Internal Controls is quantified. Samples with Internal Control values below the validated minimum may have reduced analytical sensitivity or contain inhibitors and are reported as ‘Reduced Analytical Sensitivity’. Additional respiratory pathogens to those reported cannot be excluded in samples with ‘Reduced Analytical Sensitivity’. Due to the complexity of next generation sequencing methodologies, there may be a risk of false-positive results. Contamination with organisms from the upper respiratory tract during specimen collection can also occur. The detection of viral, bacterial, and fungal nucleic acid does not imply organisms causing invasive infection. Results from this test need to be interpreted in conjunction with the clinical history, results of other laboratory tests, epidemiologic information, and other available data. Confirmation of positive results by an alternate method may be indicated in select cases. Validated Organisms BACTERIA Achromobacter
    [Show full text]
  • View Tickborne Diseases Sample Report
    1360 Bayport Ave, Ste B. San Carlos, CA 94070 1(866) 364-0963 | [email protected] | www. vibrant-wellness.com PATIENT PROVIDER NAME: DEMO REPORT GENDER: Male PRACTICE NAME: Vibrant IT4 Practice DATE OF BIRTH: 04/14/1998 AGE: 22 PROVIDER NAME: Demo Client, DDD (999994) ADDRESS: TEST STREET, TEST CITY, KY- 42437. ACCESSION ID: 2009220006 PHLEBOTOMIST: 607 SPECIMEN COLLECTION TIME: 09-21-2020 11:14 SPECIMEN RECEIVED TIME: 09-22-2020 05:14 FINAL REPORT TIME: 09-25-2020 15:56 FASTING: FASTING Your Vibrant Wellness TickBorne 2.0 panel results are enclosed. These results are intended to aid in the diagnosis of tickborne diseases by your healthcare provider. The Vibrant Tickborne Diseases panel tests for IgG and IgM antibodies for Borreliosis/Lyme disease as well as co-infection(s) and opportunistic infections with other tick-borne illnesses along with detection of DNA of the species causing these infections. The Vibrant Immunochip test is a semiquantitative assay that detects IgG and IgM antibodies in human serum. The PCR Test is a real-time PCR Assay designed for qualitative detection of infectious group- specific DNA in clinical samples. Interpretation of Report: The test results of antibody levels to the individual antigens are calculated by comparing the average intensity of the individual antibody to that of a reference population and cut-off chosen for each protein. Reference ranges have been established using a well characterized set of more than 300 serum samples and antibodies to specific bacteria tested. The results are displayed as In Control, Moderate, or High Risk.for each antigen tested.
    [Show full text]
  • NCTC) Bacterial Strain Equivalents to American Type Culture Collection (ATCC) Bacterial Strains
    This list shows National Collection of Type Cultures (NCTC) bacterial strain equivalents to American Type Culture Collection (ATCC) bacterial strains. NCTC Number CurrentName ATCC Number NCTC 7212 Acetobacter pasteurianus ATCC 23761 NCTC 10138 Acholeplasma axanthum ATCC 25176 NCTC 10171 Acholeplasma equifetale ATCC 29724 NCTC 10128 Acholeplasma granularum ATCC 19168 NCTC 10172 Acholeplasma hippikon ATCC 29725 NCTC 10116 Acholeplasma laidlawii ATCC 23206 NCTC 10134 Acholeplasma modicum ATCC 29102 NCTC 10188 Acholeplasma morum ATCC 33211 NCTC 10150 Acholeplasma oculi ATCC 27350 NCTC 10198 Acholeplasma parvum ATCC 29892 NCTC 8582 Achromobacter denitrificans ATCC 15173 NCTC 10309 Achromobacter metalcaligenes ATCC 17910 NCTC 10807 Achromobacter xylosoxidans subsp. xylosoxidans ATCC 27061 NCTC 10808 Achromobacter xylosoxidans subsp. xylosoxidans ATCC 17062 NCTC 10809 Achromobacter xylosoxidans subsp. xylosoxidans ATCC 27063 NCTC 12156 Acinetobacter baumannii ATCC 19606 NCTC 10303 Acinetobacter baumannii ATCC 17904 NCTC 7844 Acinetobacter calcoaceticus ATCC 15308 NCTC 12983 Acinetobacter calcoaceticus ATCC 23055 NCTC 8102 acinetobacter dna group 13 ATCC 17903 NCTC 10304 Acinetobacter genospecies 13 ATCC 17905 NCTC 10306 Acinetobacter haemolyticus ATCC 17907 NCTC 10305 Acinetobacter haemolyticus subsp haemolyticus ATCC 17906 NCTC 10308 Acinetobacter johnsonii ATCC 17909 NCTC 10307 Acinetobacter junii ATCC 17908 NCTC 5866 Acinetobacter lwoffii ATCC 15309 NCTC 12870 Actinobacillus delphinicola ATCC 700179 NCTC 8529 Actinobacillus equuli ATCC 19392
    [Show full text]
  • Legionella Shows a Diverse Secondary Metabolism Dependent on a Broad Spectrum Sfp-Type Phosphopantetheinyl Transferase
    Legionella shows a diverse secondary metabolism dependent on a broad spectrum Sfp-type phosphopantetheinyl transferase Nicholas J. Tobias1, Tilman Ahrendt1, Ursula Schell2, Melissa Miltenberger1, Hubert Hilbi2,3 and Helge B. Bode1,4 1 Fachbereich Biowissenschaften, Merck Stiftungsprofessur fu¨r Molekulare Biotechnologie, Goethe Universita¨t, Frankfurt am Main, Germany 2 Max von Pettenkofer Institute, Ludwig-Maximilians-Universita¨tMu¨nchen, Munich, Germany 3 Institute of Medical Microbiology, University of Zu¨rich, Zu¨rich, Switzerland 4 Buchmann Institute for Molecular Life Sciences, Goethe Universita¨t, Frankfurt am Main, Germany ABSTRACT Several members of the genus Legionella cause Legionnaires’ disease, a potentially debilitating form of pneumonia. Studies frequently focus on the abundant number of virulence factors present in this genus. However, what is often overlooked is the role of secondary metabolites from Legionella. Following whole genome sequencing, we assembled and annotated the Legionella parisiensis DSM 19216 genome. Together with 14 other members of the Legionella, we performed comparative genomics and analysed the secondary metabolite potential of each strain. We found that Legionella contains a huge variety of biosynthetic gene clusters (BGCs) that are potentially making a significant number of novel natural products with undefined function. Surprisingly, only a single Sfp-like phosphopantetheinyl transferase is found in all Legionella strains analyzed that might be responsible for the activation of all carrier proteins in primary (fatty acid biosynthesis) and secondary metabolism (polyketide and non-ribosomal peptide synthesis). Using conserved active site motifs, we predict Submitted 29 June 2016 some novel compounds that are probably involved in cell-cell communication, Accepted 25 October 2016 Published 24 November 2016 differing to known communication systems.
    [Show full text]
  • Downloads/Bin/Fastq Quality Filter -Q20 -P90 -Q33
    Biological Reduction of Selenium Oxyanions in the Presence of Nitrate anions using Anaerobic Microbes by Gaurav Subedi B.Sc., Jacobs University Bremen, 2010 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Chemical and Biological Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) July 2016 © Gaurav Subedi, 2016 Abstract Biological selenium reduction has emerged as a viable solution for the removal of toxic selenium from the environment. However, the presence of nitrate hinders selenium reduction by acting as a competitive electron acceptor. The present thesis investigated the use of local mine-impacted sediment as an inoculum for selenium reduction and studied the affect of nitrate on the removal of selenium. Sediment samples, impacted by mining activities, were collected from two vastly different sites of the Elk River Valley. These sediments namely; Goddard Marsh and Mature Tailing Coal, were enriched for selenium reducing bacterial consortium under high selenium and varying nitrate concentrations to put additional selection pressure. Ultimately, two cultures from Goddard Marsh enriched under low and high nitrate condition as well as one culture from Mature Tailing Coal enriched under moderate nitrate condition were used to access the affect of nitrate on selenium reduction using central composite design matrix. The extent of Se reduction was highest in the Goddard Marsh enrichment with no nitrate while enrichment with moderate and high nitrate reduced selenium poorly. ANOVA results from the CCD experiment in Goddard Marsh enrichment with no nitrate indicated no affect of nitrate in Se reduction. Two primer sets targeting the selenate redutase (serA) from Thauera selenatis and nitrite reductase (nirK) from denitrifying population were used to quantify the population of selenium reducing and denitrifying population in the CCD experiment.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,018,158 B2 Onsoyen Et Al
    US0090181.58B2 (12) United States Patent (10) Patent No.: US 9,018,158 B2 Onsoyen et al. (45) Date of Patent: Apr. 28, 2015 (54) ALGINATE OLIGOMERS FOR USE IN 7,208,141 B2 * 4/2007 Montgomery .................. 424/45 OVERCOMING MULTIDRUG RESISTANCE 22:49 R: R388 al al W . aSOC ea. N BACTERA 7,671,102 B2 3/2010 Gaserod et al. 7,674,837 B2 3, 2010 G d et al. (75) Inventors: Edvar Onsoyen, Sandvika (NO); Rolf 7,758,856 B2 T/2010 it. Myrvold, Sandvika (NO); Arne Dessen, 7,776,839 B2 8/2010 Del Buono et al. Sandvika (NO); David Thomas, Cardiff 2006.8 R 38 8. Melist al. (GB); Timothy Rutland Walsh, Cardiff 2003/0022863 A1 1/2003 Stahlang et al. (GB) 2003/0224070 Al 12/2003 Sweazy et al. 2004/OO73964 A1 4/2004 Ellington et al. (73) Assignee: Algipharma AS, Sandvika (NO) 2004/0224922 A1 1 1/2004 King 2010.0068290 A1 3/2010 Ziegler et al. (*) Notice: Subject to any disclaimer, the term of this 2010/0305062 A1* 12/2010 Onsoyen et al. ................ 514/54 patent is extended or adjusted under 35 U.S.C. 154(b) by 184 days. FOREIGN PATENT DOCUMENTS DE 268865 A1 1, 1987 (21) Appl. No.: 13/376,164 EP O324720 A1 T, 1989 EP O 506,326 A2 9, 1992 (22) PCT Filed: Jun. 3, 2010 EP O590746 A1 4f1994 EP 1234584 A1 8, 2002 (86). PCT No.: PCT/GB2O1 O/OO1097 EP 1714660 A1 10, 2006 EP 1745705 A1 1, 2007 S371 (c)(1), FR T576 M 3/1968 (2), (4) Date: Jan.
    [Show full text]
  • Pdfs/ Ommended That Initial Cultures Focus on Common Pathogens, Pscmanual/9Pscssicurrent.Pdf)
    Clinical Infectious Diseases IDSA GUIDELINE A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiologya J. Michael Miller,1 Matthew J. Binnicker,2 Sheldon Campbell,3 Karen C. Carroll,4 Kimberle C. Chapin,5 Peter H. Gilligan,6 Mark D. Gonzalez,7 Robert C. Jerris,7 Sue C. Kehl,8 Robin Patel,2 Bobbi S. Pritt,2 Sandra S. Richter,9 Barbara Robinson-Dunn,10 Joseph D. Schwartzman,11 James W. Snyder,12 Sam Telford III,13 Elitza S. Theel,2 Richard B. Thomson Jr,14 Melvin P. Weinstein,15 and Joseph D. Yao2 1Microbiology Technical Services, LLC, Dunwoody, Georgia; 2Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; 3Yale University School of Medicine, New Haven, Connecticut; 4Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; 5Department of Pathology, Rhode Island Hospital, Providence; 6Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill; 7Department of Pathology, Children’s Healthcare of Atlanta, Georgia; 8Medical College of Wisconsin, Milwaukee; 9Department of Laboratory Medicine, Cleveland Clinic, Ohio; 10Department of Pathology and Laboratory Medicine, Beaumont Health, Royal Oak, Michigan; 11Dartmouth- Hitchcock Medical Center, Lebanon, New Hampshire; 12Department of Pathology and Laboratory Medicine, University of Louisville, Kentucky; 13Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts; 14Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois; and 15Departments of Medicine and Pathology & Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey Contents Introduction and Executive Summary I.
    [Show full text]
  • Phylogenomic Networks Reveal Limited Phylogenetic Range of Lateral Gene Transfer by Transduction
    The ISME Journal (2017) 11, 543–554 OPEN © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction Ovidiu Popa1, Giddy Landan and Tal Dagan Institute of General Microbiology, Christian-Albrechts University of Kiel, Kiel, Germany Bacteriophages are recognized DNA vectors and transduction is considered as a common mechanism of lateral gene transfer (LGT) during microbial evolution. Anecdotal events of phage- mediated gene transfer were studied extensively, however, a coherent evolutionary viewpoint of LGT by transduction, its extent and characteristics, is still lacking. Here we report a large-scale evolutionary reconstruction of transduction events in 3982 genomes. We inferred 17 158 recent transduction events linking donors, phages and recipients into a phylogenomic transduction network view. We find that LGT by transduction is mostly restricted to closely related donors and recipients. Furthermore, a substantial number of the transduction events (9%) are best described as gene duplications that are mediated by mobile DNA vectors. We propose to distinguish this type of paralogy by the term autology. A comparison of donor and recipient genomes revealed that genome similarity is a superior predictor of species connectivity in the network in comparison to common habitat. This indicates that genetic similarity, rather than ecological opportunity, is a driver of successful transduction during microbial evolution. A striking difference in the connectivity pattern of donors and recipients shows that while lysogenic interactions are highly species-specific, the host range for lytic phage infections can be much wider, serving to connect dense clusters of closely related species.
    [Show full text]
  • Klebsiella Ornithinolytica
    international Journal of Systematic Bacteriology (1 999), 49, 1695-1 700 Printed in Great Britain Phylogenetic evidence for reclassification of Calymmatobacterium granulomatis as Klebsiella granulomatis comb. nov. Jenny 5. Carter,’l2 Francis J. B~wden,~Ivan Ba~tian,~Garry M. Myers,’ K. S. Sriprakash’ and David J. Kemp’ Author for correspondence : David J. Kemp. Tel : + 6 18 8922 84 12. Fax : + 6 18 8927 5 187 e-mail : [email protected] 1 Menzies School of Health By sequencing a total of 2089 bp of the 16s rRNA and phoE genes it was Research, Darwin, demonstratedthat Calymmatobacterium grandomatis (the causative Austra Iia organism of donovanosis) shows a high level of identity with Klebsiella * Centre for Indigenous species pathogenic to humans (Klebsiellapneumoniae, Klebsiella Natural and Cultural Resource Management, rhinoscleromatis). It is proposed that C. grandomatis should be reclassified as Faculty of Aboriginal and Klebsiella granulomatis comb. nov. An emended description of the genus Torres Strait Islander Klebsiella is given. Studies, Northern Territory University, Darwin, Australia 3 Institute of Medical and Keywords : Calymmatobacteriurn, Klebsiella, sequence data, phylogenetic inferences Veterinary Science, Adelaide, Australia 4 AIDS/STD Unit, Royal Darwin Hospital, Darwin, Australia Calymmatobacterium granulomatis is the presumed ganism (Richens, 1991) have prevented further char- causative agent of donovanosis, an important cause of acterization of this relationship. genital ulceration that occurs in small endemic foci in all continents except Europe and Antarctica. The name Non-cultivable pathogenic eubacteria have been C. granulomatis was originally given to the pleo- identified by PCR using primers targeting conserved morphic bacterium cultured from donovanosis lesions genes (Fredricks & Relman, 1996).
    [Show full text]
  • Virulence Determinants, Drug Resistance and Mobile Genetic
    Lau et al. Cell & Bioscience 2011, 1:17 http://www.cellandbioscience.com/content/1/1/17 Cell & Bioscience RESEARCH Open Access Virulence determinants, drug resistance and mobile genetic elements of Laribacter hongkongensis: a genome-wide analysis Susanna KP Lau1,2,3,4*†, Gilman KM Wong4†, Alan KL Tsang4†, Jade LL Teng4, Rachel YY Fan4, Herman Tse1,2,3,4, Kwok-Yung Yuen1,2,3,4 and Patrick CY Woo1,2,3,4* Abstract Background: Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler’s diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements. Results: For acid and bile resistance, L. hongkongensis possessed a urease gene cassette, two arc gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent Escherichia coli (E. coli) and enterotoxigenic E. coli. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as E. coli, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins) and intracellular cytotoxins (patatin-like proteins) and enzymes for invasion (outer membrane phospholipase A). It contained a broad variety of antibiotic resistance-related genes, including genes related to b-lactam (n = 10) and multidrug efflux (n = 54).
    [Show full text]
  • Tumor Mimicking Actinomycosis of the Upper Lip: Report of Two Cases
    Oral Med Pathol 15 (2011) 95 Tumor mimicking actinomycosis of the upper lip: report of two cases Kayo Kuyama1, 2, Yan Sun1, Kenji Fukui2, Satoshi Maruyama3, Eriko Ochiai2, Masahiko Fukumoto4, Nobuyuki Ikeda5, Toshiro Kondoh6, Kimiharu Iwadate2, Ritsuo Takagi5, Takashi Saku3, 7, Hirotsugu Yamamoto1 1Department of Oral Pathology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan 2Department of Forensic Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan 3Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata, Japan 4Department of Laboratory Medicine for Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Japan 5Division of Oral and Maxillofacial Surgery, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences 6Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Matsudo, Japan 7Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan Abstract: Peculiar findings of orofacial actinomycosis mimicking the clinical appearance of a tumor of the upper lip were reported. A 68-year-old woman (case 1) and a 62-year-old woman (case 2) visited our hospitals towards the end of 2004 and 2007; the clinical diagnosis for each patient was upper labial tumor, and the lesions were surgically removed. Histologically, the excised specimens showed granulomas including bacterial colonies consisting of club-shaped filaments that formed a radiating rosette pattern in the submucosal layer. DNA samples were extracted from paraffin sections and examined by PCR for Actinomyces species. The PCR products examined by direct DNA sequencing demonstrated the presence of Actinomyces israelii and Actinomyces gerencseriae in both case 1 and case 2.
    [Show full text]