Observing Nummary

Total Page:16

File Type:pdf, Size:1020Kb

Observing Nummary Observing Nummary 2001, ■SI Scientific Highlights mSb Obtervin? Jummary zoo/j Detection of HCN in a z=2.3 Galaxy - Hydrogen cyanide (HCN) emission has been detected in the z=2.2857 source IRAS F10214+4724 using the GBT. This is only the second detection of HCN in a high redshift galaxy. HCN is a signpost of star formation, and F10214 clearly contains a starburst that contributes, together with its embedded quasar, to its overall infrared luminosity. The peak emission of the detected spectral line is about 0.45 mjy with a noise level of -0.090 mjy. A new technique for removing spectral baselines in the search for weak, broad emission lines was utilized for this project. New Interstellar Molecules detected with the GBT - The GBT has been used to detect two new interstellar molecules, propenal (CH2CHCHO) and propanal (CH3CH2CHO). These are the first new molecules detected with the GBT. These molecules were detected in the star-forming region Sagittarius B2 (N). The GBT was also used to observe the previously reported molecule propynal (HC2CHO). These molecules differ only in the number of hydrogen atoms present. The presence of these three molecular species in Sgr B2 (N) suggests that simple hydrogen addition on interstellar grains may account for their formation. The Sgr B2 (N) cloud appears to have ample energy sources to allow such grain reactions to proceed. This result suggests that successive hydrogen addition may be an important formation pathway for complex, interstellar molecules. Neutral Hydrogen Emission of the Spitzer Extragalactic First-Look Survey Field - The GBT has been used to image the 21 cm Galactic HI emission over a 3° x 3° square centered on the Spitzer Extragalactic First-Look Survey field. The effective angular resolution was 9.8' and the velocity resolution was 0.62 km s1. The Galactic HI in this region was found to have a very interesting structure. There is a high-velocity cloud, several intermediate-velocity clouds, and narrow-line low velocity filaments. The HI emission shows a strong and detailed correlation with dust. Except for the high-velocity cloud, all features in the Nm map have counterparts in an E(B - V) map derived from infrared data. Relatively high E(B - V)/Nm ratios in some directions suggest the presence of molecular gas. The best diagnostic of such regions was found to be peak HI line brightness temperature, not the total NHI: directions where Tb > 12 K have E(B - V)/NHI significantly above the average value. The data corrected for stray radiation have been released via the web. Scientific Highlights im> Obtervin? Nummary zoo/, NVSS Provides Support for Dark Energy Model - The "dark energy" presumably responsible for the acceleration of the expansion of the Universe also is believed to affect the evolution of fluctuations in the density of matter. Researchers using the NRAO VLA Sky Survey data, along with all-sky X-ray maps, have found a correlation between large-scale structure in the Universe and fluctuations in the Cosmic Microwave Background as mapped with the WMAP satellite. This correlation is consistent with the predictions of the dark-energy model, and thus provides an important independent confirmation of that model. VLA Helps Confirm New Class of Gamma Ray Burst - Multiple flux measurements and radio light curves made with the VLA were an essential element leading to the conclusion that Gamma Ray Burst (GRB) 031203 was an intrinsically sub- energetic event compared to "classic" GRBs. Multi-wavelength studies of the afterglow suggest that GRB 031203 is an analog to GRB 980425, which was associated with supernova 1998bw. This discovery implies the existence of a new class of low- energy GRBs, most of which remain below current detection limits. Multiple Pulsar Detections in the Globular Cluster Terzan 5 - A single six-hour observation in July 2004 using the GBT at 2 GHz resulted in the discovery of 14 new pulsars in the rich globular cluster Terzan 5. Follow-up observations in October resulted in the discovery of at least three additional pulsars. Terzan 5, which is located near the Galactic Center, has long been suspected of harboring many millisecond pulsars (MSPs) because of its large predicted stellar interaction rate and the steep- spectrum radio emission observed in its core. However, earlier pulsar searches using the Parkes radio telescope only uncovered three pulsars. These new GBT discoveries confirm that Terzan 5 is one of the largest producers of MSPs among the Galactic globular clusters and imply that the 20+ known pulsars are but the tip of the iceberg. At least nine of the new pulsars are members of binaries. Among these new pulsars there are also two or more eclipsing systems, the third- and fourth-fastest known rotators, a rare long-orbital-period binary, and two highly eccentric systems. Timing of the eccentric binaries over the next year will provide their total masses and may (after several years) allow separation of the pulsar and companion masses. Timing observations of the ensemble of pulsars will probe stellar and binary evolutionary scenarios, the mass-to-light ratio of the cluster core (and provide evidence for or against a black hole residing there), and other aspects of globular-cluster dynamics. Scientific Highlights rnfc Ob$ervinv Nummary 200^ VLA Shows Young Galaxy with Black Hole, Almost No Stellar Bulge - VLA observations of 1148+5351, the most distant quasar yet found, at z=6.4, show that the mass of molecular gas plus the mass of the presumed supermassive black hole at the core of the AGN account for nearly the total mass of the system. This leaves little mass available for a central galactic bulge, and much less mass than standard black hole-bulge relationships predict for such a bulge. This single example from the early Universe of a young galaxy with a supermassive black hole but no significant bulge may serve as an important clue to the long-standing question of whether the black hole or the bulge formed first, or coevally as some current popular models suggest. Cores of Extragalactic Radio Sources Shown to Contain Microarcsecond Structures - Morphologies of compact extragalactic radio sources imaged with the VLBA have been compared to their scintillation properties. The short time-scale scintillation of compact sources is thought to be caused by the interstellar medium in our own galaxy, and reveals the presence of radio- emitting structures that are only a few micro-arcseconds in size. Statistical studies show that the VLBA images of scintillating radio sources are significantly more core-dominated than images of a comparison sample of non-scintillating sources. This demonstrates conclusively that the micro-arcsecond component is directly associated with the core of the radio source, and hence with the actual nucleus of the host galaxy. At the typical large distances of the radio sources, this radio component is no more than a few thousand astronomical units in size, probably only a few hundred times the gravitational radii of the central massive black holes. Cold Sugar Molecules near the Galactic Center - Investigators have used the GBT to detect a very cold interstellar cloud containing the simple sugar molecule glycolaldehyde (CH20HCHO) in the Sgr B2 region. Four high signal-to-noise transitions were detected between 13 and 22 GHz. The data included both emission and absorption features. An analysis of the data indicated that the cloud is at a temperature of only ~8 K. These data, together with other information on the region, suggest that the sugar molecules were formed on the surface of grains, then released into the gas phase through disruption of the grain mantles by passing shock waves. The observed molecules now exist in the cold post-shock region. The GBT proved very powerful in these observations owing to its frequency agility, wide spectral bandwidths, and small beam which coupled very efficiently to background continuum sources allowing the detection of the absorption lines. Scientific Highlights NW Ob jemn ? Jummary zoo^t Moving Microquasar Linked to Natal Star Cluster - Using data from numerous observations with the VLBA and other telescopes, researchers have measured the proper motion of a microquasar and concluded that it was propelled out of a nearby star cluster by an asymmetric supernova explosion about a million years ago. The microquasar LSI +61 303 is moving away from a star cluster named IC 1805 at more than 25 kilometers per second, and the companion to the compact object in the microquasar shares the spectral characteristics of the cluster population. This is the first time that a binary pair has been traced to a specific natal star cluster. The microquasar, containing a compact object of about 2 solar masses and a companion of 14 solar masses, is about 130 light-years distant from the cluster. Global VLBI Reveals Youngest Stellar Corpse - Ongoing studies of Supernova 1986J in NGC 891 have discovered a bright, compact radio component at the center of the expanding shell. This bright component has only recently become visible. New observations made using the VLBA, the GBT, the VLA and the EVN, indicate that the central component has an inverted radio spectrum different from the shell. The new component likely is either the result of accretion onto a black hole or a pulsar wind nebula. This result provides evidence for the first association of a compact object with a modem, observed supernova and makes the black hole or neutron star by far the youngest known. Observing Hours Observing iummanj 200^ 2 20 1990 91 92 93 94 95 96 97 98 99 2000 01 02 03 04 05 06 Calendar Year 240 Foot GBT □ 12 Meter VLA H VLBA Figure 1.
Recommended publications
  • Fermi Large Area Telescope Second Source Catalog the Fermi LAT Collaboration
    Revision: 3455: Last update: 2011-07-09 23:47:14 - 0700 Fermi Large Area Telescope Second Source Catalog The Fermi LAT Collaboration ABSTRACT This is a pre-submission draft of the paper provided to document the public release of the 2FGL catalog through the FSSC. The draft will be replaced soon by the version that is submitted to ApJS and posted on the arXiv. We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi),derivedfromdatatakenduringthefirst 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-monthperiod.The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, power-law-with-exponential-cutoff, or log-normal forms. Also in- cluded are flux measurements in 5 energy bands for each source and monthly light curves. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalogcontains1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1174 as being reliably associated with counterparts of known or likely γ-ray-producing source classes.
    [Show full text]
  • The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope M
    The Astrophysical Journal, 810:14 (34pp), 2015 September 1 doi:10.1088/0004-637X/810/1/14 © 2015. The American Astronomical Society. All rights reserved. THE THIRD CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE M. Ackermann1, M. Ajello2, W. B. Atwood3, L. Baldini4, J. Ballet5, G. Barbiellini6,7, D. Bastieri8,9, J. Becerra Gonzalez10,11, R. Bellazzini12, E. Bissaldi13, R. D. Blandford14, E. D. Bloom14, R. Bonino15,16, E. Bottacini14, T. J. Brandt10, J. Bregeon17, R. J. Britto18, P. Bruel19, R. Buehler1, S. Buson8,9, G. A. Caliandro14,20, R. A. Cameron14, M. Caragiulo13, P. A. Caraveo21, B. Carpenter10,22, J. M. Casandjian5, E. Cavazzuti23, C. Cecchi24,25, E. Charles14, A. Chekhtman26, C. C. Cheung27, J. Chiang14, G. Chiaro9, S. Ciprini23,24,28, R. Claus14, J. Cohen-Tanugi17, L. R. Cominsky29, J. Conrad30,31,32,70, S. Cutini23,24,28,R.D’Abrusco33,F.D’Ammando34,35, A. de Angelis36, R. Desiante6,37, S. W. Digel14, L. Di Venere38, P. S. Drell14, C. Favuzzi13,38, S. J. Fegan19, E. C. Ferrara10, J. Finke27, W. B. Focke14, A. Franckowiak14, L. Fuhrmann39, Y. Fukazawa40, A. K. Furniss14, P. Fusco13,38, F. Gargano13, D. Gasparrini23,24,28, N. Giglietto13,38, P. Giommi23, F. Giordano13,38, M. Giroletti34, T. Glanzman14, G. Godfrey14, I. A. Grenier5, J. E. Grove27, S. Guiriec10,2,71, J. W. Hewitt41,42, A. B. Hill14,43,68, D. Horan19, R. Itoh40, G. Jóhannesson44, A. S. Johnson14, W. N. Johnson27, J. Kataoka45,T.Kawano40, F. Krauss46, M. Kuss12, G. La Mura9,47, S. Larsson30,31,48, L.
    [Show full text]
  • Revealing Hidden Substructures in the $ M {BH} $-$\Sigma $ Diagram
    Draft version November 14, 2019 A Typeset using L TEX twocolumn style in AASTeX63 Revealing Hidden Substructures in the MBH –σ Diagram, and Refining the Bend in the L–σ Relation Nandini Sahu,1,2 Alister W. Graham2 And Benjamin L. Davis2 — 1OzGrav-Swinburne, Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia 2Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia (Accepted 2019 October 22, by The Astrophysical Journal) ABSTRACT Using 145 early- and late-type galaxies (ETGs and LTGs) with directly-measured super-massive black hole masses, MBH , we build upon our previous discoveries that: (i) LTGs, most of which have been 2.16±0.32 alleged to contain a pseudobulge, follow the relation MBH ∝ M∗,sph ; and (ii) the ETG relation 1.27±0.07 1.9±0.2 MBH ∝ M∗,sph is an artifact of ETGs with/without disks following parallel MBH ∝ M∗,sph relations which are offset by an order of magnitude in the MBH -direction. Here, we searched for substructure in the MBH –(central velocity dispersion, σ) diagram using our recently published, multi- component, galaxy decompositions; investigating divisions based on the presence of a depleted stellar core (major dry-merger), a disk (minor wet/dry-merger, gas accretion), or a bar (evolved unstable 5.75±0.34 disk). The S´ersic and core-S´ersic galaxies define two distinct relations: MBH ∝ σ and MBH ∝ 8.64±1.10 σ , with ∆rms|BH = 0.55 and 0.46 dex, respectively. We also report on the consistency with the slopes and bends in the galaxy luminosity (L)–σ relation due to S´ersic and core-S´ersic ETGs, and LTGs which all have S´ersic light-profiles.
    [Show full text]
  • 00E the Construction of the Universe Symphony
    The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • A Catalogue of Radio Sources at 151.5 Mhz
    Appendix B A catalogue of radio sources at 151.5 MHz 547 Appendix B. A catalogue of radio sources at 151.5 MHz 548 In this Appendix, we present a source list extracted from the deconvolved images pre- sented in this thesis. The source extraction and catalogue construction was carried out by the algorithm discussed in Sec. 7.3 for sources having peak detection threshold higher than 5σ. The reliability of all sources presented here has been confirmed by visual inspection. Details of sky coverage, accuracy of flux densities and positions are discussed in Sec. 7.3.2. Catalogue Format : The catalogue is organized in order of increasing RA and declination. The various columns of the catalogue are : Column 1 : This follows the IAU convention of naming sources. Jhhmm-ddmm(J2000). As a prefix to the name we use MRT for the name of the survey. Column 2 : RA position of the source (J2000). Column 3 : Declination position of the source (J2000). 1 Column 4 : Flux density of the source in Jy beam− . In case the source is extended, inte- grated flux density is given. Column 5 : The ratio of flux density estimate to the χ value obtained during fitting. This is a confidence level estimate of the least square fit. It is different from the signal to noise ratio in the sense that the value of χ depends not only on the local noise but also on the presence of other sources, sidelobes, large scale structures in the neighbourhood. Column 6 : Sources which are well extended are marked as E.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Lavoro Di Maturità
    Liceo Lugano 2 Astrofisica Lavoro di maturità Cinematica centrale delle galassie Stefano Andreoli Gent Ismaili 23 marzo 2012 Docente responsabile Nicolas Cretton Fisica Liceo di Lugano 2 Esperta scienze e gioventù Chiara Mastropietro Savosa Figura 1: Raffigurazione artistica di un buco nero all’interno di una galassia (crediti: Gordon Francis Ferri, 2011, riferimento 80) Indice 1Galassie 1 1.1 La sequenza di Hubble . 2 1.1.1 L’evoluzione delle galassie . 4 1.2 Galassie ellittiche . 5 1.3 Galassie a disco . 9 1.3.1 Teoria delle onde di densità . 11 1.4 Galassie irregolari . 12 1.5 Forme peculiari . 12 1.6 AGN . 13 1.6.1 Cosa attiva un buco nero supermassivo? . 14 2 Cinematica interna delle galassie 16 2.1 Spettro . 16 2.1.1 Righe di emissione e di assorbimento . 17 2.2 Profilo di velocità . 17 2.2.1 Osservazioni . 20 2.3 Tempo di rilassamento . 21 I 3 La materia oscura 21 3.1 LostudiodiZwicky ......................... 22 3.2 Lo studio di Vera Rubin . 22 3.3 Inperiferiadellegalassie. 23 3.4 Lenti gravitazionali . 23 3.4.1 L’ammasso di galassie MACS J1206.2-0847 . 24 3.5 Teoria MOND . 25 3.6 Rapporto massa-luminosità . 26 3.7 Composizionedellamateriaoscura . 29 3.8 Struttura della materia oscura . 31 4 Simulazioni N-body 33 5 Buchi neri 34 5.1 Evidenze osservative dell’esistenza dei buchi neri . 34 5.2 Nascita di un buco nero stellare . 34 5.3 Buco nero supermassivo . 35 5.3.1 Sfera di influenza . 35 5.3.2 Buco nero supermassivo nella Via Lattea .
    [Show full text]
  • Objektauswahl NGC
    UMi – Objektauswahl NGC NGC 3172 NGC 5452 NGC 5909 NGC 6217 NGC 5034 NGC 5479 NGC 5912 NGC 6251 NGC 5144 NGC 5547 NGC 5939 NGC 6252 NGC 5262 NGC 5607 NGC 6011 NGC 6324 NGC 5314 NGC 5620 NGC 6048 NGC 6331 NGC 5323 NGC 5671 NGC 6068 NGC 5340 NGC 5712 NGC 6071 NGC 5344 NGC 5819 Sternbild- NGC 5412 NGC 5832 NGC 6091 Übersicht NGC 5415 NGC 5836 NGC 6094 Zur Objektauswahl: Nummer anklicken Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken UMi Übersichtskarte Auswahl NGC 3172 Aufsuchkarte Auswahl NGC 5034_5144_5314_5340_5415 Aufsuchkarte Auswahl NGC 5262_5323_5344_5412 Aufsuchkarte Auswahl NGC 5452_5547_5712 Aufsuchkarte Auswahl NGC 5479_5620_5671 Aufsuchkarte Auswahl NGC 5607_5819_5832_5836 Aufsuchkarte Auswahl NGC 5909_5912 Aufsuchkarte Auswahl N 5939_6011_6048_6071_6091_6094 Aufsuchkarte Auswahl NGC 6068_6217 Aufsuchkarte Auswahl NGC 6251_6252 Aufsuchkarte Auswahl NGC 6324 Aufsuchkarte Auswahl NGC 6331 Aufsuchkarte Auswahl Auswahl NGC 3172 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5034 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5144 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5262 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5314 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5323 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5340 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5344_5412 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5415 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5452_5547 ÜbersichtskarteNGC Aufsuch- karte Auswahl NGC 5479 ÜbersichtskarteNGC Aufsuch- karte
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • 870 Micron Observations of Nearby 3Crr Radio Galaxies A
    The Astronomical Journal, 126:2677–2686, 2003 December # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. 870 MICRON OBSERVATIONS OF NEARBY 3CRR RADIO GALAXIES A. C. Quillen,1,2,3 Jessica Almog,1 and Mihoko Yukita2,4 Received 2003 August 18; accepted 2003 September 3 ABSTRACT We present submillimeter continuum observations at 870 lm of the cores of low-redshift 3CRR radio galaxies, observed at the Heinrich Hertz Submillimeter Telescope. The cores are nearly flat-spectrum between the radio and submillimeter, which implies that the submillimeter continuum is likely to be synchrotron emission and not thermal emission from dust. The emitted power from nuclei detected at optical wavelengths and in the X-rays is similar in the submillimeter, optical, and X-rays. The submillimeter-to-optical and X-ray power ratios suggest that most of these sources resemble misdirected BL Lac–type objects with synchrotron emission peaking at low energies. However, we find three exceptions, the FR I galaxy 3C 264 and the FR II galaxies 3C 390.3 and 3C 338 with high X-ray–to–submillimeter luminosity ratios. These three objects are candidate misdirected high- or intermediate-energy peaked BL Lac–type objects. With additional infrared observations and from archival data, we compile spectral energy distributions for a subset of these objects. The steep dips observed near the optical wavelengths in many of these objects suggest that extinction inhibits the detection and reduces the flux of optical continuum core counterparts. High-resolution near- or mid-infrared imaging may provide better measurements of the underlying synchrotron emission peak.
    [Show full text]
  • Exploring Black Holes – Integrated Physics and Chemistry Exploring Black Holes a Unit Based on Force and Motion for Integrated Physics and Chemistry
    Exploring Black Holes – Integrated Physics and Chemistry Exploring Black Holes A Unit Based on Force and Motion for Integrated Physics and Chemistry Part I: NEWS FLASH! Quasars and Fast Stars Inside Galaxies? Materials for each student: 3 x 5 index card Student journal For the class: PowerPoint, computer, and video projector Materials for each group (5 groups): News flashes: cut out each news flash, one for each group. Duration: One class period Begin this first of six activities with a fast write: students respond to a question on a small 3 x 5 index card for two minutes. This is a chance for them to bring their ideas about black holes to the fore of their minds, and give you an idea of what they know. You may decide to post a giant K-W-L chart (what do I know, what do I want to know, and what have I learned) for students to chronicle their progress through this activity set. This activity gives them a chance to fill up the "K" (what do I know) and the "W" (what do I want to know) sections. Fast write (two minutes) What do you think are the most important characteristics of a black hole? News Flashes: Astronomers Astounded by Super-Luminous Objects and Fast Moving Stars Inside the Cores of Galaxies Break students up into five groups, and give each group a news flash to review. Their job is to review the news flash and present it (with feeling, like the way a news journalist inspires interest in an evolving story) to the class in an interactive way.
    [Show full text]