Qt74f9q261 Nosplash 864999B

Total Page:16

File Type:pdf, Size:1020Kb

Qt74f9q261 Nosplash 864999B UNIVERSITY OF CALIFORNIA RIVERSIDE Intermediate and Vacillating Redox in Ancient Marine Settings and their Biological Implications A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geological Sciences by Dalton Shane Hardisty August 2016 Dissertation Committee: Dr. Timothy W. Lyons, Chairperson Dr. Gordon D. Love Dr. Andrey Bekker Copyright by Dalton Shane Hardisty 2016 The Dissertation of Dalton Shane Hardisty is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGMENTS The last five years really have been an adventure. A small town Hoosier doesn’t usually get the opportunities I’ve enjoyed, with the pursuit of my interests most limited by my own ability. I have a lot of people to thank for that. This spans from the mentorship, collaboration, and training I’ve received, to the friends and family who’ve provided me the support and motivation to pursue my goals and have made it easy along the way. In many cases the distinction between these have blurred, which is what I’m most lucky for. I want to first thank those I’ve been lucky enough to call my mentors and friends. Tim, you are the hardest working person I know and I don’t think I’m currently capable of grasping the time, energy, resources, and patience you’ve given me along the way. It’s really a debt that you’ll never receive full payment for, regardless of what I give back. I’m beyond grateful and respect the hell out of you. Gordon, despite that you are a golf foe, I consider you a close friend and respect you as a gentleman and a scholar. Thanks for everything. Zunli, I seriously couldn’t have done this without you. Thanks for keeping me afloat, putting your trust in me with your proxy, and for the good times along the way. Others I consider essential include Noah Planavsky, Steve Bates, Andrey Bekker, Jeremy Owens, and Natascha Riedinger. The list is long of folks I’ve gotten to work with and now consider, and even their families in in some cases, close friends. These include Robyn Dahl, Alex and Ashley Zumberge, Chris Reinhard, Lidya Tarhan, Konstantin Choumiline, Bridget Lee, Charles Diamond, Carina Lee, Stephanie Olson, Andy Robinson, Kevin Nguyen, Sarah Simpson, Davy Crockett, and Brett Holdaway. You are each awesome in your own way and it’s thanks to you that Riverside has become home to me. Thank you. iv Of course the bulk of the thanks goes to my family, particularly my Mom (Dee), Dad (Dale), brother (Dylan), Grandma and Papaw Hardisty, Grandma and Grandpa Orman, and more recently my fiancé (and favorite collaborator) Leanne. I’ve always been encouraged to pursue what I’m passionate about and you’ve continually steered me toward the right path, whether I knew it or not. I don’t take that for granted. Regardless of what anyone thinks of or gets from this dissertation, it really has been a lot of work and has involved sacrifices along the way too — particularly the experiences I’ve missed with you. Thank you for your inspiration, understanding, and unwavering support, the bleachers have never been empty. I dedicate this dissertation to you. v ABSTRACT OF THE DISSERTATION Intermediate and Vacillating Redox in Ancient Marine Settings and their Biological Implications by Dalton Shane Hardisty Doctor of Philosophy, Graduate Program in Geological Sciences University of California, Riverside, August 2016 Dr. Timothy W. Lyons, Chairperson The presence of marine oxygen is an essential precursor for faunal habitability, driving distribution in coastal systems today and linked to evolutionary patterns throughout the geologic past. In oxygen-deficient marine systems, the reducing capacity can be defined by the zonation of redox-sensitive elements (e.g. O, I, N, Mn, Fe, S, C), with their availability in the rock record in some cases linked to the water column redox state during deposition and subsequent burial processes. In this dissertation, I reconstruct paleoredox in environments defined by water column oxygen deficiency at biologically critical levels, specifically extreme low oxygen to mildly sulfidic, a redox window most representative of reducing systems today but largely underexplored in the geologic past. First, I present the initial surface ocean-specific Precambrian redox record, the location and period hosting the emergence of both oxygenic photosynthesis and multicellular life, evaluated through iodine-to-calcium-magnesium ratios in mostly shallow carbonate and supplemented through study of iodine retention during carbonate diagenesis. Oxygen became widespread in shallow marginal marine settings starting in the Paleoproterozoic, likely at levels iv necessary to support simple animals. The ensuing Proterozoic record was dynamic, with oxygen fluctuating at and below thresholds similar to waters within and directly overlying modern oxygen minimum zones and largely constrained to shallow settings, a condition particularly exacerbated during the middle Proterozoic. This is a new view of the Precambrian surface ocean and such variability and spatially restricted marine oxygen at critically low levels is hypothesized to explain the delayed emergence of animals until the Neoproterozoic. A second study defines natural variations in water column redox in the Baltic Sea over the Holocene, the world’s largest modern anthropogenically forced and spatially and temporally variable low-oxygen basin. An iron-manganese-molybdenum geochemical approach reveals distinct phases of large-scale anoxia during the Holocene, with the magnitude and frequency of anoxia increasing with increasing distance from the sill, but never beyond mild sulfide accumulation. This work specifically indicates that spatial and temporal variability in Baltic redox appears to have driven both long-term oxygen depletion and restrained the maximum reducing potential over the Holocene. v Table of Contents INTRODUCTION AND MOTIVATION ....................................................................... 1 REFERENCES ...................................................................................................................... 12 CHAPTER 1 .................................................................................................................... 15 An iodine record of Paleoproterozoic surface ocean oxygenation ................................ 15 ABSTRACT ........................................................................................................................... 16 INTRODUCTION ................................................................................................................. 16 MATERIALS AND METHODS ........................................................................................... 17 RESULTS AND DISCUSSION ............................................................................................ 20 CONCLUSION ...................................................................................................................... 27 REFERENCES CITED .......................................................................................................... 28 SUPPLEMENTAL MATERIALS ......................................................................................... 31 SUPPLEMENTARY REFERENCES ................................................................................... 42 CHAPTER 2 .................................................................................................................... 45 Iodine constraints on Proterozoic shallow ocean redox and their biological implications ....................................................................................................................................... 45 ABSTRACT ........................................................................................................................... 46 INTRODUCTION ................................................................................................................. 47 MATERIALS ......................................................................................................................... 50 RESULTS .............................................................................................................................. 51 DISCUSSION ........................................................................................................................ 55 METHODS ............................................................................................................................ 62 REFERENCES CITED .......................................................................................................... 64 SUPPLEMENTAL MATERIALS ......................................................................................... 69 SUPPLEMENTAL REFERENCES CITED ........................................................................ 132 CHAPTER 3 .................................................................................................................. 142 Insights from the FOAM site, Long Island Sound, U.S.A: Calibrating Fe and Mo geochemistry for sedimentary paleoredox determinations.......................................... 142 ABSTRACT ......................................................................................................................... 143 INTRODUCTION ............................................................................................................... 144 BACKGROUND ................................................................................................................. 145 METHODS .........................................................................................................................
Recommended publications
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • A Community Effort Towards an Improved Geological Time Scale
    A community effort towards an improved geological time scale 1 This manuscript is a preprint of a paper that was submitted for publication in Journal 2 of the Geological Society. Please note that the manuscript is now formally accepted 3 for publication in JGS and has the doi number: 4 5 https://doi.org/10.1144/jgs2020-222 6 7 The final version of this manuscript will be available via the ‘Peer reviewed Publication 8 DOI’ link on the right-hand side of this webpage. Please feel free to contact any of the 9 authors. We welcome feedback on this community effort to produce a framework for 10 future rock record-based subdivision of the pre-Cryogenian geological timescale. 11 1 A community effort towards an improved geological time scale 12 Towards a new geological time scale: A template for improved rock-based subdivision of 13 pre-Cryogenian time 14 15 Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. 16 Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, 17 Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, 18 Kaushik Das13, Evans, D.A.D.14, Richard Ernst15, Anthony E. Fallick16, Hartwig Frimmel17, Reinhardt 19 Fuck6, Paul F. Hoffman18, Balz S. Kamber19, Anton Kuznetsov20, Ross Mitchell21, Daniel G. Poiré22, 20 Simon W. Poulton23, Robert Riding24, Mukund Sharma25, Craig Storey2, Eva Stueeken26, Rosalie 21 Tostevin27, Elizabeth Turner28, Shuhai Xiao29, Shuanhong Zhang30, Ying Zhou1, Maoyan Zhu31 22 23 1Department
    [Show full text]
  • Timing and Tempo of the Great Oxidation Event
    Timing and tempo of the Great Oxidation Event Ashley P. Gumsleya,1, Kevin R. Chamberlainb,c, Wouter Bleekerd, Ulf Söderlunda,e, Michiel O. de Kockf, Emilie R. Larssona, and Andrey Bekkerg,f aDepartment of Geology, Lund University, Lund 223 62, Sweden; bDepartment of Geology and Geophysics, University of Wyoming, Laramie, WY 82071; cFaculty of Geology and Geography, Tomsk State University, Tomsk 634050, Russia; dGeological Survey of Canada, Ottawa, ON K1A 0E8, Canada; eDepartment of Geosciences, Swedish Museum of Natural History, Stockholm 104 05, Sweden; fDepartment of Geology, University of Johannesburg, Auckland Park 2006, South Africa; and gDepartment of Earth Sciences, University of California, Riverside, CA 92521 Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved December 27, 2016 (received for review June 11, 2016) The first significant buildup in atmospheric oxygen, the Great situ secondary ion mass spectrometry (SIMS) on microbaddeleyite Oxidation Event (GOE), began in the early Paleoproterozoic in grains coupled with precise isotope dilution thermal ionization association with global glaciations and continued until the end of mass spectrometry (ID-TIMS) and paleomagnetic studies, we re- the Lomagundi carbon isotope excursion ca. 2,060 Ma. The exact solve these uncertainties by obtaining accurate and precise ages timing of and relationships among these events are debated for the volcanic Ongeluk Formation and related intrusions in because of poor age constraints and contradictory stratigraphic South Africa. These ages lead to a more coherent global per- correlations. Here, we show that the first Paleoproterozoic global spective on the timing and tempo of the GOE and associated glaciation and the onset of the GOE occurred between ca.
    [Show full text]
  • A Mesoproterozoic Iron Formation PNAS PLUS
    A Mesoproterozoic iron formation PNAS PLUS Donald E. Canfielda,b,1, Shuichang Zhanga, Huajian Wanga, Xiaomei Wanga, Wenzhi Zhaoa, Jin Sua, Christian J. Bjerrumc, Emma R. Haxenc, and Emma U. Hammarlundb,d aResearch Institute of Petroleum Exploration and Development, China National Petroleum Corporation, 100083 Beijing, China; bInstitute of Biology and Nordcee, University of Southern Denmark, 5230 Odense M, Denmark; cDepartment of Geosciences and Natural Resource Management, Section of Geology, University of Copenhagen, 1350 Copenhagen, Denmark; and dTranslational Cancer Research, Lund University, 223 63 Lund, Sweden Contributed by Donald E. Canfield, February 21, 2018 (sent for review November 27, 2017; reviewed by Andreas Kappler and Kurt O. Konhauser) We describe a 1,400 million-year old (Ma) iron formation (IF) from Understanding the genesis of the Fe minerals in IFs is one step the Xiamaling Formation of the North China Craton. We estimate toward understanding the relationship between IFs and the this IF to have contained at least 520 gigatons of authigenic Fe, chemical and biological environment in which they formed. For comparable in size to many IFs of the Paleoproterozoic Era (2,500– example, the high Fe oxide content of many IFs (e.g., refs. 32, 34, 1,600 Ma). Therefore, substantial IFs formed in the time window and 35) is commonly explained by a reaction between oxygen and between 1,800 and 800 Ma, where they are generally believed to Fe(II) in the upper marine water column, with Fe(II) sourced have been absent. The Xiamaling IF is of exceptionally low thermal from the ocean depths. The oxygen could have come from ex- maturity, allowing the preservation of organic biomarkers and an change equilibrium with oxygen in the atmosphere or from ele- unprecedented view of iron-cycle dynamics during IF emplace- vated oxygen concentrations from cyanobacteria at the water- ment.
    [Show full text]
  • Gawler Craton: Half a Billion Years Older Than Previously Thought!
    ISSUE 92 Dec 2008 Foundations of South Australia discovered Gawler Craton: half a billion years older than previously thought! Geoff Fraser, Chris Foudoulis, Narelle Neumann, Keith Sircombe (Geoscience Australia) Stacey McAvaney, Anthony Reid, Michael Szpunar (Primary Industries and Resources South Australia) Recent geochronology results obtained using Geoscience Australia’s a billion years older than the Sensitive High Resolution Ion Microprobe (SHRIMP) have identified oldest previously-dated rock from Mesoarchean rocks (about 3150 million years old) in the eastern South Australia, making these Gawler Craton, South Australia. These rocks are approximately half the oldest rocks yet discovered in 136° 137° Australia outside the Pilbara and Port Augusta Yilgarn Craton areas of Western 08GA-G01 Australia. A series of seismic transects are being collected across selected regions of the Australian 33° See Inset below Whyalla continent as part of Geoscience Kimba Australia’s Onshore Energy SOUTH Security Program. One of these AUSTRALIA seismic transects, collected in June 2008, traverses the northern Cowell Eyre Peninsula of South Australia Iron Monarch (figure 1). When processed, the seismic data will provide an east– 23 Mile Wallaroo west cross-section of the eastern 34° margin of the Gawler Craton. Spencer Moonta Gulf This region hosts significant CUMMINS uranium, geothermal, copper- Iron Baron/ TUMBY BAY Iron Prince gold, gold and iron resources. Maitland To assist the interpretation of 08-3449-1 0 50 km the seismic data and the current geological mapping program of Mesoarchean granite NT QLD Primary Industries and Resources WA Seismic survey route SA Road South Australia, a program of NSW VIC Railway geochronology is underway to Mineral occurence TAS Town/locality determine the ages of major rock units crossed by the seismic line.
    [Show full text]
  • A Fundamental Precambrian–Phanerozoic Shift in Earth's Glacial
    Tectonophysics 375 (2003) 353–385 www.elsevier.com/locate/tecto A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? D.A.D. Evans* Department of Geology and Geophysics, Yale University, P.O. Box 208109, 210 Whitney Avenue, New Haven, CT 06520-8109, USA Received 24 May 2002; received in revised form 25 March 2003; accepted 5 June 2003 Abstract It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks
    [Show full text]
  • Earth: Atmospheric Evolution of a Habitable Planet
    Earth: Atmospheric Evolution of a Habitable Planet Stephanie L. Olson1,2*, Edward W. Schwieterman1,2, Christopher T. Reinhard1,3, Timothy W. Lyons1,2 1NASA Astrobiology Institute Alternative Earth’s Team 2Department of Earth Sciences, University of California, Riverside 3School of Earth and Atmospheric Science, Georgia Institute of Technology *Correspondence: [email protected] Table of Contents 1. Introduction ............................................................................................................................ 2 2. Oxygen and biological innovation .................................................................................... 3 2.1. Oxygenic photosynthesis on the early Earth .......................................................... 4 2.2. The Great Oxidation Event ......................................................................................... 6 2.3. Oxygen during Earth’s middle chapter ..................................................................... 7 2.4. Neoproterozoic oxygen dynamics and the rise of animals .................................. 9 2.5. Continued oxygen evolution in the Phanerozoic.................................................. 11 3. Carbon dioxide, climate regulation, and enduring habitability ................................. 12 3.1. The faint young Sun paradox ................................................................................... 12 3.2. The silicate weathering thermostat ......................................................................... 12 3.3. Geological
    [Show full text]
  • Precambrian Basement and Late Paleoproterozoic to Mesoproterozoic Tectonic Evolution of the SW Yangtze Block, South China
    minerals Article Precambrian Basement and Late Paleoproterozoic to Mesoproterozoic Tectonic Evolution of the SW Yangtze Block, South China: Constraints from Zircon U–Pb Dating and Hf Isotopes Wei Liu 1,2,*, Xiaoyong Yang 1,*, Shengyuan Shu 1, Lei Liu 1 and Sihua Yuan 3 1 CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China; [email protected] (S.S.); [email protected] (L.L.) 2 Chengdu Center, China Geological Survey, Chengdu 610081, China 3 Department of Earthquake Science, Institute of Disaster Prevention, Langfang 065201, China; [email protected] * Correspondence: [email protected] (W.L.); [email protected] (X.Y.) Received: 27 May 2018; Accepted: 30 July 2018; Published: 3 August 2018 Abstract: Zircon U–Pb dating and Hf isotopic analyses are performed on clastic rocks, sedimentary tuff of the Dongchuan Group (DCG), and a diabase, which is an intrusive body from the base of DCG in the SW Yangtze Block. The results provide new constraints on the Precambrian basement and the Late Paleoproterozoic to Mesoproterozoic tectonic evolution of the SW Yangtze Block, South China. DCG has been divided into four formations from the bottom to the top: Yinmin, Luoxue, Heishan, and Qinglongshan. The Yinmin Formation, which represents the oldest rock unit of DCG, was intruded by a diabase dyke. The oldest zircon age of the clastic rocks from the Yinmin Formation is 3654 Ma, with "Hf(t) of −3.1 and a two-stage modeled age of 4081 Ma. Another zircon exhibits an age of 2406 Ma, with "Hf(t) of −20.1 and a two-stage modeled age of 4152 Ma.
    [Show full text]
  • Guyana: the Lost Hadean Crust of South America? Guiana: a Crosta Hadeana Perdida Da América Do Sul?
    DOI: 10.5327/Z2317-48892013000400002 FAST TRACK COMMUNICATIONS Guyana: the Lost Hadean crust of South America? Guiana: a crosta Hadeana perdida da América do Sul? Serge Nadeau1*, Wei Chen2, Jimmy Reece1, Deokumar Lachhman1, Randy Ault1, Maria Telma Lins Faraco3, Lêda Maria Fraga4, Nelson Joaquim Reis5, Léandro Menezes Betiollo6 ABSTRACT: A Hadean zircon xenocryst with a U-Pb zircon age RESUMO: Um xenocristal de zircão Hadeano com idade U-Pb de of 4,219 ± 19 Ma, along with several zircon xenocrysts of Archean 4,219 ± 19 Ma, ao lado de muitos outros xenocristais de idade Arqueana age (ca. 2,510 to 3,811 Ma) were found in a rock of the Paleopro- (ca. 2,510 a 3,811 Ma) foi encontrado em rocha da Formação Iwokra- terozoic Iwokrama Formation, which includes felsic volcanics and ma, de idade Paleoproterozóica, que inclui vulcânicas félsicas e intrusões co-magmatic granitic intrusions. It demonstrates the existence of graníticas co-magmáticas. Ele demonstra a existência de uma subjacen- an underlying “Lost Hadean Crust”, representing the oldest crustal te “Crosta Hadeana Perdida” como componente crustal mais antiga do component of the Guiana Shield. Detrital zircons of late Archean Escudo da Guianas. Zircões detríticos de idade Arqueana tardia, até age, up to 2,700 Ma, are also present in the high-grade rocks of the 2700 Ma, também estão presentes nas rochas de alto-grau do Complexo Kanuku Complex, located to the south, and may be derived from Kanuku, que ocorre mais a sul, e podem ser derivadas do mesmo bloco the same Hadean-Archean crustal block. crustal Hadeano-Arqueano.
    [Show full text]
  • Proterozoic Ocean Chemistry and Evolution: a Bioinorganic Bridge? A
    S CIENCE’ S C OMPASS ● REVIEW REVIEW: GEOCHEMISTRY Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? A. D. Anbar1* and A. H. Knoll2 contrast, weathering under a moderately oxidiz- Recent data imply that for much of the Proterozoic Eon (2500 to 543 million years ing mid-Proterozoic atmosphere would have 2– ago), Earth’s oceans were moderately oxic at the surface and sulfidic at depth. Under enhanced the delivery of SO4 to the anoxic these conditions, biologically important trace metals would have been scarce in most depths. Assuming biologically productive marine environments, potentially restricting the nitrogen cycle, affecting primary oceans, the result would have been higher H2S productivity, and limiting the ecological distribution of eukaryotic algae. Oceanic concentrations during this period than either redox conditions and their bioinorganic consequences may thus help to explain before or since (8). observed patterns of Proterozoic evolution. Is there any evidence for such a world? Canfield and his colleagues have developed an argument based on the S isotopic compo- n the present-day Earth, O2 is abun- es and forms insoluble Fe-oxyhydroxides, sition of biogenic sedimentary sulfides, 2– dant from the upper atmosphere to thus removing Fe and precluding BIF forma- which reflect SO4 availability and redox the bottoms of ocean basins. When tion. This reading of the stratigraphic record conditions at their time of formation (16–18). O 2– life began, however, O2 was at best a trace made sense because independent geochemi- When the availability of SO4 is strongly 2– Ͻϳ constituent of the surface environment. The cal evidence indicates that the partial pressure limited (SO4 concentration 1 mM, ϳ intervening history of ocean redox has been of atmospheric oxygen (PO2) rose substan- 4% of that in present-day seawater), H2S interpreted in terms of two long-lasting tially about 2400 to 2000 Ma (4–7).
    [Show full text]
  • Magmatic Records of the Late Paleoproterozoic to Neoproterozoic 14 Extensional and Rifting Events in the North China Craton: a Preliminary Review
    Magmatic Records of the Late Paleoproterozoic to Neoproterozoic 14 Extensional and Rifting Events in the North China Craton: A Preliminary Review Shuan-Hong Zhang and Yue Zhao Abstract The North China Craton (NCC) is characterized by multistages of extensional and continental rifting and deposition of thick marine or interactive marine and terrestrial clastic and carbonate platform sediments without angular unconformity during Earth’s middle age of 1.70–0.75 Ga. Factors controlling these multistages of extensional and continental rifting events in the NCC can be either from the craton itself or from the neighboring continents being connected during these periods. Two large igneous provinces including the ca. 1.32 Ga mafic sill swarms in Yanliao rift (aulacogen) in the northern NCC and the ca. 0.92–0.89 Ga Xu-Huai–Dalian–Sariwon mafic sill swarms in southeastern and eastern NCC, have recently been identified from the NCC. Rocks from these two large igneous provinces exhibit similar geochemical features of tholeiitic compositions and intraplate characteristics. Formation of these two large igneous provinces was accompanied by pre-magmatic uplift as indicated by the field relations between the sills and their hosted sedimentary rocks. The Yanliao and Xu-Huai–Dalian–Sariwon large igneous provinces represent two continental rifting events that have led to rifting to drifting transition and breakup of the northern margin of the NCC from the Columbia (Nuna) supercontinent and the southeastern margin of the NCC from the Rodinia supercontinent, respectively. As shown by the ca. 200 Ma Central Atlantic Magmatic Province related to breakup of the Pangea supercontinent and initial opening of the Central Atlantic Ocean and the ca.
    [Show full text]
  • The Archean Geology of Montana
    THE ARCHEAN GEOLOGY OF MONTANA David W. Mogk,1 Paul A. Mueller,2 and Darrell J. Henry3 1Department of Earth Sciences, Montana State University, Bozeman, Montana 2Department of Geological Sciences, University of Florida, Gainesville, Florida 3Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana ABSTRACT in a subduction tectonic setting. Jackson (2005) char- acterized cratons as areas of thick, stable continental The Archean rocks in the northern Wyoming crust that have experienced little deformation over Province of Montana provide fundamental evidence long (Ga) periods of time. In the Wyoming Province, related to the evolution of the early Earth. This exten- the process of cratonization included the establishment sive record provides insight into some of the major, of a thick tectosphere (subcontinental mantle litho- unanswered questions of Earth history and Earth-sys- sphere). The thick, stable crust–lithosphere system tem processes: Crustal genesis—when and how did permitted deposition of mature, passive-margin-type the continental crust separate from the mantle? Crustal sediments immediately prior to and during a period of evolution—to what extent are Earth materials cycled tectonic quiescence from 3.1 to 2.9 Ga. These compo- from mantle to crust and back again? Continental sitionally mature sediments, together with subordinate growth—how do continents grow, vertically through mafi c rocks that could have been basaltic fl ows, char- magmatic accretion of plutons and volcanic rocks, acterize this period. A second major magmatic event laterally through tectonic accretion of crustal blocks generated the Beartooth–Bighorn magmatic zone assembled at continental margins, or both? Structural at ~2.9–2.8 Ga.
    [Show full text]