Redalyc.Pollen Morphology and Viability in Bromeliaceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Growing Alcantarea
Bromeliaceae VOLUME XLII - No. 3 - MAY/JUNE 2008 The Bromeliad Society of Queensland Inc. P. O. Box 565, Fortitude Valley Queensland, Australia 4006, Home Page www.bromsqueensland.com OFFICERS PRESIDENT Olive Trevor (07) 3351 1203 VICE PRESIDENT Anne McBurnie PAST PRESIDENT Bob Reilly (07) 3870 8029 SECRETARY Chris Coulthard TREASURER Glenn Bernoth (07) 4661 3 634 BROMELIACEAE EDITOR Ross Stenhouse SHOW ORGANISER Bob Cross COMMITTEE Greg Aizlewood, Bruce Dunstan, Barry Kable, Arnold James,Viv Duncan, David Rees MEMBERSHIP SECRETARY Roy Pugh (07) 3263 5057 SEED BANK CO-ORDINATOR Doug Parkinson (07) 5497 5220 AUDITOR Anna Harris Accounting Services SALES AREA CASHIER Norma Poole FIELD DAY CO-ORDINATOR Ruth Kimber & Bev Mulcahy LIBRARIAN Evelyn Rees ASSISTANT SHOW ORGANISER Phil Beard SUPPER STEWARDS Nev Ryan, Barry Genn PLANT SALES Pat Barlow Phil James COMPETITION STEWARDS Dorothy Cutcliffe, Arnold James CHIEF COMPETITION STEWARD HOSTESS Gwen Parkinson BSQ WEBMASTER Ross Stenhouse LIFE MEMBERS Grace Goode OAM Peter Paroz, Michael O’Dea Editors Email Address: [email protected] The Bromeliad Society of Queensland Inc. gives permission to all Bromeliad Societies to re- print articles in their journals provided proper acknowledgement is given to the original author and the Bromeliaceae, and no contrary direction is published in Bromeliaceae. This permission does not apply to any other person or organisation without the prior permission of the author. Opinions expressed in this publication are those of the individual contributor and may not neces- sarily reflect the opinions of the Bromeliad Society of Queensland or of the Editor Authors are responsible for the accuracy of the information in their articles. -
Pollinators Drive Floral Evolution in an Atlantic Forest Genus Beatriz Neves1,2, Igor M
Copyedited by: AS AoB PLANTS 2020, Vol. 12, No. 5 doi:10.1093/aobpla/plaa046 Advance Access Publication August 22, 2020 Studies STUDIES Pollinators drive floral evolution in an Atlantic Forest genus Beatriz Neves1,2, Igor M. Kessous1, Ricardo L. Moura1, Dayvid R. Couto1, Camila M. Zanella3, Alexandre Antonelli2,4,5, Christine D. Bacon2,5, Fabiano Salgueiro6 and Andrea F. Costa7*, 1Universidade Federal do Rio de Janeiro, Museu Nacional, Programa de Pós Graduação em Ciências Biológicas (Botânica), Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil, 2Gothenburg Global Biodiversity Centre, Carl Skottsbergs Gata 22B, SE 41319 Gothenburg, Sweden, 3National Institute of Agricultural Botany, Huntingdon Road, Cambridge CB30LE, UK, 4Royal Botanic Gardens, Kew, Richmond TW9 3AE, Surrey, UK, 5Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs Gata 22B, SE 41319 Gothenburg, Sweden, 6Departamento de Botânica, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur, 458, 22290-240 Rio de Janeiro, RJ, Brazil, 7Departamento de Botânica, Universidade Federal do Rio de Janeiro, Museu Nacional, Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil *Corresponding author’s e-mail address: [email protected] Associate Editor: Karina Boege Abstract Pollinators are important drivers of angiosperm diversification at both micro- and macroevolutionary scales. Both hummingbirds and bats pollinate the species-rich and morphologically diverse genus Vriesea across its distribution in the Brazilian Atlantic Forest. Here, we (i) determine if floral traits predict functional groups of pollinators as documented, confirming the pollination syndromes in Vriesea and (ii) test if genetic structure in Vriesea is driven by geography (latitudinal and altitudinal heterogeneity) or ecology (pollination syndromes). -
Red Plants for Hawai'i Landscapes
Ornamentals and Flowers Jan. 2010 OF-49 Red Plants for Hawai‘i Landscapes Melvin Wong Department of Tropical Plant and Soil Sciences his publication focuses on plants The plants with red coloration having red as their key color. In shown here are just a few of the pos- theT color wheel (see Wong 2006), sibilities. Their selection is based red is opposite to (and therefore the on my personal aesthetic preference “complement” of) green, which is the and is intended to give you a start in dominant color in landscapes because developing your own list of plants to it is the color of most foliage. The provide red highlights to a landscape. plants selected for illustration here Before I introduce a new plant can create exciting variation when species into my garden or landscape, I juxtaposed with green in landscapes want to know that it is not invasive in of tropical and subtropical regions. Hawai‘i. Some plants have the ability Lots of red can be used in landscapes to escape from their original plant- because equal amounts of red will bal- ing area and spread into disturbed or ance equal amounts of green. natural areas. Invasive plant species Many plants that can exist in a can establish populations that survive tropical or subtropical environment without human help and can expand do not necessarily give the feeling of a into nearby and in some cases even “tropical” theme. Examples, in my opinion, are plumerias, distant areas. These plants can outcompete native and bougainvilleas, rainbow shower trees, ixoras, and hibiscuses. agricultural species, causing negative impacts. -
Low-Maintenance Landscape Plants for South Florida1
ENH854 Low-Maintenance Landscape Plants for South Florida1 Jody Haynes, John McLaughlin, Laura Vasquez, Adrian Hunsberger2 Introduction regular watering, pruning, or spraying—to remain healthy and to maintain an acceptable aesthetic This publication was developed in response to quality. A low-maintenance plant has low fertilizer requests from participants in the Florida Yards & requirements and few pest and disease problems. In Neighborhoods (FYN) program in Miami-Dade addition, low-maintenance plants suitable for south County for a list of recommended landscape plants Florida must also be adapted to—or at least suitable for south Florida. The resulting list includes tolerate—our poor, alkaline, sand- or limestone-based over 350 low-maintenance plants. The following soils. information is included for each species: common name, scientific name, maximum size, growth rate An additional criterion for the plants on this list (vines only), light preference, salt tolerance, and was that they are not listed as being invasive by the other useful characteristics. Florida Exotic Pest Plant Council (FLEPPC, 2001), or restricted by any federal, state, or local laws Criteria (Burks, 2000). Miami-Dade County does have restrictions for planting certain species within 500 This section will describe the criteria by which feet of native habitats they are known to invade plants were selected. It is important to note, first, that (Miami-Dade County, 2001); caution statements are even the most drought-tolerant plants require provided for these species. watering during the establishment period. Although this period varies among species and site conditions, Both native and non-native species are included some general rules for container-grown plants have herein, with native plants denoted by †. -
Bromeliads Bromeliads Are a Family of Plants (Bromeliaceae, the Pineapple Family) Native to Tropical North and South America
A Horticulture Information article from the Wisconsin Master Gardener website, posted 19 March 2012 Bromeliads Bromeliads are a family of plants (Bromeliaceae, the pineapple family) native to tropical North and South America. Europeans fi rst found out about bromeliads on Columbus’ second trip to the New World in 1493, where the pineapple (Ananas sp.) was being cultivated by the Carib tribe in the West Indies. The commercial pineapple (Ananas comosus) is native to southern Brazil and Paraguay. After the colonization of the New World it was rapidly transported to all areas of the tropics, and now is widely grown in tropical and sub- tropical areas. The only A collection of bromeliads placed on a tree at Costa Flores, Costa Rica. bromeliad to occur north of the tropics is Spanish “moss” (Tillandsia usneoides). It is neither Spanish nor a moss, but an epiphytic bromeliad. It doesn’t look much like a typical Commercial pineapple, Ananas comosus, bromeliad, though, with its long scaly stems and reduced in the fi eld. fl owers. Bromeliads are monocots, many of which, like their grass relatives, have a special form of photosynthesis that uses a variation of the more usual biochemical pathways to allow them to use water more effi ciently. Even though they come from the tropics, this helps those that are epiphytes contend with life in the treetops where there is limited water and a real danger of drying out. There are about 2500 species Many bromeliads are tropical and several thousand hybrids epiphytes. and cultivars. Many have brightly colored leaves, fl owers or fruit, and range in size from moss-like species of Tillandsia to the enormous Puya raimondii from the Andes which produces a fl owering stem up to 15 feet tall. -
Embriologia De Tillandsia Aeranthos (Lois.) L
UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM AGROBIOLOGIA EMBRIOLOGIA DE TILLANDSIA AERANTHOS (LOIS.) L. B. SM. (TILLANDSIOIDEAE- BROMELIACEAE) DISSERTAÇÃO DE MESTRADO Cristiele Spat Santa Maria, RS, Brasil 2012 EMBRIOLOGIA DE TILLANDSIA AERANTHOS (LOIS.) L. B. SM. (TILLANDSIOIDEAE-BROMELIACEAE) Cristiele Spat Dissertação apresentada ao Curso de Mestrado do Programa de Pós-Graduação em Agrobiologia, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de Mestre em Agrobiologia Orientador: Prof. Dr. João Marcelo Santos de Oliveira Santa Maria, RS, Brasil 2012 AGRADECIMENTOS À minha família, pelo apoio, incentivo e por compreender as ausências durante esses dois anos. Ao meu Orientador, Prof. Dr. João Marcelo Santos de Oliveira, pela amizade e dedicação durante minha formação, os quais foram fundamentais na execução desse trabalho. Ao Glauber, pelo carinho, apoio e paciência. À Drª. Jaqueline Sarzi Sartori, pela amizade, dedicação, aprendizado e discussões, sempre valiosas, sobre Bromeliaceae Ao César Carvalho de Freitas, pela ajuda e disponibilidade na confecção do material botânico, indispensável na execução deste trabalho. À Marisa Binotto, pela amizade, companherismo e auxílio técnico no laboratório, muito importantes na execução deste estudo. Aos amigos e colegas do Laboratório de Botânica Estrutural, Patrícia, Merielen e Mariane, pelo convívio diário, incentivo e discussões acadêmicas, muito importantes para a realização deste trabalho. Às minhas amigas, Renata, Lara e Letícia, pelos encontros, momentos de descontração e por lembrarem, todos os dias, o valor de uma amizade. À Prof. Drª. Thais Scotti do Canto-Dorow, pela análise taxonômica e disponibilidade em realizar as coletas. -
Water Relations of Bromeliaceae in Their Evolutionary Context
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Botanical Journal of the Linnean Society, 2016, 181, 415–440. With 2 figures Think tank: water relations of Bromeliaceae in their evolutionary context JAMIE MALES* Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK Received 31 July 2015; revised 28 February 2016; accepted for publication 1 March 2016 Water relations represent a pivotal nexus in plant biology due to the multiplicity of functions affected by water status. Hydraulic properties of plant parts are therefore likely to be relevant to evolutionary trends in many taxa. Bromeliaceae encompass a wealth of morphological, physiological and ecological variations and the geographical and bioclimatic range of the family is also extensive. The diversification of bromeliad lineages is known to be correlated with the origins of a suite of key innovations, many of which relate directly or indirectly to water relations. However, little information is known regarding the role of change in morphoanatomical and hydraulic traits in the evolutionary origins of the classical ecophysiological functional types in Bromeliaceae or how this role relates to the diversification of specific lineages. In this paper, I present a synthesis of the current knowledge on bromeliad water relations and a qualitative model of the evolution of relevant traits in the context of the functional types. I use this model to introduce a manifesto for a new research programme on the integrative biology and evolution of bromeliad water-use strategies. The need for a wide-ranging survey of morphoanatomical and hydraulic traits across Bromeliaceae is stressed, as this would provide extensive insight into structure– function relationships of relevance to the evolutionary history of bromeliads and, more generally, to the evolutionary physiology of flowering plants. -
Plethora of Plants - Collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse Succulents
NAT. CROAT. VOL. 27 No 2 407-420* ZAGREB December 31, 2018 professional paper/stručni članak – museum collections/muzejske zbirke DOI 10.20302/NC.2018.27.28 PLETHORA OF PLANTS - COLLECTIONS OF THE BOTANICAL GARDEN, FACULTY OF SCIENCE, UNIVERSITY OF ZAGREB (2): GLASSHOUSE SUCCULENTS Dubravka Sandev, Darko Mihelj & Sanja Kovačić Botanical Garden, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10000 Zagreb, Croatia (e-mail: [email protected]) Sandev, D., Mihelj, D. & Kovačić, S.: Plethora of plants – collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse succulents. Nat. Croat. Vol. 27, No. 2, 407- 420*, 2018, Zagreb. In this paper, the plant lists of glasshouse succulents grown in the Botanical Garden from 1895 to 2017 are studied. Synonymy, nomenclature and origin of plant material were sorted. The lists of species grown in the last 122 years are constructed in such a way as to show that throughout that period at least 1423 taxa of succulent plants from 254 genera and 17 families inhabited the Garden’s cold glass- house collection. Key words: Zagreb Botanical Garden, Faculty of Science, historic plant collections, succulent col- lection Sandev, D., Mihelj, D. & Kovačić, S.: Obilje bilja – zbirke Botaničkoga vrta Prirodoslovno- matematičkog fakulteta Sveučilišta u Zagrebu (2): Stakleničke mesnatice. Nat. Croat. Vol. 27, No. 2, 407-420*, 2018, Zagreb. U ovom članku sastavljeni su popisi stakleničkih mesnatica uzgajanih u Botaničkom vrtu zagrebačkog Prirodoslovno-matematičkog fakulteta između 1895. i 2017. Uređena je sinonimka i no- menklatura te istraženo podrijetlo biljnog materijala. Rezultati pokazuju kako je tijekom 122 godine kroz zbirku mesnatica hladnog staklenika prošlo najmanje 1423 svojti iz 254 rodova i 17 porodica. -
JUDD W.S. Et. Al. (1999) Plant Systematics
CHAPTER8 Phylogenetic Relationships of Angiosperms he angiosperms (or flowering plants) are the dominant group of land Tplants. The monophyly of this group is strongly supported, as dis- cussed in the previous chapter, and these plants are possibly sister (among extant seed plants) to the gnetopsids (Chase et al. 1993; Crane 1985; Donoghue and Doyle 1989; Doyle 1996; Doyle et al. 1994). The angio- sperms have a long fossil record, going back to the upper Jurassic and increasing in abundance as one moves through the Cretaceous (Beck 1973; Sun et al. 1998). The group probably originated during the Jurassic, more than 140 million years ago. Cladistic analyses based on morphology, rRNA, rbcL, and atpB sequences do not support the traditional division of angiosperms into monocots (plants with a single cotyledon, radicle aborting early in growth with the root system adventitious, stems with scattered vascular bundles and usually lacking secondary growth, leaves with parallel venation, flow- ers 3-merous, and pollen grains usually monosulcate) and dicots (plants with two cotyledons, radicle not aborting and giving rise to mature root system, stems with vascular bundles in a ring and often showing sec- ondary growth, leaves with a network of veins forming a pinnate to palmate pattern, flowers 4- or 5-merous, and pollen grains predominantly tricolpate or modifications thereof) (Chase et al. 1993; Doyle 1996; Doyle et al. 1994; Donoghue and Doyle 1989). In all published cladistic analyses the “dicots” form a paraphyletic complex, and features such as two cotyle- dons, a persistent radicle, stems with vascular bundles in a ring, secondary growth, and leaves with net venation are plesiomorphic within angio- sperms; that is, these features evolved earlier in the phylogenetic history of tracheophytes. -
Phylogeny, Adaptive Radiation, and Historical Biogeography in Bromeliaceae: Insights from an Eight-Locus
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/51165827 Phylogeny, Adaptive Radiation, and Historical Biogeography in Bromeliaceae: Insights from an Eight-Locus... Article in American Journal of Botany · May 2011 DOI: 10.3732/ajb.1000059 · Source: PubMed CITATIONS READS 183 290 19 authors, including: Michael H J Barfuss Ralf Horres University of Vienna GenXPro GmbH 37 PUBLICATIONS 1,137 CITATIONS 40 PUBLICATIONS 1,175 CITATIONS SEE PROFILE SEE PROFILE Timothy M. Evans Georg Zizka Grand Valley State University Goethe-Universität Frankfurt am Main and Sen… 27 PUBLICATIONS 1,270 CITATIONS 271 PUBLICATIONS 1,798 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Genetic Analysis of The Coffea Family View project Phylojive View project All content following this page was uploaded by Thomas J Givnish on 02 June 2014. The user has requested enhancement of the downloaded file. American Journal of Botany 98(5): 872–895. 2011. PHYLOGENY, ADAPTIVE RADIATION, AND HISTORICAL BIOGEOGRAPHY IN BROMELIACEAE: INSIGHTS FROM AN EIGHT-LOCUS PLASTID PHYLOGENY 1 Thomas J. Givnish 2,15 , Michael H. J. Barfuss 3 , Benjamin Van Ee 2,4 , Ricarda Riina 2,5 , Katharina Schulte 6,7 , Ralf Horres 8 , Philip A. Gonsiska 2 , Rachel S. Jabaily 2,9 , Darren M. Crayn 7 , J. Andrew C. Smith 10 , Klaus Winter 11 , Gregory K. Brown 12 , Timothy M. Evans 13 , Bruce K. Holst 14 , Harry Luther 14 , Walter Till 3 , Georg Zizka 6 , Paul E. Berry 5 , and Kenneth J. Sytsma 2 2 Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA; 3 Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Vienna A-1030, Austria; 4 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02183 USA; 5 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109 USA; 6 Department of Botany and Molecular Evolution, Research Institute Senckenberg and J. -
Caracterização Reprodutiva De Dyckia Ibiramensis Reitz, Uma Bromélia Endêmica Do Alto Vale Do Itajaí, SC
UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE BOTÂNICA PROGRAMA DE PÓS -GRADUAÇÃO EM BIOLOGIA VEGETAL CARACTERIZAÇÃO REPRODUTIVA DE Dyckia ibiramensis REITZ , UMA BROMÉLIA ENDÊMICA DO ALTO VALE DO ITAJAÍ , SC. KARINA VANESSA HMELJEVSKI ORIENTADOR : DR. ADEMIR REIS CO-ORIENTADOR : DR. MAURÍCIO SEDREZ DOS REIS Dissertação apresentada ao programa de Pós- Graduação em Biologia Vegetal da Universidade Federal de Santa Catarina, como requisito para obtenção do título em Mestre em Biologia Vegetal. FLORIANÓPOLIS SANTA CATARINA – BRASIL 2007 Hmeljevski, Karina Vanessa Caracterização reprodutiva de Dyckia ibiramensis Reitz, uma bromélia endêmica do Alto Vale do Itajaí,SC./Florianópolis, 2007. xi; f. 60; grafs, tabs, il. Orientador: Dr. Ademir Reis Co-orientador: Dr. Maurício Sedrez dos Reis Dissertação (Mestrado) – Universidade Federal de Santa Catarina, Centro de Ciências Biológicas. Bibliografia: f. 60. 1. Endemismo; 2. Interação planta-animal; 3. Auto-incompatibilidade parcial; 4. Taxa de cruzamento multilocos; 5. Bromeliaceae. “Os bosques precedem aos povos, os desertos os seguem.” Chateubriand À minminhaha família AGRADECIMENTOS Ahhh... Enfim os agradecimentos... Como de praxe, vou começar agradecendo ao Prof. Ademir Reis! Muito obrigada por mais essa oportunidade, por me proporcionar a possibilidade de tamanho crescimento pessoal e profissional ququee tive durante meu mestrado! Obrigada pela atenção, ensinamentos, convivência, disponibilidade, amizade... Prof. Maurício Sedrez dos Reis! Obrigada pelos -
Flower and Floral Trichome Morphology of Species of Dyckia Schult. F
Acta Botanica Brasilica - 31(1): 29-41. January-March 2017. doi: 10.1590/0102-33062016abb0335 Flower and fl oral trichome morphology of species of Dyckia Schult. f. (Bromeliaceae, Pitcairnioideae), and their importance to species characterization and genus taxonomy Jordano Dorval Tavares de Carvalho¹, Liliana Essi² and João Marcelo Santos de Oliveira³* Received: September 10, 2016 Accepted: December 15, 2016 . ABSTRACT Th is paper presents a morphological analysis of the fl ower and fl oral trichomes of three rare species of Dyckia: Dyckia ibicuiensis, D. polyclada and D. racinae. Flowers at anthesis were collected from natural populations and subjected to morphometric and microscopic analysis. Among the most representative features for Dyckia are: morphometrics of individual fl oral parts; the general confi guration of the androecium and gynoecium; the degree of fusion of the stigmatic lobes; the morphology of the ovules, especially in relation to the chalazal appendix; and the presence and constitution of peltate trichomes in the perianth, which exhibited a polymorphism not previously reported for Dyckia. Th e characters were eff ective at describing each species, proposing phylogenetic inferences and recognizing infrageneric groupings. We propose two species groups, which are consistent with previous hypotheses about the relationships among the species of the genus. Th e objective of this study was to provide fl oral morphological data useful for characterizing these three rare species, delimiting the genus and forming phylogenetic hypotheses. Keywords: androecium, Dyckia, Encholirium, fl oral morphology, gynoecium, peltate trichome, perianth, Pitcairnioideae Introduction taxon, morphological studies of diff erent fl ower organs have allowed for inferences of evolutionary, systematic, ecological and physiological orders in diverse genera of the Morphological and anatomical studies using diff erent family (Varadarajan & Brown 1988; Brown & Gilmartin approaches have provided effective instruments for 1989; Brown & Terry 1992; Sajo et al.